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64 Department of Health Promotion and Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland, 65 Unit of Chronic Disease Epidemiology

and Prevention, National Institute for Health and Welfare, Helsinki, Finland, 66 Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands, 67 Research

Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland, 68 Clinical Physiology, University of Turku and Turku University Hospital,

Turku, Finland, 69 Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany, 70 Klinikum

Grosshadern, Munich, Germany, 71 Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom, 72 Oxford

NIHR Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom

Abstract

Recent genome-wide association (GWA) studies described 95 loci controlling serum lipid levels. These common variants
explain ,25% of the heritability of the phenotypes. To date, no unbiased screen for gene–environment interactions for
circulating lipids has been reported. We screened for variants that modify the relationship between known epidemiological
risk factors and circulating lipid levels in a meta-analysis of genome-wide association (GWA) data from 18 population-based
cohorts with European ancestry (maximum N = 32,225). We collected 8 further cohorts (N = 17,102) for replication, and
rs6448771 on 4p15 demonstrated genome-wide significant interaction with waist-to-hip-ratio (WHR) on total cholesterol
(TC) with a combined P-value of 4.7961029. There were two potential candidate genes in the region, PCDH7 and CCKAR,
with differential expression levels for rs6448771 genotypes in adipose tissue. The effect of WHR on TC was strongest for
individuals carrying two copies of G allele, for whom a one standard deviation (sd) difference in WHR corresponds to 0.19 sd
difference in TC concentration, while for A allele homozygous the difference was 0.12 sd. Our findings may open up
possibilities for targeted intervention strategies for people characterized by specific genomic profiles. However, more
refined measures of both body-fat distribution and metabolic measures are needed to understand how their joint dynamics
are modified by the newly found locus.
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Introduction

Serum lipids are important determinants of cardiovascular

disease and related morbidity [1]. The heritability of circulating

lipid levels is estimated to be 40%–60% and recent genome-wide

association (GWA) studies implicated a total of 95 loci associated

with serum high-density lipoprotein cholesterol (HDL-C), low-

density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and

triglyceride (TG) levels [2]. Currently identified common variants

explain 10%–12% of the total variation in lipid levels, corre-

sponding to ,25% of the trait heritability [2].

Epidemiological risk factors, such as alcohol consumption,

smoking, physical activity, diet and body composition are known

to affect lipid levels [3–5]. These risk factors also show moderate to

high heritabilities, and over 120 loci with genome-wide significant

association have been identified (http://www.genome.gov/

26525384). To better understand the biological processes

modifying lipid levels, several twin studies [6–8] and candidate

gene studies [9–14] have tested for interactions between genes and

epidemiological risk factors.

Interactions between genes and modifiable risk factors might help

us develop new lifestyle interventions targeted to susceptible

individuals based on their genetic information. The effects of genetic

loci and risk factors have been studied widely separately, but to date

no GWA studies for interactions on lipids have been reported.

Results

We conducted a genome-wide screen for interactions between

2.5 million genetic markers and sex, lifestyle factors (smoking and

alcohol consumption), and body composition (BMI and WHR) in

association to serum lipid levels (TC, TG, HDL-C, and LDL-C) in

18 population-based cohorts (max N = 32,225; Table S1A, Text

S1). We defined interaction as a departure from a linear statistical

model allowing for the additive main effects of both the SNP and

the epidemiological risk factor.

18 SNPs with suggestive interactions for at least one of the trait

– epidemiological factor combinations (P-value for the interaction

,1026) in stage 1 analyses were taken forward to stage 2 analysis

in eight additional cohorts (max N = 14,889; Table S1B, Text S1).

In inverse variance meta-analyses combining the results from stage

1 and stage 2 (Table S2), the interaction between rs6448771 in

chromosome 4p15 and WHR on TC (Figure 1) was statistically

genome-wide significant (stage 1 and 2 combined P = 9.0861029).

This interaction was tested in stage 3 in two further cohorts

(N = 7,813; Table S1C, Text S1), which showed an effect to the

same direction. After combining results from all three stages (total

N = 43,903), the P-value for interaction was 4.7961029. The

association between WHR and TC was strongest for individuals

carrying two G alleles of rs6448771, for whom a one standard

deviation (sd) difference in WHR corresponds to 0.19 sd difference

(confidence interval 0.13–0.25) in TC concentration, while for

individuals homozygous for the A allele the difference was 0.12 sd

(confidence interval 0.09–0.16) (Table S3A, Figure S1). The effect

corresponds to 0.5% and 0.2% of the total variance explained in a

cohort of young individuals (YFS, mean age = 37.6) and an old

cohort (HBCS, mean age = 61.49), respectively. Additionally,

when looking at the effect of the SNP on TC in WHR tertiles,

the estimates differed in a way that the estimated SNP effect is

higher for the individuals with higher WHR (Table S3B). The

SNP did not have a direct effect on either TC or WHR (P = 0.46

and P = 0.51, respectively, Figure 1). The SNP rs6448771 is

located 249 kb downstream of the protocadherin 7 (PCDH7) gene.

Since the polymorphisms associated with complex phenotypes

often influence gene expression, we examined whether individuals

carrying different genotypes of rs6448771 have variation in their

transcript profiles. As WHR reflects adipose tissue function, we

selected 54 individuals from Finnish dyslipidemic families with

available fat biopsies and GWA data. We used linear regression to

find genes that were differentially expressed in adipose tissue

depending on the rs6448771 genotype. We found two potential

candidate genes with nominally significant cis-eQTL effects,

PCDH7 (P = 0.027, distance from the rs6448771 250 kb) and

CCKAR (P = 0.017, distance from the SNP 4.9 Mb). The region

with CCKAR has previously been linked with obesity [15].

Genome-Wide Screen for G6E Interactions on Lipids
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Additionally, using Ingenuity software (IPA), we conducted a

pathway analysis for genes with eQTL P-value,0.01 (both trans-

and cis-eQTLs). Among other diverse IPA-defined biological

functions, there was an eQTL association enrichment among

genes belonging to the ‘degradation of phosphatidylcholine’ (3

genes out of 6, P = 6.6461025, Benjamini-Hochberg corrected

P = 0.0138) and ‘degradation of phosphatidic acid’ (4 genes out of

8, P = 4.7161024, B-H corrected P = 0.0349) functions, which are

members of broader defined IPA categories ‘‘Lipid Metabolism’’

and ‘‘Carbohydrate Metabolism’’. These pathways were up-

regulated in individuals carrying the G allele of rs6448771,

possibly indicating a role for rs6448771 in lipid and carbohydrate

metabolism.

The associated SNP also shows evidence for interactions with

WHR on LDL-C (effect estimate for the interaction = 0.03,

P = 0.0016) and HDL-C (effect estimate = 0.02, P = 0.029) in our

stage 1 meta-analysis and after adjusting for TC no residual

interaction effect on LDL-C and a little on HDL-C remains

(P = 0.834 and P = 0.131 respectively) when testing in data subset.

Therefore we tested the SNP – WHR interaction also on a range

of lipoprotein subclasses measured using NMR metabonomics

platform [16] available in two cohorts (NFBC1966, N = 4624

mean age = 31.0; YFS, N = 1889, mean age = 37.6). The results

show that the SNP has a positive interaction effect on large HDL

particle concentration (combined effect for the interaction = 0.538,

P = 0.0186) and a negative effect on large very-low-density

lipoprotein (VLDL) particles (combined effect = 20.466,

P = 0.0291) and total triglycerides (combined effect = 20.454,

P = 0.0343) (Figure 2).

Discussion

Our genome-wide scan for interactions between SNP markers

and traditional epidemiological risk factors in population-based

random samples found a genome-wide significant locus,

rs6448771, modifying the relationship between WHR and TC.

The effect of WHR is estimated to be 64% stronger for individuals

carrying two copies of the G allele than for individuals carrying

two A alleles. The interaction explains around half a percent of the

TC variance that is in par with the main effects of the strongest

previously identified TC SNPs individually. This SNP also shows

similar interaction effects on a cascade of more detailed lipid

fractions suggesting broad involvement in lipid metabolism, which

was also suggested by our eQTL association enrichment analysis

with adipose tissue expression data.

The eQTL analysis pointed towards two potential candidate

genes in the region. The first one of these was protocadherin 7

(PCDH7) gene, which produces a protein that is thought to

function in cell-cell recognition and adhesion. The other candidate

gene, cholecystokinin A receptor (CCKAR) regulates satiety and

release of beta-endorphin and dopamine in the central and

peripheral nervous system. It has been previously shown that rats

with no expressed CCKARs developed obesity, hyperglycemia and

type 2 diabetes [17]. To test whether our eQTL finding was

adipose tissue specific, we ran the eQTL analysis for PCDH7 and

CCKAR in another dataset with genome wide expression data from

blood leukocytes (N = 518) available. CCKAR could not be tested

due to its negligible expression in blood leukocytes, and no

association was found for the PCDH7 (P-value = 0.284) gene most

likely indicating an adipose tissue specific eQTL for PCDH7 as a

function of rs6448771.

One interesting aspect of this study, given our large sample size,

is that only one signal achieved genome-wide significance, where

previously published lipid GWA studies have found close to a

hundred. Although power to detect interaction is typically lower

than for main effects, especially for rare exposures and SNPs,

several of the exposures considered here (such as WHR, BMI, and

gender) were common and available for a large proportion of the

study sample. This suggests that the contribution of two-way G6E

interactions to lipid levels, at least for the risk factors we examined,

is rather small, or that our current measures of risk factors may not

be robust enough for identifying interactions. More specific

measures of both phenotypes and interacting risk factors would

give better statistical power in future screens of G6E interactions.

Our findings allow us to draw several conclusions. First, to our

knowledge, this is the first time an interaction between a genetic loci

and a risk factor has been identified in a genome-wide scan using a

stringent statistical threshold for genome-wide significance. Second,

in our samples, rs6448771 modified the relationship between WHR

and TC, but was not associated with either WHR or TC alone. This

observation suggests that genome-wide screens for interactions may

be complementary to the current large-scale GWAS efforts for

finding main effects. Third, in addition to careful harmonization of

both risk factor data and phenotypes, large sample sizes are needed

to identify interactions. In our study, 43,903 samples were

combined to robustly identify the interaction. Our data, however,

suggest that the contribution of G6E interaction using current

phenotypes appears limited. Finally, from clinical point of view, the

interaction may open up possibilities for targeted intervention

strategies for people characterized by specific genomic profiles but

more refined measures of both body-fat distribution and metabolic

measures are needed to understand how their joint dynamics are

modified by the newly found locus.

Materials and Methods

Participating studies
18 studies, with a combined sample size of over 30,000

individuals, participated in the discovery phase of this analysis; 8

studies were available for replication with over 14,000 individuals.

In the discovery stage, only population-based cohorts not

Author Summary

Circulating serum lipids contribute greatly to the global
health by affecting the risk for cardiovascular diseases.
Serum lipid levels are partly inherited, and already 95 loci
affecting high- and low-density lipoprotein cholesterol,
total cholesterol, and triglycerides have been found. Serum
lipids are also known to be affected by multiple
epidemiological risk factors like body composition, life-
style, and sex. It has been hypothesized that there are loci
modifying the effects between risk factors and serum
lipids, but to date only candidate gene studies for
interactions have been reported. We conducted a ge-
nome-wide screen with meta-analysis approach to identify
loci having interactions with epidemiological risk factors
on serum lipids with over 30,000 population-based
samples. When combining results from our initial datasets
and 8 additional replication cohorts (maximum N = 17,102),
we found a genome-wide significant locus in chromosome
4p15 with a joint P-value of 4.7961029 modifying the
effect of waist-to-hip ratio on total cholesterol. In the area
surrounding this genetic variant, there were two genes
having association between the genotypes and the gene
expression in adipose tissue, and we also found enrich-
ment of association in genes belonging to lipid metabo-
lism related functions.
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ascertained on the basis of phenotype, with a wide variety of well-

defined epidemiological measures available, were included. In the

replication datasets, the NTR cohort was selected on the basis of

low risk for depression and the Genmets samples were selected for

metabolic syndrome. In further replication of rs6448771, the

EPIC cases were ascertained by BMI. Descriptive statistics for

Figure 1. Forest plot of main and WHR interaction effect sizes of rs6448771 on TC across the study cohorts. The circles in the plot are
positioned at the effect estimates, betas, and the size corresponds to the number of individuals. The whiskers correspond to the standard errors of
betas.
doi:10.1371/journal.pgen.1002333.g001
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these populations are detailed in Table S1A (discovery), S1B

(replication) and S1C (further replication). Brief descriptions of the

cohorts are provided in the Text S1 section ‘‘Short descriptions of

the cohorts’’.

Phenotype determination
Individuals were excluded from analysis if they were not of

European descent or were receiving lipid-lowering medication at

the time of sampling. TC, HDL-C, and TG concentrations were

measured from serum or plasma extracted from whole blood,

typically using standard enzymatic methods. LDL-C was either

directly measured or estimated using the Friedewald Equation

(LDL-C = TC – HDL-C – 0.456TG for individuals with

TG#4.52 mmol/l, samples with TG level higher than 4.52 were

discarded in the calculation of LDL-C) [18].

Covariates and epidemiological risk factors were ascertained at

the same time that blood was drawn for lipid measurements. BMI

was defined as weight in kilograms divided by the square of height

in meters. Waist circumference was measured at the mid-point

between the lower border of the ribs and the iliac crest; hip

circumference was measured at the widest point over the buttocks.

Waist-to-hip ratio was defined as the ratio of waist and hip

circumferences. Alcohol consumption and smoking habits were

determined via interviews and/or questionnaires. Both behaviors

were coded as dichotomous (abbreviations: ALC for drinker/

abstainer and SMO for current smoker/current non-smoker) and

semi-quantitative traits. Semi-quantitative alcohol usage (ALCq)

was based on daily consumption in grams (0: 0 g/day; 1: .0 and

#10 g/day; 2: .10 and #20 g/day; 3: .20 and #40 g/day; 4:

.40 g/day). Semi-quantitative smoking (SMOq) was assessed

based on the number of cigarettes per day (0: 0 cigarettes/day; 1:

.0 and #10 cigarettes/day; 2: .10 and #20 cigarettes/day; 3:

.20 and #30 cigarettes/day; 4: .30 cigarettes/day).

Genotyping and imputations
Affymetrix, Illumina or Perlegen arrays were used for

genotyping in the discovery cohorts. Each study filtered both

individuals and SNPs to ensure robustness for genetic analysis.

After quality control, these data were used to impute genotypes for

approximately 2.5 million autosomal SNPs based on the LD

patterns observed in the HapMap 2 CEU samples. Imputed

genotypes were coded as dosages, fractional values between 0 and

2 reflecting the estimated number of copies of a given allele for a

given SNP for each individual. Cohort specific details concerning

quality control filters, imputation reference sets and imputation

software are described in Table S4.

In silico replication
Replication cohorts utilized genome-wide imputed data, as

described above, where available. Details on the genotyping

methods implemented in the replication samples are described in

Table S4.

Serum NMR metabonomics, lipoprotein subclasses
Proton NMR spectroscopy was used to measure lipid,

lipoprotein subclass and particle concentrations in native serum

samples. NMR methods have been previously described in detail

[16,19]. Serum concentrations of total triglycerides (TG), total

cholesterol (TC) together with LDL-C and HDL-C were

determined. In addition, total lipid and particle concentrations

in 14 lipoprotein subclasses were measured. The measurements of

these subclasses have been validated against high-performance

liquid chromatography [20]. The subclasses were as follows:

chylomicrons and largest VLDL particles (particle diameters from

approx 75 nm upwards), five different VLDL subclasses: very large

VLDL (average particle diameter 64.0 nm), large VLDL

(53.6 nm), medium-size VLDL (44.5 nm), small VLDL

Figure 2. Lipoprotein subclass particle and key serum lipid concentration correlations with WHR for different genotypes of
rs6448771. The height of the bar is the meta-correlation between the lipoprotein particle concentration and waist-to-hip ratio, and the whiskers
correspond to standard error of the meta-correlation. The P-values have been taken from the interaction meta-analysis and only P-values,0.01 are
shown in the figure. The two cohorts in which the lipid particle concentrations were measured with NMR metabonomics platform were YFS and
NFBC1966 with combined number of samples of 6,500. XXL_VLDL: Chylomicrons and extremely large very low-density lipoprotein particles; XL: Very
large, L: large, M: Medium, S: Small, XS: Very small; VLDL: very low-density lipoprotein; IDL: intermediate-density lipoprotein; LDL: low-density
lipoprotein; HDL: High-density lipoprotein; TG: Triglycerides; TC: Total cholesterol.
doi:10.1371/journal.pgen.1002333.g002
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(36.8 nm), and very small VLDL (31.3 nm); intermediate-density

lipoprotein (IDL) (28.6 nm); three LDL subclasses: large LDL

(25.5 nm), medium-size LDL (23.0 nm), and small LDL

(18.7 nm); and four HDL subclasses: very large HDL (14.3 nm),

large HDL (12.1 nm), medium size HDL (10.9 nm), and small

HDL (8.7 nm).

Statistical methods
Triglyceride concentrations were natural log transformed prior

to analysis. BMI and WHR were transformed to normality using

inverse-normal transformation of ranks. For analyses where sex

was the epidemiological variable of interest, the phenotypes were

defined as the rank-inverse normal transformed residuals resulting

from the regression of the lipid measurement on age and age2. For

the other analyses, the phenotypes were defined as the inverse

normal transformed residuals resulting from the regression of the

lipid measurement on age, age2, and sex.

Associations between the transformed residuals and epidemio-

logical risk factors/SNPs were tested using linear regression

models under the assumption of an additive (allelic trend) model of

genotypic effect. The models regressed phenotypes on epidemio-

logical factor, SNP, and epidemiological factor6SNP terms

Transform residualsð Þ*EzSNPzE|SNP

and tested if the effect for E6SNP was 0 using 1 df Wald tests. In

family-based cohorts, linear mixed modeling was implemented to

control for relatedness among samples [21]. Analysis software used

by the individual cohorts is described in Table S1A and S1B.

The interaction terms from the regression analyses were meta-

analyzed using inverse variance weighted fixed-effects models [22].

Prior to meta-analysis, genomic control correction factors (lGC)

[23], calculated from all imputed SNPs, were applied on a per-

study basis to correct for residual bias possibly caused by

population sub-structure. Meta-analyses were performed by two

independent analysts using METAL (http://www.sph.umich.edu/

csg/abecasis/Metal/index.html) and the R [24] package MetA-

BEL (part of the GenABEL suite, http://www.genabel.org/). All

results were concordant, reflecting a robust analysis. Results were

selected for in silico replication if the meta-analysis P-value was less

than 1026. Results passing the threshold of suggestive genome-

wide association (P-value #561027) were selected for further

replication by direct genotyping.

The commonly accepted genome wide level of significance

(561028) reflects the estimated testing burden of one million

independent SNPs in samples of European ancestry [25]. To

address the multiple testing arising from testing interactions with

multiple risk factors, we set the genome wide significance threshold

to 561028/3 = 1.6761028 corresponding to three principal

components explaining 97.8% of the total variation of the risk

factors (Table S5).

Pathway analysis. The functional analyses were generated

through the use of Ingenuity Pathways Analysis (Ingenuity

Systems, www.ingenuity.com).’’ The Functional Analysis

identified the biological functions and/or diseases that were most

significant to the data set. Molecules which met the P-value cutoff

of 0.01 for the rs6448771 – expression association in dataset of 54

Finnish individuals with both genotype and adipose tissue

expression data, and were associated with biological functions

and/or diseases in Ingenuity’s Knowledge Base were considered

for the analysis. Right-tailed Fisher’s exact test was used to

calculate a P-value determining the probability that each

biological function and/or disease assigned to that data set is

due to chance alone and Benjamini-Hochberg multiple test

correction [26] was applied.

Supporting Information

Figure S1 Effect of waist-to-hip ratio on total cholesterol as a

function of rs6448771 genotypes. The bars in the plot are the effect

estimates from three meta-analyzed linear models where total

cholesterol (TC) has been explained using waist-to-hip ratio

(WHR). The analyses were ran in three strata based on the

rs6448771 genotypes. The whiskers in the plot correspond to the

confidence intervals of the effect estimates.
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Table S1 Cohort characteristics. The number of study subjects

with available phenotype and genotype (lower line) and

summary statistics (upper line) for every cohort and trait. For

continuous traits mean (standard deviation) is presented. For

dichotomous traits number of individuals with phenotype

present (%) is presented. TC: total cholesterol (mmol/l); HDL-

C: high-density lipoprotein cholesterol (mmol/l); LDL-C: low-

density lipoprotein cholesterol (mmol/l); TG: triglycerides

(mmol/l); BMI: body-mass index; WHR: waist-to-hip ratio;

NA: not available.

(DOC)

Table S2 Loci having P-value,161026 in Stage 1 analyses and

replication of the SNPs. Best SNP per locus having P-

value,161026 in the Stage 1 analysis combining 19 cohorts.

The bolded number is the genome-wide significant P-value. N:

number of individuals; SE: standard error of the effect estimate,

Beta; LDL-C: low-density lipoprotein cholesterol; TC: total

cholesterol; TG: triglycerides; HDL-C: high-density lipoprotein

cholesterol; ALC: alcohol usage (drinker/abstainer); WHR: waist-

to-hip ratio; BMI: body mass index; SMO: smoking (current/not);;

SMOq: semi-quantitative smoking (0: 0 cigarettes/day; 1: .0 and

#10 cigarettes/day; 2: .10 and #20 cigarettes/day; 3: .20 and

#30 cigarettes/day; 4: .30 cigarettes/day); ALCq: semi-quanti-

tative alcohol (0: 0 g/day; 1: .0 and #10 g/day; 2: .10 and

#20 g/day; 3: .20 and #40 g/day; 4: .40 g/day).

(DOC)

Table S3 Effect of rs6448771 on total cholesterol (TC) by waist-

to-hip ratio (WHR) tertiles and effect of WHR on TC by SNP

genotype classes. Section A shows the combined effect of waist-to-

hip ratio (WHR) on total cholesterol (TC) stratified by the

rs6448771 genotype class from five Finnish cohorts (FINRISK,

NFBC1966, YFS, Genmets and HBCS, combined number of

individuals is 12,782) and section B shows the combined effect of

the SNP on TC stratified by WHR tertiles from the same cohorts.

The limit values for the waist-to-hip ratio (WHR) tertiles have

been calculated using WHR values from all five datasets. Both

analyses were ran using untransformed and standardized scales

and were adjusted with age, age2 and sex. Beta: effect estimate; CI:

confidence interval.

(DOC)

Table S4 Details of GWA data in discovery and replication

cohorts. QC: quality control; MAF: minor allele frequency; HWE:

Hardy-Weinberg equilibrium.
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Table S5 Proportions of variance explained by principal

components. Principal components analysis (PCA) was run for

the seven risk factors used in the screening. PC: Principal

Component.
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