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Prevention and Epidemiology

Common Breast Cancer Susceptibility Loci Are Associated
with Triple-Negative Breast Cancer

Kristen N. Stevens1, Celine M. Vachon1, Adam M. Lee2, Susan Slager1, Timothy Lesnick1, Curtis Olswold1,
Peter A. Fasching4, Penelope Miron5, Diana Eccles6, Jane E. Carpenter7, Andrew K. Godwin8, Christine Ambrosone9,
Robert Winqvist10, Hiltrud Brauch14,15 on behalf of the GENICA consortium, Marjanka K. Schmidt16, Angela Cox18,
Simon S. Cross19, Elinor Sawyer20, Arndt Hartmann23, Matthias W. Beckmann26, R€udiger Schulz-Wendtland24,
Arif B. Ekici25, William J. Tapper6, Susan M. Gerty6, Lorraine Durcan6, Nikki Graham6, Rebecca Hein27,
Stephan Nickels27, Dieter Flesch-Janys30, Judith Heinz30, Hans-Peter Sinn28, Irene Konstantopoulou31,
Florentia Fostira31, Dimitrios Pectasides32, Athanasios M. Dimopoulos33, George Fountzilas34, Christine L. Clarke7,
Rosemary Balleine35, Janet E. Olson1, Zachary Fredericksen1, Robert B. Diasio2, Harsh Pathak36, Eric Ross37,
JoEllen Weaver36, Thomas R€udiger38, Asta F€orsti39, Thomas D€unnebier29, Foluso Ademuyiwa10,
Swati Kulkarni11, Katri Pylk€as12, Arja Jukkola-Vuorinen13, Yon-Dschun Ko40, Erik Van Limbergen41, Hilde Janssen41,
Julian Peto21, Olivia Fletcher22, Graham G. Giles44, Laura Baglietto44, Senno Verhoef17, Ian Tomlinson45,
Veli-Matti Kosma46, Jonathan Beesley47, Dario Greco49, Carl Blomqvist50, Astrid Irwanto51, Jianjun Liu51,
Fiona M. Blows52, Sarah-Jane Dawson52, Sara Margolin54, Arto Mannermaa46, Nicholas G. Martin48,
Grant W. Montgomery48, Diether Lambrechts42,43, Isabel dos Santos Silva21, Gianluca Severi44,
Ute Hamann39, Paul Pharoah52, Douglas F. Easton53, Jenny Chang-Claude25, Drakoulis Yannoukakos28,
Heli Nevanlinna49, Xianshu Wang3, and Fergus J. Couch3

Abstract
Triple-negative breast cancers are an aggressive subtype of breast cancer with poor survival, but there remains

little known about the etiologic factors that promote its initiation and development. Commonly inherited breast
cancer risk factors identified through genome-wide association studies display heterogeneity of effect among
breast cancer subtypes as defined by the status of estrogen and progesterone receptors. In the Triple Negative
Breast Cancer Consortium (TNBCC), 22 common breast cancer susceptibility variants were investigated in 2,980
Caucasian women with triple-negative breast cancer and 4,978 healthy controls. We identified six single-
nucleotide polymorphisms, including rs2046210 (ESR1), rs12662670 (ESR1), rs3803662 (TOX3), rs999737
(RAD51L1), rs8170 (19p13.1), and rs8100241 (19p13.1), significantly associated with the risk of triple-negative
breast cancer. Together, our results provide convincing evidence of genetic susceptibility for triple-negative
breast cancer. Cancer Res; 71(19); 6240–9. �2011 AACR.

Introduction

Triple-negative breast cancers are a biologically and clinically
distinct subtype of breast cancer, defined as tumors that exhibit
low or no expression of estrogen receptor (ER), progesterone
receptor (PR), and HER2 (1). Women with triple-negative disease
account for approximately 15% of all invasive breast cancers and
are more likely to be younger, African American, have an earlier

age at menarche, higher body mass index during premenopausal
years, higher parity, and a lower lifetime duration of breast-
feeding (2–4). In addition, triple-negative tumors are typically
of higher histologic grade andare associatedwithmore aggressive
disease and poorer survival (1, 5, 6). These differences in tumor
pathology, nongenetic risk factors, and survival among women
with triple-negative disease suggest that the etiology of these
tumors may differ from other breast cancer subtypes.
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Genome-wide association studies (GWAS) have recently
identified common, low-penetrance susceptibility variants
that are associated with risk of breast cancer (7–16). Growing
evidence suggests substantial heterogeneity by tumor subtype,
defined by hormone receptor status, for associations with
these single-nucleotide polymorphisms (SNP). In particular,
variants in 5p12, FGFR2, 8q24, 1p11.2, 9p21.3, 10q21.2, and
11q13 are associated with the risk of developing ER-positive
tumors (9–12, 14, 17, 18) but not ER-negative tumors, whereas
variants in 2q35, TOX3, LSP1, MAP3K1, TGFB1, and RAD51L1
are associated with both ER-positive and ER-negative diseases
(19). To date, no variants have been specifically associated
with ER-negative or triple-negative disease. However, variants
at TOX3, 2q35, and 2 distinct signals at 19p13.1 have been
associated with breast cancer risk in BRCA1mutation carriers,
who predominantly develop tumors displaying an ER-negative
and triple-negative phenotype (15, 20, 21). Thus, additional
studies specifically investigating ER-negative and triple-neg-
ative disease are necessary to understand genetic susceptibil-
ity to these breast cancer subtypes.
Here, we report on the first Triple Negative Breast Cancer

Consortium (TNBCC) study of genetic susceptibility to triple-
negative breast cancer in which associations between 22 com-
monbreast cancer susceptibility loci and risk among 2,980 cases
and 4,978 controls were evaluated. This comprehensive study
included 21 common variants from all known susceptibility loci
identified through currently published breast cancer GWAS
(1p11.2, 2q35, 3p24/NEK10, 5p12/MRPS30, MAP3K1, ESR1,
8q24, 9p21.3, 9q31.2, 10p15.1, 10q21.2/ZNF365, 10q22.3/ZMIZ1,
FGFR2, LSP1, 11q13, RAD51L1, TOX3, 17q23/COX11, and
19p13.1) and a SNP from CASP8 identified in a candidate-gene
study of CASP8 (22, 23). We show that SNPs from 4 of these loci
are strongly associatedwith risk of triple-negative breast cancer.

Materials and Methods

Ethics statement
Study subjects were recruited on protocols approved

by the Institutional Review Boards at each participating
institution, and all subjects provided written informed
consent.

Study populations
Samples from several triple-negative breast cancer case–

control series, including 2,778 triple-negative breast cancer
cases and 1,406 unaffected controls, were genotyped on the
iPLEX platform. These subjects were ascertained by 22 studies
in 9 different countries as follows: United States, Australia,
Great Britain, Finland, Germany, Netherlands, Greece, Ireland,
and Sweden. These included cases from the KBCP and POSH
cohort studies, cases and controls from the MCCS cohort
study, and cases and controls from established population-
based breast cancer case–control studies (BBCS, GENICA,
MARIE, and SEARCH), hospital or clinic-based case–control
studies (ABCS, BIGGS, LMBC, MCBCS, OBCS, SBCS, and
RPCI), case-only studies with geographically matched controls
(BBCC, KARBAC, SKKDKFZS, and FCCC), and unselected
cases identified in tumor collections (DFCI, ABCTB, and
DEMOKRITOS). Data from an ongoing GWAS of triple-neg-
ative breast cancer, including cases and controls from several
of the studies described earlier, and the triple-negative cases
from the HEBCS GWAS along with population control data
(n ¼ 273) were also included (24). In addition, data from 4
publicly available control GWAS data sets [Wellcome Trust
Case Control Consortium UK 1958 birth cohort (WTCCC),
National Cancer Institute's Cancer Genetic Markers of Sus-
ceptibility (CGEMS) project, Cooperative Health Research in

Hospital, Amsterdam, the Netherlands; 18Department of Oncology, Insti-
tute for Cancer Studies, and 19Academic Unit of Pathology, Department of
Neuroscience, Faculty of Medicine, Dentistry & Health, University of
Sheffield, Sheffield; 20National Institute for Health Research Comprehen-
sive Biomedical Research Centre, Guy's & St. Thomas’ NHS Foundation
Trust; 21Department of Epidemiology and Population Health, London
School of Hygiene and Tropical Medicine; 22Breakthrough Breast Cancer
Research Centre, The Institute of Cancer Research, London, United
Kingdom; 23Institute of Pathology, 24Institute of Diagnostic Radiology,
25Institute of Human Genetics, and 26Department of Gynecology and
Obstetrics, Breast Center Franconia, Friedrich-Alexander University Erlan-
gen-Nuremberg, University Hospital Erlangen, Erlangen; 27Division of
Cancer Epidemiology, German Cancer Research Center; 28Department
of Pathology, University Hospital Heidelberg; 29Molecular Genetics of
Breast Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Ger-
many; 30Institute for Medical Biometrics and Epidemiology, University
Clinic Hamburg-Eppendorf, Hamburg, Germany; 31Molecular Diagnostics
Laboratory IRRP, National Centre for Scientific Research "Demokritos";
32Department of Internal Medicine, Oncology Section, "Hippokration"
Hospital; 33Department of Clinical Therapeutics, "Alexandra" Hospital,
University of Athens School of Medicine, Athens; 34Department of Medical
Oncology, Aristotle University of Thessaloniki, Papageorgiou Hospital,
Thessaloniki, Greece; 35Department of Translational Oncology, Westmead
Hospital, Western Sydney Local Health Network, Westmead, New South
Wales, Australia; Departments of 36Medical Oncology and 37Biostatistics,
Fox Chase Cancer Center, Philadelphia, Pennsylvania; 38Institute of
Pathology, St€adtisches Klinikum Karlsruhe, Karlsruhe, Germany; 39Divi-
sion of Molecular Genetic Epidemiology, Deutsches Krebsforschungszen-
trum, Heidelberg, Germany, and Center for Primary Health Care Research,
University of Lund, Malm€o, Sweden; 40Department of Internal Medicine,
Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn,

Germany; 41Multidisciplinary Breast Center, University Hospital Gasthuis-
berg; 42Vesalius Research Center, VIB; 43Vesalius Research Center, Uni-
versity of Leuven, Leuven, Belgium; 44Cancer Epidemiology Centre, The
Cancer Council Victoria, and Centre for Molecular, Environmental, Ge-
netic, and Analytic Epidemiology, The University of Melbourne, Mel-
bourne, Australia; 45Wellcome Trust Centre for Human Genetics and
Oxford Comprehensive Biomedical Research Centre, University of Oxford,
Oxford, United Kingdom; 46Department of Pathology, Institute of Clinical
Medicine, University of Eastern Finland and Kuopio University Hospital,
Biocenter Kuopio, Kuopio, Finland; 47Genetics and Population Health
Division, and 48QIMR GWAS Collective, Queensland Institute of Medical
Research, Brisbane, Australia; Departments of 49Obstetrics and Gynecol-
ogy and 50Oncology, Helsinki University Central Hospital, Helsinki, Fin-
land; 51Human Genetics Division, Genome Institute of Singapore,
Singapore; 52Department of Oncology and Department of Public Health
and Primary Care, University of Cambridge; 53Department of Genetic
Epidemiology, Cancer Research UK Genetic Epidemiology Unit, Strange-
ways Research Laboratory, Cambridge, United Kingdom; and 54Depart-
ment of Clinical Genetics, Karolinska University Hospital, Stockholm,
Sweden
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the Region of Augsburg (KORA) study, and the Australian
Twin Cohort study from the Queensland Institute of Medical
Research (QIMR); n ¼ 3,593] were used. Age distributions and
years of diagnosis for individual study sites are provided in
Supplementary Table S1, and these studies are described in
more detail in Supplementary Material.

Pathology and tumor markers
A triple-negative breast cancer case was defined as an

individual with an ER-negative, PR-negative, and HER2-
negative [0 or 1 by immunohistochemical staining (IHC)]
breast cancer diagnosed after age 18. Criteria used for defining
ER, PR, and HER2 status varied by study. These are described
in detail in Supplementary Table S2. IHC data for cytokeratin
5/6 and epidermal growth factor receptor for identification of
basal tumors were not available.

Genotyping
The following 22 SNPs were genotyped on the iPLEX plat-

form: rs11249433 (1p11.2), rs13387042 (2q35), rs4973768 (3p24),
rs10941679 (5p12), rs889312 (MAP3K1), rs2046210 (ESR1),
rs12662670 (ESR1, surrogate for rs9397435), rs13281615
(8q24), rs1011970 (9p21.3), rs865686 (9q31.2), rs2380205
(10p15.1), rs10509168 (10q21.2, surrogate for rs10995190),
rs704010 (10q22.3), rs2981582 (FGFR2), rs3817198 (LSP1),
rs614367 (11q13), rs999737 (RAD51L1), rs3803662 (TOX3),
rs6504950 (17q23), rs8170 (19p13.1), rs8100241 (19p13.1), and
rs17468277 (tagSNP for CASP8 D302H). For 10q21.2, rs10509168
was genotyped as a surrogate for rs10995190 (14).

Genotype data for 22 SNPs were generated for 2,778 cases
and 1,406 controls using a single multiplex on the iPLEX
MassARRAY platform (Sequenom). Samples were plated by
study as random mixtures of cases and controls with no-
template and CEPH controls in every plate. Genotyping quality
for SNPs and samples was evaluated by an iterative quality
control process. SNPs and samples were excluded on the basis

of the following criteria: an SNP call rate less than 95%, Hardy–
Weinberg equilibrium (HWE) P < 0.01 among controls, and
sample call rate of less than 95%. The final data set of 2,707
cases and 1,385 controls exhibited SNP call rates of more than
99%, HWE P > 0.01, and sample call rates of more than 95%.

In addition, genotype data from cases and controls included
in a triple-negative GWAS were available to supplement the
iPLEX genotypes. Cases from 10 study sites (ABCTB, BBCC,
DFCI, FCCC, GENICA, MARIE, MCBCS, MCCS, POSH, and
SBCS) were genotyped using the Illumina 660-Quad SNP array.
A subset of MARIE cases were genotyped using the Illumina
CNV370 SNP array. HEBCS cases and controls were genotyped
using the Illumina 550-Duo SNP array. GWAS data for public
controls were generated using the following arrays: Illumina
660-Quad (QIMR), Illumina 550K (v1; CGEMS), Illumina 550K
(KORA), and Illumina 1.2M (WTCCC). For HEBCS, population
allele and genotype frequencies on 221 healthy population
controls genotyped on Illumina HumanHap 370CNV in the
NordicDB, a Nordic pool and portal for genome-wide control
data, were obtained from the Finnish Genome Center (25).
These GWAS data were independently evaluated by an iter-
ative quality control process with the following exclusion
criteria: minor allele frequency less than 0.01, call rate of less
than 95%, HWE P < 1 � 10�7 among controls, and sample call
rate of more than 98%. When DNA was available (n ¼ 1,402),
we re-genotyped samples from the triple-negative GWAS as
part of the iPLEX study in an effort to obtain as much data as
possible from a single platform. Therefore, following prefer-
ential selection of data from the iPLEX study, genotypes for an
additional 273 cases and 3,593 controls were included from the
GWAS data (Table 1). No GWAS genotype data were available
for rs10941679 (5p12), rs2046210 (ESR1), and rs6504950
(17q23), and only partial data were available for 5 other SNPs
because of the absence of these SNPs from some or all of the
GWAS genotyping platforms (Table 1). As a further measure of
genotype quality, genotype concordance was evaluated for the

Table 1. Subjects by country and genotyping platform (iPLEX, GWAS)

Country No. of
studies

Age,a range
(mean)

Years of
diagnosisa

iPLEX GWAS Combined

Cases Controls Cases Controls Total Cases Controls Total Cases Controls Total

United
States

5 25–92 (52) 24–92 (62) 1990–2010 711 448 1,159 35 1,126 1,161 746 1,574 2,320

Australia 3 25–91 (56) 29–72 (46) 1990–2009 186 59 245 21 657 678 207 716 923
United

Kingdom
5 22–93 (45) 42–81 (53) 1971–2010 573 111 684 6 1,374 1,380 579 1,485 2,064

Finland 3 27–90 (55) 18–80 (57) 1990–2004 101 88 189 85 221 306 186 309 495
Germany 6 22–88 (57) 24–81 (58) 1993–2008 740 501 1,241 126 215 341 866 716 1,582
Greece 1 21–79 (53) 34–82 (50) 1997–2010 273 85 358 0 0 0 273 85 358
Netherlands 1 26–62 (39) NA 1995–2007 67 0 67 0 0 0 67 0 67
Sweden 1 48–88 (62) 48–85 (62) 1998–2000 27 26 53 0 0 0 27 26 53
Total 25 21–93 (52) 18–92 (56) 1971–2010 2,707 1,385 4,092 273 3,593 3,866 2,980 4,978 7,958

aStudy-specific distributions are shown in Supplementary Table S1.
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1,402 samples included in both the iPLEX and GWAS. Eighteen
of 19 SNPs had concordance rates of more than 98% and
rs8100241 showed concordance of 96.3%.

Statistical methods
Allele frequencies for each of the 22 SNPs included in these

analyses were estimated using the iPLEX genotype data and
the combined GWAS and iPLEX data for cases, controls, and
all subjects (Supplementary Table S3). Associations for triple-
negative breast cancer were estimated using unconditional
logistic regression adjusted for country of residence. The sites
were categorized by country of origin (American, Australian,
British, Finnish, German, Greek, Irish, and Swedish; Table 1).
SNPs were coded for a gene–dose effect by assigning a 3-level
(0, 1, and 2) variable to each genotype (log-additive model). We
calculated P values, ORs, and 95% CIs from these logistic
regressions. Pairwise interactions were tested by including
multiplicative interaction terms in logistic regression models.
Homogeneity of ORs by country was tested using the Q-sta-
tistic (26), and the extent of heterogeneity was estimated by
the I2 statistic (27). All analyses were conducted using SAS
version 9.2, R version 2.11.0, or Plink version 1.07.

Results

We evaluated 22 breast cancer susceptibility SNPs identified
in breast cancer GWAS for associations with triple-negative
disease using genotype data froman iPLEX study of the 22 SNPs
supplemented with data from a triple-negative GWAS. The
combined data resulted in a case–control study of 2,980 cases
and 4,978 controls from 25 studies in 8 countries (Table 1). All
22 SNPs were in HWE among controls at P > 0.01. Only
rs17468277, rs13387042, rs10941679, and rs614367 showed
evidence of heterogeneity by country (rs17468277: P ¼ 0.065,
I2 ¼ 47.4%; rs13387042: P ¼ 0.037, I2 ¼ 53.1%; rs10941679: P ¼
0.063, I2 ¼ 47.8%; rs614367: 0.054, I2 ¼ 49.4%). Of the 22 SNPs
from 20 loci, 7 were significantly associated with risk of triple-
negative breast cancer (P < 0.05; Table 2). Six SNPs from 4 loci,
rs2046210 (P ¼ 4.38 � 10�7), rs12662670 (P ¼ 1.13 � 10�4),
rs999737 (P¼ 2.96� 10�4), rs3803662 (P¼ 3.66� 10�5), rs8170
(P ¼ 2.25 � 10�8), and rs8100241 (P ¼ 8.66 � 10�7), remained
significant after correction for multiple testing (P < 2.27 �
10�3). Adjustment for age did not change the magnitude or
significance of our results. In addition, we did not find evidence
of significant interactions with age for any of the 22 SNPs.
rs2046210, located upstream of ESR1 on chromosome

6q25.1, exhibited a strong association with triple-negative
disease (OR ¼ 1.29, 95% CI ¼ 1.17–1.42; P ¼ 4.38 � 10�7;
Fig. 1A), whereas rs12662670, located further upstream of
ESR1, displayed a similar effect but slightly less significant
association with triple-negative disease (OR ¼ 1.33, 95%
CI ¼ 1.15–1.53; P ¼ 1.13 � 10�4; Fig. 1B). To assess the inde-
pendence of these 2 ESR1 SNPs, which are not correlated
in HapMap subjects of European ancestry (r2 ¼ 0.09), we
included both SNPs in a multivariate model. rs2046210 was
more strongly associated with triple-negative risk than
rs12662670 (rs2046210: OR ¼ 1.24, 95% CI ¼ 1.12–1.38;
P ¼ 5.64 � 10�5; rs12662670: OR ¼ 1.20, 95% CI ¼

1.00–1.44; P ¼ 0.053) in this model, suggesting that
rs2046210 may account in part for these 2 associations. In
addition, 2 SNPs at 19p13.1, shown to have genome-wide
significant associations with breast cancer in BRCA1mutation
carriers, were highly significantly associated with triple-
negative breast cancer (rs8170: OR ¼ 1.27, 95% CI ¼ 1.17–
1.38; P ¼ 2.25 � 10�8; rs8100241: OR ¼ 0.84, 95% CI ¼ 0.78–
0.90; P ¼ 8.66 � 10�7; Fig. 1C and D). Multivariate modeling
of these 2 SNPs, which are moderately correlated in
HapMap subjects of European ancestry (r2 ¼ 0.74), showed
that rs8170 is more strongly associated with triple-negative
breast cancer risk (rs8170: OR ¼ 1.22, 95% CI ¼ 1.10–1.34;
P ¼ 7.56 � 10�5; rs8100241: OR ¼ 0.90, 95% CI ¼ 0.83–0.98;
P ¼ 0.014), although both variants are retained in the model.
In addition, rs3803662 (TOX3), which has been strongly asso-
ciated with risk of ER-negative breast cancer (OR ¼ 1.15,
P ¼ 2.1 � 10�10; ref. 19), was associated with a 1.17-fold
increase in risk of triple-negative disease (OR ¼ 1.17, 95%
CI ¼ 1.09–1.26; P ¼ 3.66 � 10�5; Fig. 1E). Likewise, the
rs999737 (RAD51L1) SNP was significantly associated with
risk of triple-negative breast cancer (rs999737: OR ¼ 0.86,
95% CI ¼ 0.80–0.93; P ¼ 2.96 � 10�4; Fig. 1F). In contrast,
rs17468277 (ALS2CR12/CASP8; P ¼ 0.005) was not signi-
ficantly associated with triple-negative breast cancer risk
after correction for multiple testing, suggesting that this
result should be interpreted with caution. None of these 6
SNPs showed evidence of heterogeneity by country (Fig. 1). To
further understand the influence of variants in the 6q25.1 and
19p13.1 loci on triple-negative risk, we looked for statistical
interactions between the SNPs in these regions. Although
there was no evidence for a statistical interaction between
rs2046210 and rs1266270 (P ¼ 0.820) at 6q25.1, we found
strong evidence of an interaction (P ¼ 0.004) between
rs8170 and rs8100241 from 19p13.1 in a multiplicative model.

Next, we conducted a subset analysis using the iPLEX data
alone (2,707 cases and 1,385 controls) for the 19 SNPs with
both iPLEX and GWAS genotypes to assess the consistency of
our results. Analysis of associations with triple-negative dis-
ease in the iPLEX-only data set showed that ORs for the 19
SNPs were consistent in both direction and magnitude of
effect compared with the analysis using all available genotype
data, although some variation in the significance of the
associations was observed (Table 2). Four of the SNPs signif-
icantly associated with triple-negative breast cancer in the
overall analysis retained statistical significance in the iPLEX-
only analysis (rs12662670: P ¼ 3.52 � 10�4; rs3803662:
P ¼ 8.25 � 10�4; rs8170: P ¼ 7.30 � 10�8; rs8100241:
P ¼ 1.81 � 10�6) after correction for multiple testing. Results
were unchanged for rs2046210 from the ESR1 locus, because
the overall analysis was restricted to iPLEX data as a result of
missing GWAS data for this variant. Finally, although the
rs999737 (RAD51L1) SNP was only marginally associated with
triple-negative breast cancer risk in the iPLEX-only analysis
(rs999737: P ¼ 0.053), the estimate of effect for this SNP was
consistent with the effect observed in the overall analysis.

Importantly, genotype data from a subset of these cases and
controls have previously been used in association studies
involving a number of these SNPs by the Breast Cancer
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Association Consortium (BCAC). To avoid duplication and to
assess the degree to which these BCAC samples influenced our
results, we also conducted a subset analysis in which we
excluded all cases and controls used in the BCAC studies
(n ¼ 1,819 cases and n ¼ 4,038 controls; Supplementary
Table S4). The effect estimates and significance of associations
with triple-negative disease in either the iPLEX or combined
analyses were not substantially modified following the remov-
al of these cases and controls (Supplementary Table S5).

Discussion

Here, we report on the first study by the TNBCC and the
largest study to date of genetic susceptibility to triple-negative
breast cancer, which is composed of 2,980 cases and 4,978
controls from 25 studies in 9 countries. We show that a subset
of breast cancer susceptibility SNPs identified through GWAS
is also associated with risk of triple-negative breast cancer.
Specifically, we determined that 6 breast cancer susceptibility
SNPs from 4 loci, rs2046210 (ESR1), rs12662670 (ESR1),
rs999737 (RAD51L1), rs3803662 (TOX3), rs8170 (19p13.1),

and rs8100241 (19p13.1), are associated with risk of triple-
negative breast cancer. Of these, rs8170 (19p13.1) achieved
genome-wide significance (P ¼ 2.25 � 10�8). Overall, these
findings provide strong evidence of genetic susceptibility to
triple-negative breast cancer.

We identified highly significant associations between SNPs
at 6q25.1, including rs12662670 (P ¼ 1.13 � 10�4) and
rs2046210, which reached near genome-wide significance
(P ¼ 4.38 � 10�7), and risk of triple-negative breast cancer.
These variants are located approximately 30 and 60 kb
upstream of the first untranslated exon and 180 and 210 kb
upstream of the first coding exon of ESR1, which encodes
the ERa protein.

The rs2046210 SNP was originally reported in a breast
cancer GWAS in Chinese women (13), where a stronger
association was observed among ER-negative than among
ER-positive breast cancer cases. Importantly, the magnitude
of effect in this triple-negative study (OR ¼ 1.29, 95% CI ¼
1.17–1.42) was identical to that reported for ER-negative
breast cancer in the Chinese study (OR ¼ 1.29, 95% CI ¼
1.21–1.37). In contrast, a study of women of European ancestry
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Figure 1. Breast cancer susceptibility loci and risk of triple-negative breast cancer forest plots for 6 breast cancer susceptibility loci and risk of triple-negative breast
cancer are shown by country. A, rs2046210; B, rs12662670; C, rs8170; D, rs8100241; E, rs3803662; F, rs999737. Country-specific ORs (95% CIs) are denoted
by black boxes (black lines). Overall OR estimates are represented by black diamonds, where diamond width corresponds to 95% CI bounds. Box and diamond
heights are inversely proportional to precision of the OR estimate. I2 values were zero for each of these 6 SNPs, indicating no heterogeneity by country.
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did not observe an association with breast cancer, although
analyses were not stratified by ER status (28). When combined
with our results, the suggestion is that this SNP may be
specifically associated with triple- or ER-negative disease.
The second variant in the ESR1 locus rs12662670 was origi-
nally associated with breast cancer in the same study of
women of European ancestry (OR ¼ 1.12, 95% CI ¼ 1.03–
1.21) and was used as a surrogate for rs9397435, which is
associated with breast cancer risk (OR ¼ 1.15, 95% CI ¼ 1.06–
1.25) independently of rs2046210 (28). Here, rs12662670
showed a strong influence on triple-negative breast cancer
risk (OR ¼ 1.33, 95% CI ¼ 1.15–1.53), again suggesting that
variation in the ESR1 locus is specifically associated with
risk of ER-negative and/or triple-negative breast cancer. It
remains to be determined whether a single locus represented
by rs2046210 or 2 loci accounted for by rs2046210 and
rs9397435 are associated with ER-negative and triple-negative
breast cancer at chromosome 6q25.

Because triple-negative breast cancer is defined in part by
the absence of expression of ERs, we can speculate that
inherited variation may downregulate ESR1 expression and
promote formation of ERa-negative tumors. However, recent
studies in mice have shown that the mammary stem cell
compartment can be regulated by 17b-estradiol and proges-
terone through a paracrine-signaling mechanism from steroid
receptor–positive luminal cells to steroid receptor–negative
stem cells (29, 30). Thus, SNPs in the ESR1 locus may promote
expansion of receptor-negative precursors and subsequent
development of triple-negative tumors. Interestingly, variation
in the 50 region of ESR1 has been associated with an increased
risk of breast cancer relapse in a British prospective cohort
study (31), which was accounted for by including tumor grade
and nodal status inmultivariate models. Thus, the causal SNPs
in this area may be associated with a more aggressive tumor
phenotype.

The SNPs rs8170 (P ¼ 2.25 � 10�8) and rs8100241 (P ¼
8.66 � 10�7) located at 19p13.1 were first identified both as
modifiers of breast cancer risk in BRCA1 carriers (15) and as
risk factors for ovarian cancer (32), as well as shown to be
significantly associated with ER-negative breast cancer (15).
In this study, we showed that rs8170 displayed a genome-
wide significant association with triple-negative breast can-
cer, suggesting that we can now identify variation in the
19p13.1 locus as a risk factor for triple-negative disease.
Interestingly, rs8170 attenuated the significance of
rs8100241 when the SNPs were included in a multivariate
regression model for breast cancer whereas both these SNPs
retained significance in multivariate models evaluating
effects on BRCA1-associated breast cancer and ER-negative
breast cancer (15). In addition, our data suggest that these
SNPs have a multiplicative effect on triple-negative breast
cancer risk. Further studies are required to determine
whether these SNPs represent independent signals in the
19p13.1 locus. Additional studies are also needed to identify
the underlying causative genetic events in this locus and
to determine whether the causative events for BRCA1,
ER-negative, and triple-negative breast cancer as well as
ovarian cancer are common.

These 19p13.1 variants are located in a cluster of genes
including C19orf62, ANKLE1, and ABHD8. ABHD8 encodes
the abhydrolase domain containing 8 protein, which is a
gene of uncharacterized function, and is located about 13 kb
downstream of both rs8170 and rs8100241. The SNP rs8170 is
located within C19orf62, which encodes the MERIT40 pro-
tein, whereas rs8100241 is located within ANKLE1, a protein
of unknown function that encodes ankyrin repeat and LEM
domains. MERIT40 is the most plausible candidate in this
region for breast cancer susceptibility because it is a com-
ponent of the BRCA1-A complex and is required to ensure
the integrity and localization of this complex during the
repair of DNA double-strand breaks, specifically through the
recruitment and retention of the BRCA1–BARD1 ubiquitin
ligase and the BRCC36 deubiquitination enzyme (33–35).
However, it remains to be determined whether the causal
variants at 19p13.1 alter MERIT40 expression or function or
influence other genes in the region such as ANKLE1 or
ABHD8.

We also found that variants in RAD51L1 (rs999737:
P ¼ 2.96 � 10�4) and TOX3 (rs3803662: P ¼ 3.66 � 10�5)
were strongly associated with risk of triple-negative breast
cancer. rs999737 (RAD51L1) was originally identified in a
recent breast cancer GWAS of women of European ancestry
(12). Detailed studies of breast tumors have suggested that
rs999737 is associated with both ER-positive and ER-negative
breast cancers, which is consistent with our findings. RAD51L1
is a member of the Rad51-like family and functions in the
double-strand break repair and homologous recombination
pathway (36). When coupled with the association of the
19p13.1/MERIT40 locus with triple-negative risk, the sugges-
tion is that modification of DNA repair genes is an important
mechanism involved in predisposition to triple-negative
breast cancer. The SNP rs3803662, located telomeric to the
gene TOX3, was also strongly associated with triple-negative
breast cancer in our study (P ¼ 3.66 � 10�5). This SNP was
originally identified in 2 GWASs of breast cancer (7, 9) and has
been associated with risk of developing both ER-positive and
ER-negative tumors (9). The SNP is also associated with the
risk of BRCA1-related breast cancers (15), which are primarily
ER-negative or triple-negative. TOX3 encodes a protein con-
taining an HMG-box that is speculated to be involved in the
modification of DNA and chromatin structure (37).

Only a subset of the 22 susceptibility loci was associated
with triple-negative disease in this study. This suggests that
there may be heterogeneity in the predisposition loci associ-
ated with different breast tumor subtypes. However, it is
important to consider whether limited statistical power
may have influenced our results. Among the 16 SNPs that
did not reach statistical significance in this study, the effect
estimates for variants at 1p11.2, 2q35, 8q24, 9q31.2, 10p15.1,
10q21.2/ZNF365, 10q22.3/ZMIZ1, and FGFR2 either showed no
evidence for association or were in the opposite direction
compared with the original GWAS findings. Interestingly, 2q35
has been associated with both ER-negative (19) and BRCA1-
related breast cancers (21) and was marginally significant
in a smaller set of triple-negative breast cancer (19). How-
ever, we found no evidence for the association at 2q35 among
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triple-negative breast cancer, indicating that risk for this locus
may be limited to non–triple-negative and ER-negative breast
cancer. In contrast, the ORs for SNPs at CASP8, 9p21.3, and
COX11were comparable inmagnitude with the original GWAS
findings, whereas the ORs for variants at 3p24/NEK10, 5p12,
MAP3K1, LSP1, and 11q13 had only mildly attenuated effects.
Our results are also consistent with a recent study reporting
associations between MAP3K1, 3p24/NEK10, COX11, and
CASP8 and ER-negative breast cancer (19). These results
suggest that we may have had insufficient power to detect
significant associations for these SNPs among triple-negative
breast cancers.
Several limitations should be considered when interpreting

these results. First, different ascertainment criteria were used
among the contributing breast cancer studies, with cases
being ascertained from population-based or hospital-based
case–control studies. Importantly, genetic main effects mod-
els in other large breast cancer consortia such as BCAC have
provided stable risk estimates for SNPs across a wide range of
study designs. This would suggest that in the case of these
genetic variants, ascertainment and study design issues had
limited influence on the results of genetic association studies
for breast cancer. The consistency in effect estimates among
BRCA1-related breast cancers, ER-negative breast cancer, and
now triple-negative breast cancer for variants at 19p13.1, 6q25,
and TOX3 provides additional evidence that these estimates
are robust to variability in study design. Furthermore, our
evaluation of interactions with age was underpowered, and
unavailability of family history on most studies precluded
investigations of interactions by family history. There is also
variability in the criteria used to define the status of ER, PR,
and HER2 of cases between studies (Supplementary Table S2).
For HER2, cases with scores of 0 or 1 by IHC were defined as
HER2 negative. Cases with IHC of 2þ were not included to
minimize erroneous inclusion of HER2-positive cases. In
general, cases were considered ER- or PR-negative on the
basis of IHC of tumors using thresholds of less than 1% of cells
stained, less than 10% of cells stained, or an Allred score of 0 to
2, which incorporates both intensity and percentage of stain-
ing in tumor cells. In addition to variability in thresholds for
positivity, factors such as tissue fixation, antibody choice, and
interpretation of positive immunostaining may also affect the
definition or the status of ER or PR across study sites (38, 39).
The resulting heterogeneity in the definition of triple-negative
breast cancer may influence our ability to detect associations
with susceptibility loci that are specific to triple-negative or
ER-negative disease. However, we did successfully identify 6
genetic loci associated with triple-negative disease, and the
lack of heterogeneity in effect estimates across study sites in
this analysis (Fig. 1) would suggest that our findings are
generally robust to the differences noted earlier. In addition,
in a sensitivity analysis including only cases from studies with
the most stringent criteria for defining triple-negative cases
(<1% of cells stained positive for ER and PR, HER2 0 or 1þ on
IHC), the effect estimates were very similar to those from the
complete analysis for the 6 SNPs in ESR1, 19p13.1, TOX3, and
RAD51L1, with some attenuation of significance. Finally, it is
important to note that the results of this study are specific to

Caucasian women. Although greater proportions of African
Americans and Latinas than do Caucasians develop triple-
negative breast cancer, it is not known whether similar associ-
ations with the SNPs described here exist in these populations.
Further studies are needed to address this question.

In conclusion, our study provides convincing evidence for
genetic susceptibility to triple-negative breast cancer and
suggests that susceptibility loci may differ by histologic breast
tumor subtype, defined by the status of ER, PR, and HER2.
These findings add to the evidence suggesting that these
subtypes likely arise through distinct etiologic pathways.
Additional studies, such as those from the BCAC, will be
important for determining whether these SNPs are exclusively
associated with ER-negative, triple-negative disease, or even
basal breast cancer, a more refined subgroup of triple-negative
tumors. Fine mapping and functional analyses of these sus-
ceptibility loci are needed to identify the casual variants and
mechanisms underlying the associations with triple-negative
breast cancer risk.
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