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The brain's functional network exhibits many features facilitating functional specialization, integration, and ro-
bustness to attack. Using graph theory to characterize brain networks, studies demonstrate their small-world,
modular, and “rich-club” properties, with deviations reported in many common neuropathological conditions.
Here we estimate the heritability of five widely used graph theoretical metrics (mean clustering coefficient
(γ), modularity (Q), rich-club coefficient (ϕnorm), global efficiency (λ), small-worldness (σ)) over a range of con-
nection densities (k= 5–25%) in a large cohort of twins (N=592, 84MZ and 89 DZ twin pairs, 246 single twins,
age 23 ± 2.5). We also considered the effects of global signal regression (GSR). We found that the graph metrics
were moderately influenced by genetic factors h2 (γ=47–59%, Q= 38–59%, ϕnorm= 0–29%, λ=52–64%, σ=
51–59%) at lower connection densities (≤15%), and when global signal regression was implemented, heritability
estimates decreased substantially h2 (γ = 0–26%, Q = 0–28%, ϕnorm = 0%, λ = 23–30%, σ = 0–27%). Distinct
network features were phenotypically correlated (|r| = 0.15–0.81), and γ, Q, and λwere found to be influenced
by overlapping genetic factors. Our findings suggest that thesemetricsmay be potential endophenotypes for psy-
chiatric disease and suitable for genetic association studies, but that genetic effects must be interpreted with re-
spect to methodological choices.

© 2015 Elsevier Inc. All rights reserved.
Introduction

There is growing evidence that the functional architecture of human
brain networks has a profound influence on cognition and disease. The
efficiency of information propagation in brain networks, or how far sig-
nals must travel to reach disparate parts of the network, has been
shown to correlate significantly with intelligence (Li et al., 2009; van
den Heuvel et al., 2009). The modularity of an individual's functional
brain network, or the degree to which the network is partitioned into
subnetworks (e.g., visual, sensory-motor, and default mode networks),
can also predict performance on working memory tasks (Stevens
et al., 2012). Further, almost all psychiatric diseases studiedwith neuro-
imaging have been characterized by departures from the established
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network architecture seen in healthy individuals (see Wang et al.,
2010).

Even in the absence of a specific task or stimulus, fluctuations in the
blood-oxygenation level dependent (BOLD) signal are correlated across
the brain, revealing spatially distributed networks of coherent activity
(Fox and Raichle, 2007), which overlap with task-related functional
networks (Smith et al., 2009) and underlying structural networks
(Damoiseaux and Greicius, 2009; Honey et al., 2009). Graph theory—a
mathematical approach to study networks—has been applied to such
resting state data (rs-fMRI) to measure higher order features of resting
state networks (RSNs), such as efficiency andmodularity (for a brief de-
scription of graph theory metrics, see Table 1, and Rubinov and Sporns,
2010 for a review). These features provide measures of the topological
organization of brain networks, which have direct biological sig-
nificance. Here we consider three measures of network segregation
and community structure (γ, Q, ϕnorm), a measure of network integra-
tion (λ), and a composite measure describing the trade-off between in-
tegration and segregation (σ).

Features showing strong heritability may be promising endo-
phenotypes for neuropsychiatric disorders. More significantly, they
may serve as targets for subsequent searches to identify particular sets
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Table 1
Description of graph metrics. For a full review, see Rubinov and Sporns (2010).

Metric Description Mathematical definition

Mean clustering coefficient,
γ ¼ mC

mCrandom

The clustering coefficient describes the likelihood of two nodes that are
connected to a common node being connected to each other. It is a
measure of “cliquishness” in a network. To normalize, this probability is
divided by the corresponding probability one would observe for a null
hypothesis random network.

mC ¼ 1
n ∑
i∈N

Ci

Ci ¼ 2ti
kðk−1Þ

where ti is the number of complete triangles around node i.

Modularity, Q Modularity is the degree to which the network is partitioned into
sub-graphs with a large number of connections within the sub-graphs,
but relatively few connections between sub-graphs.

Q ¼ ∑
u∈M

½euu−∑
v∈M

euv�
where M is the set of modules, and euv is the proportion of
links that connect nodes in module u with nodes in module v.

Rich-club coefficient, ϕ ϕ quantifies the degree to which hubs (highly connected and/or central
nodes) preferentially associate with each other. To normalize, this proportion
is divided by the proportion that would be observed in a random network.

ϕðkÞ ¼ 2ENk
NNk ðNNk−1Þ

where NNk is the number of nodes with degree greater than k,
and ENk is the number of links between those nodes.

Global efficiency

λ ¼ Eg

Eg
random

Efficiency is the inverse of path length, where path length is the number of
connections traversed to get from one node to another. This is averaged
over all node pairs to give global efficiency. To normalize, the efficiency is
divided by the efficiency one would observe in a random network.

Eg ¼ 1
n ∑
i∈N

Ei ¼ 1
n ∑
i∈N

∑ j∈Nd−1
i j

n−1

Small-world index,σ = γ λ Small-world index describes how nodes in a network can be connected in
relatively few steps, while maintaining local clustering. Complex networks
generally have greater clustering than random networks, but comparable
efficiency, giving them a greater small-worldness.

σ = γ λ
λ ¼ 1

Λ
where Λ is the harmonic mean of path length, i.e. the shortest
number of links between two nodes.

Random network Random networks provide null hypothesis reference networks to which the
values of graph metrics can be compared. To create these networks, rewiring
algorithms randomly reassign connections, a process which preserves low
order features such as the connection density, number of nodes and degree
distribution, while destroying higher order topological features such as
clustering.

Random networks were generated using the Maslov and Sneppen
(2002) algorithm, which preserves the degree distribution but not
the weighted strength distribution. Rewiring was constrained to
maintain full connectedness.

Degree The degree of a node is the number of connections of that node Ki ¼ ∑
j∈N

ai j

Where a is the adjacency/connectivity matrix.
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of influential genes, to better understandmolecularmechanisms affect-
ing intra-brain communication. Prior twin studies of RSNs suggest that
cost efficiency (Fornito et al., 2011) and global efficiency (van den
Heuvel et al., 2013) are moderately to strongly heritable (heritability,
h2 = 60% and 42%, respectively). However, both of these studies had
small samples, examined different age groups (n = 58 and 86; ages
40 and 12; for Fornito et al. (2011) and van den Heuvel et al. (2013), re-
spectively) and did not correct for nuisance covariates of global signal,
whitematter, and CSF. Heritability of graphmeasures of brain networks
has also been observed with diffusion-weighted MRI (Dennis et al.,
2011) and EEG (Smit et al., 2008).

We hypothesized that the common graph metrics of RSNs (γ, Q,
ϕnorm, λ, and σ) calculated using a standard processing pipeline,
would be moderately heritable and we examined the association
betweenmetrics and towhat extent any association is due to a common
genetic factor. As a network may vary according to the number of links,
we estimated the heritability of each metric over a range of connection
densities (k = 5–25%), as well as considering the effect of binarizing
graphs. In addition, given the ongoing debate as to the inclusion of glob-
al signal regression (Murphy et al., 2009; Fox et al., 2009), we conducted
our analysis both with and without GSR.We tested these predictions in
a large cohort (N= 592) at approximately full brain maturation (mean
age 23.5; e.g. Lebel et al., 2008).
Materials and methods

Participants

Adult twins were recruited as part of the Queensland Twin IMaging
(QTIM) study (de Zubicaray et al., 2008), under approval of the Human
Research Ethics Committees of the QIMR Berghofer Medical Research
Institute, University of Queensland, and Uniting Health Care, Wesley
Hospital. Written informed consent was obtained for each participant.
Twins were scanned in the same session or within a week of each
other. Participants were excluded if they reported any history of psychi-
atric disease, brain injury, substance abuse, or MR incompatibility.
Of the 619 participants with rs-fMRI data, 27 participants (including
one twin pair) were rejected due to excessive head motion
(translation N 3mm, rotation N 2°), image artifacts or observable neuro-
logical abnormalities (on visual inspection of images). The final sample
consisted of 346 paired twins (84 monozygotic (MZ) pairs (61 female,
23 male) and 89 dizygotic (DZ) pairs (34 female, 13 male, 42 opposite
sex)), and 246 unpaired twins, mean age 23.5 (±2.5), range 18–30. Zy-
gosity was established using 9 independent polymorphic DNAmarkers,
cross-checked with blood group and phenotypic data to give a greater
than 99.99% probability of correct zygosity assignment (Wright and
Martin, 2004). Zygosity was later confirmed by genome-wide single nu-
cleotide polymorphism genotyping (Illumina 610 K chip).

Image acquisition

Imaging was conducted on a 4 Tesla Bruker Medspec whole body
scanner

(Bruker). Participants were instructed to remain at rest with their
eyes closed, and to not think of anything in particular and not fall asleep.
The imaging sequence was a T2*-weighted gradient echo, echo planar
imaging (GE-EPI) sequence (repetition time TR = 2100 ms; echo time
TE = 30 ms; flip angle = 90°; field of view FOV = 230 × 230 mm,
pixel size 3.6 × 3.6 mm, 36 coronal 3.0 mm slices with 0.6 mm gap,
150 volumes, total scan time 315 s). Prior to the rs-fMRI scan, a T1-
weighted 3D structural image was acquired (MPRAGE, TR = 1500 ms;
TE = 3.35 ms; inversion time TI = 700 ms; flip angle = 8°; FOV =
230 mm3, pixel size 0.9 × 0.9 × 0.9 mm).

Image processing

Images were preprocessed using FSL (www.fmrib.ox.ac.uk) and
AFNI (http://afni.nimh.nih.gov/afni) as implemented in the 1000 Func-
tional Connectomes Project scripts (https://www.nitrc.org/projects/
fcon_1000/). The first 5 EPI volumes were removed to allow for steady
state tissue magnetization. EPI volumes were realigned to a mean
image to correct for between-scan head movement, spatially normal-
ized to the standard template of the Montreal Neurological Institute

http://www.fmrib.ox.ac.uk
http://afni.nimh.nih.gov/afni
https://www.nitrc.org/projects/fcon_1000/
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(MNI), smoothed and detrended. Signal fromwhitematter and CSFwas
regressed from voxel time series to remove non-neuronal BOLD fluctu-
ations. We conducted our analysis both with and without GSR, where
global signal is a calculated at each time point as the mean signal
BOLD signal within awhole-brainmask. The set of 6motion parameters
from the realignment was also regressed out, and a mean motion sum-
mary measure retained for inclusion as a nuisance covariate in group
level analysis (Van Dijk et al., 2012). Finally, the normalized volumes
were temporally filtered (0.01–0.1 Hz).
Graph construction

The AAL template (Tzourio-Mazoyer et al., 2002) comprising 116
macro-anatomical regions, which is the most widely used atlas in the
graph theory literature, was used to establish ROIs. The time series
were extracted from each ROI by taking the mean signal in all voxels.
FC was calculated as the pairwise correlation between all ROI time
series, which resulted in a 116 × 116 connectivity matrix for each
participant. Matrices were thresholded at connection densities of k =
5–25% (k, proportion of total connections retained). We analyzed both
weighted and binary graphs. For the binary graphs, suprathreshold con-
nections were then set to 1, resulting in graphs where 1 signified a con-
nection and 0, no connection. Thresholding is important in binary
graphs to exclude weak connections, which are assigned the same
weight (1) as stronger connections. In weighted graphs, thresholding
is still important as the sheer number of low weight connections can
dominate the value of graph metrics, and graph metrics tend to those
of randomgraphs as the connection density tends to 100%.Network fea-
tures are known to vary with different numbers of links considered
(Stam and Reijneveld, 2007; van Wijk et al., 2010), and so a range of
connection densities (typically between 5–35%) is typically used. High
thresholds (lower connection densities, i.e., 5–10%) correspond to net-
works comprising the strongest and presumablymost important routes
in a network, with functional units clearly separated into distinct mod-
ules, but higher connection densities also consider weaker links in the
network, with greater cross-talk between modules.
Graph metrics

Non-normalized mean clustering coefficient (mC), global efficiency
(Eg), modularity (Q), and rich-club coefficient (ϕ) were first calculated
using the brain connectivity toolbox (Rubinov and Sporns, 2010). mC,
Eg, andϕwere then normalized to remove the effect of overall function-
al connectivity and basic network features such as degree distribution.
Doing so more specifically elucidates the network structure, while re-
moving contributions from lower level connectivity attributes. Normal-
ization was achieved by dividing the values of mC, Eg, and ϕ by those
obtained from a random network with the same number of nodes,
links, and degree distribution (null networks). To obtain null networks,
each link in the thresholded and binarized connectivity matrix was ran-
domly reconnected an average of three times, and mC, Eg and ϕ calcu-
lated on the resulting random graph. This process was repeated 20
times, and the average of randomized mC, Eg, and ϕ calculated. γ, λ,
and ϕnorm are then defined as mC/mCrand, Eg /Egrand, and ϕ/ϕrand, re-
spectively. To calculate small-worldness (σ), γ and λ were multiplied,
σ = γ × λ, or equivalently σ = γ ÷ Λ, where Λ is the harmonic mean
of path length.1 Metrics were all normally distributed and did not re-
quire further transformation prior to genetic analysis. To reduce the in-
fluence of outliers, data were winsorized, with the maximum distance
from the mean for all metrics set to three standard deviations. No
more than 1.69% of the data were adjusted in this manner for any
given graph metric.
1 Path length between two nodes is the smallest number of links required to connect
the two nodes.
Genetic modeling

MZ and DZ twin correlations were calculated for each metric via
maximum likelihood estimation implemented in Mx (Neale et al.,
2002). An MZ correlation higher than DZ correlation is indicative of
a genetic contribution. We then used structural equation models
(SEM) to estimate towhat extent the variance in eachmetricwas attrib-
utable to additive genetic, A, common environment, C, and unique
environment/residual modeling error, E (Neale et al., 2002). Initially,
variancemodels including all components A, C and Ewerefitted, includ-
ing age, sex and mean head motion as covariates. This sample is a sub-
set of that used in Couvy-Duchesne et al. (2014), which found that
head-motion metrics are significantly heritable (35–57%), and high-
lights the importance of accounting for this source of heritability at
the group level. We tested additive genetic models (ACE) rather than
genetic dominance models (ADE), even though in some cases the MZ
correlations were more than double the DZ correlations (Table 2a, b),
since preliminary testing of ADE models (data not shown) indicated
low power (i.e. wide confidence intervals) to discriminate A and D
factors.

Parameters were successively dropped from themodel, and reduced
models were tested for goodness of fit. The model with greatest model
parsimony as quantified by the lowest Akaike Information Criterion
(AIC) was retained for heritability estimation.

In order to determinewhether hub regions (thosewith high degree)
were heritable, post hoc genetic modeling was applied to the degree of
all 116 nodes. The degree of a node is simply the number of supra-
threshold connections of that node, so no further calculations were
required to obtain these metrics. Given the pattern of heritability ob-
served for the global graph metrics, we chose a connection density of
10%, did not apply global signal regression, and used theweightedmea-
sure of degree.
Phenotypic relationships

Pairwise Pearson correlations between 3 of the graph metrics were
calculated. σwas not included in either the correlational ormultivariate
genetic analysis, as it is a composite of two of the other metrics. Corre-
lated metrics were tested in a multivariate ACE model using Cholesky
decomposition (Neale et al., 2002) to see if the relationship could be at-
tributed to common genetic factors, or common environmental factors
influencing all phenotypes (Fig. 6).
Results

Network visualization

To visualize networks obtained over the range of connection densi-
ties, the mean over participants of each pairwise connection was
taken, resulting in a groupwise graph, which was then thresholded
(k = 5–35%) and binarized. This graph was decomposed into modules
using the modularity algorithm of (Newman, 2006), and illustrated
using BrainNet Viewer (http://www.nitrc.org/projects/bnv/; Xia et al.,
2013; Fig. 1). Between k = 5 and 25% (Figs. 1a–c), a familiar pattern
of resting state networks appears. The default mode network (DMN;
blue), dorsal attention/task positive network (red), visual network
(pink), subcortical (yellow), sensorimotor (cyan), cerebellar (green),
and hippocampus/amygdala/temporal (black) are apparent at various
connection densities. As the connection density is increased, different
modules lose their distinction and merge, leading to fewer and larger
modules. After k = 25%, the modular network architecture is lost. The
main difference between global signal regression not implemented
(a) and implemented (b), is that networks with GSR implemented are
more modular, with more distinct modules observable.

http://www.nitrc.org/projects/bnv/


Table 2
a and b:Mean (SD) of thefive graphmetrics (k=5–25%) across the 592 participants Twin correlations, variance component estimates for A (additive genetic), C (common environment),
and E (unique environment), and model fit for the five graph metrics, k = 5–25%. Computed without (Table 2a) and with (Table 2b) global signal regression.

Table 2a

Phenotype Twin correlations (95% CI) Model fit (AIC)a Variance estimates (%) from best fitting model (95% CI)

k Mean (SD) MZ (N = 84 pairs) DZ (N = 89 pairs) ACE AE CE E A C E

5 Υ 3.14 (1.64) 0.45 (0.31, 0.58) 0.12 (−0.02, 0.25) 388.16 386.16 398.77 420.21 58 (42, 69) – 42 (31, 58)
Q 0.54 (0.08) 0.43 (0.28, 0.55) 0.23 (0.09, 0.36) 366.25 365.82 366.62 409.62 59 (45, 69) – 41 (31, 55)φnorm 1.02 (0.01) 0.21 (0.05, 0.37) 0.03 (−0.11, 0.17) 384.65 382.65 383.82 385.17 19 (1, 35) – 81 (65, 99)λ 0.66 (0.08) 0.43 (0.28, 0.55) 0.15 (0.01, 0.29) 399.17 397.17 403.68 431.43 54 (40, 66) – 46 (34, 60)σ 2.18 (1.28) 0.47 (0.32, 0.59) 0.11 (−0.03, 0.25) 387.81 385.81 399.38 420.52 58 (43, 70) – 42 (30, 57)

10 Υ 2.02 (0.80) 0.40 (0.25, 0.54) 0.13 (−0.01, 0.26) 386.18 384.18 390.68 412.63 51 (35, 63) – 49 (37, 65)
Q 0.40 (0.08) 0.36 (0.20, 0.50) 0.13 (–0.01, 0.27) 378.64 376.79 378.71 401.39 46 (31, 59) – 54 (41, 69)φnorm 1.02 (0.02) 0.29 (0.13, 0.44) 0.09 (−0.05, 0.23) 387.85 385.85 387.29 394.53 29 (12, 44) – 71 (56, 88)λ 0.77 (0.07) 0.37 (0.21, 0.50) 0.16 (0.02, 0.30) 395.80 393.82 398.41 423.95 54 (39, 66) – 46 (34, 61)σ 1.59 (0.71) 0.42 (0.28, 0.55) 0.13 (−0.01, 0.27) 384.32 382.32 390.46 414.06 54 (39, 66) – 46 (34, 61)

15 Υ 1.67 (0.52) 0.37 (0.21, 0.51) 0.14 (0.00, 0.28) 387.34 385.37 388.38 410.87 48 (32, 60) – 52 (40, 68)
Q 0.33 (0.08) 0.29 (0.13, 0.44) 0.13 (−0.01, 0.26) 379.95 378.35 378.67 395.24 40 (23, 54) – 60 (46, 77)φnorm 1.03 (0.02) 0.29 (0.12, 0.43) 0.08 (−0.06, 0.22) 380.32 378.32 380.33 387.67 29 (13, 44) – 71 (56, 87)λ 0.82 (0.05) 0.35 (0.20, 0.49) 0.15 (0.02, 0.29) 395.92 393.94 397.78 420.68 52 (35, 64) – 48 (36, 65)σ 1.39 (0.48) 0.39 (0.24, 0.52) 0.16 (0.02, 0.29) 383.53 381.56 385.44 411.11 51 (36, 63) – 49 (37, 64)

20 Υ 1.48 (0.37) 0.34 (0.18, 0.48) 0.15 (0.01, 0.28) 384.61 382.96 383.99 405.37 44 (28, 57) – 56 (43, 72)
Q 0.29 (0.07) 0.23 (0.07, 0.38) 0.13 (−0.01, 0.27) 382.67 382.06 380.67 392.77 – 29 (14, 42) 71 (58, 86)φnorm 1.03 (0.03) 0.21 (0.05, 0.37) 0.10 (−0.04, 0.23) 366.51 364.57 364.96 370.25 24 (7, 39) – 76 (61, 93)λ 0.86 (0.04) 0.31 (0.15, 0.46) 0.16 (0.02, 0.29) 395.77 393.89 395.91 414.61 45 (28, 59) – 55 (41, 72)σ 1.28 (0.35) 0.36 (0.20, 0.49) 0.16 (0.02, 0.30) 380.51 378.85 380.45 405.02 48 (32, 60) – 52 (40, 68)

25 Υ 1.36 (0.28) 0.30 (0.14, 0.44) 0.14 (0.00, 0.28) 387.70 386.32 386.19 403.59 – 33 (19, 45) 67 (55, 81)
Q 0.26 (0.07) 0.21 (0.05, 0.37) 0.11 (−0.03, 0.25) 390.68 389.54 388.68 397.72 – 26 (11, 39) 74 (61, 89)φnorm 1.04 (0.03) 0.22 (0.05, 0.37) 0.15 (0.01, 0.28) 370.88 370.01 368.88 377.25 – 22 (9, 34) 78 (66, 91)λ 0.88 (0.04) 0.27 (0.11, 0.42) 0.18 (0.04, 0.31) 392.15 390.63 390.97 406.83 40 (23, 54) – 60 (46, 77)σ 1.20 (0.27) 0.32 (0.16, 0.46) 0.17 (0.03, 0.30) 382.35 381.10 381.14 402.53 44 (28, 57) – 56 (43, 72)

Table 2b

Phenotype Twin correlations (95% CI) Model fit (AIC) Variance estimates (%) from best fitting model (95% CI)

k Mean (SD) MZ (N = 84 pairs) DZ (N = 89 pairs) ACE AE CE E A C E

5 Υ 6.46 (1.44) 0.19 (0.03, 0.35) 0.17 (0.03, 0.30) 410.62 409.12 408.78 416.62 – 22 (8, 35) 78 (65, 92)
Q 0.68 (0.04) 0.17 (0.01, 0.33) 0.17 (0.03, 0.30) 399.07 398.49 397.07 405.38 – 24 (9, 37) 76 (63, 91)φnorm 1.07 (0.03) 0.07 (–0.09, 0.24) −0.03 (−0.17, 0.11) 445.81 443.81 444.02 442.06 – – 100 (100, 100)λ 0.63 (0.06) 0.32 (0.16, 0.46) 0.01 (−0.13, 0.15) 420.86 418.86 423.07 426.44 30 (11, 46) – 70 (54, 89)σ 4.14 (1.11) 0.19 (0.03, 0.35) 0.11 (−0.03, 0.25) 425.64 423.64 424.41 428.36 24 (6, 40) – 76 (60, 94)

10 Υ 4.06 (0.55) 0.19 (0.02, 0.34) 0.12 (−0.02, 0.26) 400.51 398.77 398.74 404.73 – 21 (7, 34) 79 (66, 93)
Q 0.57 (0.04) 0.22 (0.05, 0.37) 0.04 (−0.10, 0.17) 419.05 417.05 419.68 421.61 28 (7, 46) – 72 (54, 93)φnorm 1.10 (0.04) −0.01 (−0.17, 0.16) −0.04 (−0.18, 0.10) 432.73 430.73 430.73 428.73 – – 100 (100, 100)λ 0.75 (0.04) 0.26 (0.09, 0.41) –0.01 (–0.15, 0.13) 426.71 424.71 427.35 428.94 23 (5, 40) – 77 (60, 95)σ 3.06 (0.47) 0.20 (0.03, 0.36) 0.12 (−0.02, 0.26) 407.75 405.98 405.99 412.11 27 (9, 42) – 73 (58, 91)

15 Υ 3.09 (0.28) 0.10 (–0.07, 0.26) 0.04 (−0.10, 0.18) 397.58 395.60 395.69 395.65 13 (0, 30) – 87 (70, 100)
Q 0.51 (0.03) 0.20 (0.04, 0.36) 0.01 (−0.13, 0.15) 421.95 419.95 422.24 422.70 24 (2, 43) – 76 (57, 98)φnorm 1.13 (0.05) 0.08 (−0.09, 0.24) 0.14 (0.00, 0.28) 435.06 434.25 433.06 435.54 – 16 (1, 29) 84 (71, 99)λ 0.79 (0.03) 0.31 (0.15, 0.45) −0.03 (−0.16, 0.11) 414.39 412.39 416.43 419.19 28 (10, 44) – 72 (56, 90)σ 2.43 (0.24) 0.12 (−0.05, 0.28) 0.05 (−0.09, 0.19) 396.23 394.25 394.35 395.03 15 (0, 31) – 85 (69, 100)

20 Υ 2.56 (0.17) 0.09 (−0.08, 0.25) −0.02 (−0.16, 0.12) 390.79 388.79 389.20 387.48 − − 100 (100, 100)
Q 0.46 (0.03) 0.19 (0.02, 0.35) 0.00 (−0.14, 0.14) 421.04 419.04 420.88 420.77 21 (0, 39) – 79 (61, 100)φnorm 1.16 (0.07) 0.02 (−0.15, 0.19) 0.05 (−0.09, 0.19) 433.36 431.57 431.36 429.94 – – 100 (100, 100)λ 0.79 (0.02) 0.30 (0.14, 0.44) −0.00 (−0.14, 0.14) 421.06 419.06 422.63 425.97 28 (10, 44) – 72 (56, 90)σ 2.03 (0.13) 0.05 (−0.11, 0.22) 0.01 (−0.13, 0.15) 370.28 368.28 368.35 366.76 – – 100 (100, 100)

25 Υ 2.21 (0.13) 0.11 (−0.06, 0.27) −0.07 (−0.20, 0.07) 404.25 402.25 402.81 400.87 – – 100 (100, 100)
Q 0.42 (0.03) 0.14 (−0.03, 0.30) 0.00 (−0.14, 0.14) 415.69 413.69 414.53 413.45 – – 100 (100, 100)φnorm 1.18 (0.08) 0.06 (−0.11, 0.22) −0.01 (−0.15, 0.13) 454.45 452.45 452.56 450.64 – – 100 (100, 100)λ 0.80 (0.02) 0.31 (0.15, 0.46) −0.00 (−0.14, 0.14) 421.25 419.25 423.53 427.16 30 (12, 47) – 70 (53, 88)σ 1.76 (0.08) 0.01 (−0.15, 0.18) −0.05 (−0.19, 0.09) 369.29 367.29 367.29 365.29 – – 100 (100, 100)

Best model indicated in bold font.
a Where an AE model has only a slightly worse fit than a CE model, and vice versa, both models are worthy of consideration. In addition, confidence intervals for ACE estimates were

wide indicating low power to discriminate between A and C.
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Graph theory metric means

The means of our five metrics are given in Table 2a and b. The mean
values of the metrics are typical of those seen in the literature (e.g.
Achard et al., 2006; Lord et al., 2012), and indicate small-world, modu-
lar, rich-club topology, irrespective of methodological choices. Howev-
er, the means of the metrics do differ depending on methodological
choices, indicating that the nature of the networks obtained varies.
The choice of threshold has a strong effect on the metric means and
variances, with γ, λ, and σ tending to 1 as k increases, indicating a loss
of small-world properties as the addition of weaker connections causes
a shift toward random graphs. Likewise, Q reduces as k increases, indi-
cating a loss of modular architecture, as depicted in Fig. 1. We thus
henceforth primarily discuss results at k = 10%, which we believe to
represent an optimal balance between removing spurious weak con-
nections on the one hand and avoiding graph fragmentation on the
other (observed to occur extensively at a threshold of 5%). The behavior
of ϕnorm with k was less straightforward and depended on GSR and



Fig. 1.Modular decomposition of groupwise mean network over a range of connection densities (i.e. k = 5–35%), without and with global signal regression (GSR). Yellow lines indicate a
suprathreshold connection and node colors indicate modulemembership (DMN (blue), dorsal attention network (red), visual network (pink), subcortical (yellow), sensorimotor (cyan),
hippocampus/amygdala/temporal (black). As the connection density increases, differentmodules lose their distinction andmerge, leading to fewer and largermodules. After k=25%, the
modular network architecture is lost.
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binarizing (Table 2a,b and Supplementary Table 1a,b). γ, Q, ϕnorm and σ
are greatly increased if GSR is employed (mean % change = 143%, 50%,
7%, 150%, respectively, at k = 10%, paired t-test p b 10−15), while λ is
relatively unchanged (−1% at k = 10%, p b 10−4). Finally, binarizing
seems to have little effect on numeric values of γ, Q, λ, σ (−1%, −6%,
2%, 1%, respectively, at k = 10% p b 10−15), but a large effect on ϕnorm

(40% at k = 10% p b 10−15).
Fig. 2.Monozygotic (MZ), dizygotic (DZ) twin correlations across metrics and thre
Heritability

Heritability estimates were seen to vary substantially depending on
threshold and implementation of global signal regression and were
weakly affected by binarizing. Generally, heritability estimates were
higher at lower connection densities, without global signal regression
and without binarizing. Without GSR, all metrics had a higher MZ
sholds, GSR not implemented; error bars represent 95% confidence intervals.
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correlation thanDZ correlation over thewhole range of connection den-
sities (Fig. 2), both for weighted (Table 2a) and binary graphs (Supple-
mentary Table 1a), indicating a genetic contribution. MZ correlations
ranged from 0.22 to 0.42 across metrics and connection densities and
were significant at all k, whereas DZ correlations ranged from 0.10 to
0.20 and were not all significant (95% confidence intervals crossed
zero). SEM revealed that all metrics had significant estimates of genetic
variance (a2) over a certain range of connection densities (Table 2a,
Fig. 3). Dropping the C parameter gave improved model parsimony for
all metrics over connection densities 5–15%. At k = 20% and above,
the best fitting model was CE for some metrics. However, notably,
the fit of the AE and CE models were often very similar. The heritability
estimates (i.e., A (=a2)) for the best fittingmodel are given in Table 2a.
γ, Q, λ, and σ were all strongly heritable, (51, 46, 54, 54%, respectively,
k= 10%) with similar estimates for binary networks.ϕnormwasmoder-
ately heritable (29%, k = 10%) for weighted graphs, but not for binary
networks. As k increased from 10–25%, progressively more variance
is attributed to unique environmental variance and/or modeling/
experimental error for all metrics.

The heritability estimates varied little between weighted and binary
graphs with the exception of ϕnorm which for binary networks has best
fitting model without genetic component. The heritability of Q was
lower for binary compared to weighted graphs at k = 5–10%, and at
k = 15% and above the best fitting model did not have a genetic
component.

Regressing out global signal substantially reduced the heritability
estimates (Table 2b, Fig. 4). At k = 10%, Q, λ, and σ were moderately
heritable (28%, 23% and, 27%), whereas γ and ϕnorm had a best fitting
model without a genetic component, although AE and CE models had
similar fit. As with the no global signal regression case, binarizing had
little effect on heritability estimates (Supplementary Table 2), although
γbinary had a best fitting model with genetic component and corre-
sponding a2 of 26 (8, 42), and Q had best fitting model without genetic
component, and as k increased beyond 10%, variance attributable to
unique environmental/modeling error increased (See Supplementary
Table 1a–b).

The spatial distribution of genetic influences on degree, at a connec-
tion density of 10%, without global signal regression, is summarized in
Fig. 3. Additive genetic (a2) and unique environmental (e2) variance c
Supplementary Table 3 and Fig. 5. Genetic influences varied across the
brain and do not appear to cluster specifically to any of the functional
modules depicted in Fig. 1. 47 out of 116 regions were significantly
heritable, and these regions were distributed approximately evenly
across the brain, with a slight over-representation in the occipital lobe
(9/14 regions), and under-representation in parietal lobes (4/12 re-
gions) and subcortex (2/10 regions). Of the 47 regions, 18were bilateral
pairs, 10 were left lateralized, 15 were right lateralized, and 4 were in
the vermis. There was no correlation between the degree of a node
and its heritability derived from the best fitting model (r = 0.12, p =
0.21), and the high degree hubs were no more heritable than the
other nodes. When heritability is extracted from the full ACE model,
there is a weak correlation (r = 0.19, p = 0.04) between heritability
and degree. Further, a large proportion of nodes (66/116) had best
fitting models without additive genetic variance, of which 50/116 had
a significant common environmental variance (See Table S3).

In addition, we found strong phenotypic correlations among the
different network measures (Table 3). Without GSR, all metrics were
significantly correlated with the others, with the highest correlation at
k = 10% being 0.92 between γ and Q. With GSR implemented, the cor-
relations were generally lower (highest was 0.63 between γ and Q),
suggesting that global signal fluctuations represent a common source
of variance for the different metrics. With GSR, Q and λwere negatively
correlated, reflecting the trade-off between separation of and integra-
tion betweenmodules. A similar pattern of correlations was seen across
k both with and without GSR (Supplementary Table 2a–d). The one ex-
ception to this is with GSR at k N 20%, where the correlation between λ
and γ also becomes negative.

A multivariate genetic analysis was used to estimate the shared
genetic contribution across metrics. Without GSR, a single genetic fac-
tor, A1, accounted for most of the genetic variance in all of the metrics
at all connection densities (A1/Atotal = 93%, 87% for Q andλ, respective-
ly, at k = 10%). With GSR implemented, 40% of the genetic variance
(12% of the total variance) in Q was accounted for by a second genetic
factor A2, which also accounted for 97% of the genetic variance in λ
(Fig. 6). The path coefficients for the second genetic factor were the op-
posite sign for Q and λ, meaning that if this factor increases modularity,
then the same factor will reduce λ. At higher connection densities, the
omponents across metrics and thresholds, GSR not implemented.



Fig. 4.Additive genetic variance components acrossmetrics and thresholds estimated bothwithout (solid line) andwith (dashed line) global signal regression (GSR). Heritability estimates
are much reduced with GSR implemented.
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independent genetic factors (A2, A3) were reduced (Supplementary
Table 2a–d) and not significant, and most of variance was attributed
to a single genetic factor, A1. This is related to the increasing correlations
between the metrics at higher connection densities.

Multivariate models also revealed overlapping environmental
influences/experimental error on the different metrics. Without GSR,
The environmental influences on γ and Q overlapped, with sources
influencing environmental variance in γ accounting for 75% (E1/Etotal)
of the environmental variance in Q. This same factor accounted for
only 23% of the environmental variance in λ. A second environmental
factor accounted for 23% of the environmental variance in Q, and 3% of
the environmental variance in λ, and a final unique environmental fac-
tor accounted for the remaining 75% of the environmental variance inλ.
With GSR implemented, the overlapping environmental/error influ-
ences weremuch reduced, with themajority of environmental variance
in Q and λ attributed to E2 and E3, respectively, implying that without
GSR implemented, much of E1 is due to global signal.

Discussion

This study shows that network characteristics of resting state func-
tional activity are partially under genetic influence and that heritabil-
ity estimates vary substantially depending on methodological choices.
We found that γ (h2 = 47–61%), Q (h2 = 38–59%), λ (h2 = 52–64%),
and σ (h2 = 51–59%) were strongly influenced by genetic factors at
Fig. 5. Regions with significant heritability for weighted degree at
connection densities ranging between k = 5–15%, with heritability re-
ducing at k N 15%. Heritability estimates were substantially lower
when global signal regression was implemented h2 (γ = 0–26%, Q =
0–28%,ϕnorm=0%,λ=23–30%,σ=0–27%) and therewas little differ-
ence between consideringweighted graphs or binary graphs, other than
for ϕnorm. Furthermore, these heritable traits weremoderately correlat-
ed (|r|= 0.62–0.92, without GSR, 0.27–0.63with GSR) and largely influ-
enced by overlapping genetic factors.

The heritability of global efficiency is largely consistent with prior
studies of rs-fMRI graphmetrics. Fornito et al. (2011) found a heritabil-
ity of 60 (CI:17, 83)% (without GSR) for cost efficiency in 58 adults (cost
efficiency reflects the trade-off between the need for efficiency in a
network and the cost of wiring). In 86 young children (mean age 12),
van den Heuvel et al. (2013) estimated a heritability of 42 (CI:5, 73)%
for λ, but no genetic influence on γ (without GSR). While the results
for λ are similar, the participants were younger, and genetic and
environmental effects on a trait can change with age (e.g. Bartels et al.,
2002; Lenroot et al., 2009). Furthermore, their analysis was performed
using voxel-wise networks, where each voxel constitutes a network
node. Such networks differ topologically from anatomically informed
networks, and they are “scale-free” (van den Heuvel et al., 2008)—i.e.,
dominated by very highly connected hubs (Barabasi and Albert, 1999).
In contrast to the previous two studies, we detect significant heritability
of γ. This may represent methodological differences (van den Heuvel
et al. (2013) did not correct for whitematter signal, csf signal, ormotion
connection density of 10%, without global signal regression.



Table 3
Multivariate genetic analyses of mean clustering (γ), modularity (Q), and global efficiency (λ) at k = 10%.

k = 10% Phenotypic correlation (Pearson's) h2 Breakdown of total variance (as Cholesky decomposition), shown as a % with 95% confidence intervals

Additive genetic sources Unshared environmental sources

Υ Q A1 A2a A3 E1 E2 E3

Without GSRΥ 1.00 52 52 (37, 64) 48 (36, 63)
Q 0.92 (0.91, 0.93) 1.00 49 45 (31, 57) 3 (0, 6) 38 (27, 52) 12 (9, 16)λ 0.72 (0.67, 0.76) 0.62 (0.56, 0.67) 55 49 (33, 66) 0 (0, 3) 7 (0, 6) 10 (4, 21) 1 (0, 5) 34 (26, 44)

With GSRΥ 1.00 27 27 (9, 43) 73 (57, 91)
Q 0.64 (0.59, 0.69) 1.00 29 18 (2, 39) 12 (1, 24) 25 (13, 42) 47 (35, 60)λ 0.26 (0.19, 0.34) −0.36 (−0.43, −0.29) 25 1 (0, 12) 24 (5, 43) 0 (0, 9) 7 (1, 18) 27 (15, 44) 41 (33, 49)

a Factor A2 has opposing effects (+ve for Q, but –ve for λ).
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confounds), butmay also reflect that the previous two studies were un-
derpowered, emphasizing the necessity of large sample sizes for herita-
bility estimates. We performed power calculations (Neale and Cardon,
1992) based on the effect sizes in our sample and determined that the
sample sizes (number of twin pairs) required to reject the null hypoth-
esis of no genetic component at a significance level of 0.05,with a power
of 50% were (203, 97, 482, 5531 for λ(no GSR), γ(no GSR), λ(GSR),
γ(GSR) respectively, k = 10%), indicating that our study was under-
powered for detecting heritability with GSR implemented, but suffi-
ciently powered without GSR implemented.

Our heritability estimates are similar to those for other functional-
imaging derivedmeasures such as activation in N-Backworkingmemo-
ry tasks, (h2 ~ 0–65%) (Blokland et al., 2011), and connectivity in the
default mode network h2 = 42 ± 17% (Glahn et al., 2010). They are
lower than for cognitive phenotypes such as intelligence (h2 ~ 50–
Fig. 6. Path diagram for multivariate genetic model showing genetic and environmental
sources of covariation between three metrics, with parameter estimates given for k =
10%, GSR implemented. Path labels give standardizedpath coefficients (bold) and variance
components (the square of the path coefficients) of each factor. Thus, the genetic factor
influencingγ also accounts for 18%of the total variation inQ (60% of the genetic variation),
and 1% of the variation in λ. Q has a second genetic factor accounting for 12% of its varia-
tion,whichalso accounts for 24%of the variation inλ.Whereas overlapping genetic factors
accounted for much of genetic variation in themetrics, separate environmental factors ac-
count for themajority of environmental variance in Q (47%) and λ (41%). Heritability (the
sum of sources of genetic variance for each variable; h2) is shown for each variable. Non-
significant path coefficients are shown by dotted arrows.
80%) (Plomin and Spinath, 2004) and performance onworkingmemory
tasks (h2 ~ 40–60%) (e.g., Ando et al., 2001; Polderman et al., 2006).

γ, λ, and σmay be collectively described as the small-world proper-
ties of networks. Small-world networks allow strong contact between
groups of nodes with common functionality and simultaneously allow
highly efficient information transfer via a small number of long-range
connections (Watts and Strogatz, 1998). Many studies (e.g. Salvador
et al., 2005; Achard et al., 2006) have reported that the small-world ar-
chitecture applies to human brain functional networks, andwe observe
the same in this data set (mean (SD) γ = 2.02 (0.80), mean λ = 0.77
(0.07), k = 10%, Table 2). This study demonstrates that this favorable
set-up is substantially conferred by genetic factors. Furthermore, as
we increase the connection density of the networks, and the small-
world properties of the graph reduce (γ decreases, λ increases), we
see a corresponding drop-off in heritability, suggesting an underlying
genetic influence which is only observed when the chosen connection
density appropriately balances removal of weak and confounding con-
nections with avoidance of network fragmentation.We believe this bal-
ance is best achieved at lower thresholds at around k = 10%, as this is
where we observe highest penetrance of genetic effects, and highest
small-world properties.

In addition to high clustering and high efficiency, brain networks are
modular (Beckmann et al., 2005; He et al., 2009): the nodes separate
into modules with many strong connections between nodes within
the same module, and relatively few between modules. Modularity
measures this separation into distinct sub-networks with particular
functions such as the visual, sensorimotor, and default mode networks,
etc. Here we find a genetic contribution tomodularity of (h2 = 0–59%),
a result not previously observed in other studies of the heritability of
functional connectivity.

Recently, brain functional networks have been observed to display a
“rich-club” organization, whereby the network hubs (nodes with the
largest number of connections) are highly connected to each other,
forming a network core (van den Heuvel and Sporns, 2011); most of
the shortest paths between nodes in the network pass via this rich
club. Suchorganization is hypothesized to give the network higher resil-
ience against targeted attack of hubs (Kaiser et al., 2007; van denHeuvel
and Sporns, 2011). Here, we did not find strong evidence that the rich-
club coefficient is heritable. ϕnorm showed themost variability between
the binary and weighted analysis, did not show the tendency to ran-
domness as connection density increased as did the other metrics, and
yielded the lowest heritability parameters. Thus, ϕnorm appears to be
the least promising phenotype for use as a genetic biomarker’ however,
it is important to note that in the context of brain imaging, ϕnorm was
originally defined on structural data (van den Heuvel and Sporns,
2011), not resting state functional data. In addition to the low heritabil-
ity of rich club, our results do not support the idea of highly heritable
hub regions. Only 47 of 116 nodes had a significant additive genetic var-
iance component for degree, and there was no correlation between the
degree of a node and its heritability, meaning that the degree of hubs is
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nomore heritable than that of other nodes. This is at odds with the idea
of a genetically mediated network core of functional connectivity
(c.f. Fornito et al., 2011).

The network metrics were correlated (Table 3), suggesting that
common genetic or environmental factors might produce an advanta-
geous network structure. Without GSR, the genetic source influencing
γ also accounts for a common set of genes that were responsible for
93% and 87% of the genetic variance in Q and λ, respectively. This
may represent a single set of genetic processes giving rise to distinct
network characteristics, or it may represent a common underlying fac-
tor to all metrics, unrelated to network architecture, which has not
been accounted for, such as the global signal. With GSR implemented,
genetic influences were partitioned into two main factors, with one
influencing γ and Q, and the second influencing Q and λ. γ and Q both
measure features of network segregation and would be expected to be
highly correlated and share common genetic underpinnings. More in-
terestingly, Q and λwere significantly negatively correlated and almost
all of the genetic variation in λwas accounted for by the second genetic
factor influencing Q. Further, the set of genes which contributed posi-
tively to Q, negatively influence λ, indicating that this set of genes
may regulate to trade-off between the separation of and the integration
between modules. The phenotypic correlations between metrics were
also mediated in part by environmental factors. γ and Q and λ were
all influenced to varying degrees by overlapping environmental factors
or correlated measurement error, so all phenotypic correlations be-
tween metrics have both genetic and environmental origins.

An important implication of this study is that the heritability of
graph metrics is substantially reduced with global signal regressed
out. The origin of the global signal is uncertain, but it may have non-
neuronal (cardiac, respiratory) as well as neuronal (e.g. ascending
arousal systems) contributions (Fox et al., 2009). Global signal fluctua-
tions are considered by many as a nuisance confound giving rise to arti-
ficial correlations between unrelated time series. There is ongoing
debate as to the nature of anti-correlations introduced by global signal
regression (Murphy et al., 2009; Fox et al., 2009). For this reason, we
have carried out the analysis both with and without GSR. The results
of this paper imply that a large proportion of the heritability estimates
are dependent on these global signal fluctuations, and further, that
global signal represents a common cause of variance in the different
metrics, with all metrics strongly correlated and sharing a largely iden-
tical set of genetic influences when global signal is not accounted for.
The two papers reporting heritability of network efficiency (Fornito
et al., 2011; van denHeuvel et al., 2013) did not account for global signal
and reported similar estimates to those in this studywithout global sig-
nal accounted for. It is not clear which feature of the global signal con-
tributes to the enhanced heritability estimates for the graph metrics.
Since global signal regression is designed to remove physiological,
non-neuronal contributions to the BOLD signal, itself a complex combi-
nation of neuronal, vascular, and metabolic factors (Liu, 2013); this
raises the possibility that the high heritability of graph metrics seen
here, and in previous studies (Fornito et al., 2011; van den Heuvel
et al., 2013),may primarily represent the graph characteristics of vascu-
lar, as opposed to neural networks.

The current study has some limitations. The sample size is modest
for establishing the importance of genetics and environment for pheno-
type as indicated by relativelywide confidence intervals, particularly for
DZ twinswhere the confidence intervals spanned zero. Ourmultivariate
analysis may suggest one set of genes regulating the trade-off between
network modularity and network efficiency, with another set of genes
influencing γ, but this finding is not robust to choice of threshold or
binarizing. Secondly, the difference in heritability estimates when glob-
al signal regression is implemented may indicate that a proportion of
the heritability is related to non-neuronal fluctuations in the BOLD
signal, since GSR aims to remove such fluctuations. Indeed, γ and Q in-
crease when global signal regression is implemented (λbinary increases,
λweighted reduces), perhaps reflecting that the resulting graphs better
“capture” the underlying favorable network properties. Some non-
neuronal influences can be ruled out as contributing to the heritability
estimates. Head motion was corrected for both at the subject level by
regressing 6 head-motion parameters from voxel time series, and at
the group level by inclusion of a mean-motion covariate. Overall levels
of functional connectivity (and their neuronal and non-neuronal ori-
gins) are implicitly controlled for by normalizing metrics to those of
random graphs with the same overall level of functional connectivity
(and other low level network characteristics such as degree distribu-
tion). Another limitation of this study is the relatively short scan time
of 5 min 15 s. Though scan times of 5–7 min are typical in resting
state experiments, Birn et al. (2013) demonstrate that the test–retest
reliability of functional connectivity estimates increase with scan time,
plateauing at 8–12 min. The short scan time may contribute to the
under-power of some of our statistical tests.

Despite these limitations, to date, this is the largest study of twins
with fMRI resting state scans, allowing the strongest andmost compre-
hensive current estimates of network heritability. We find the first evi-
dence of heritability of γ and Q, and strong evidence that λ is heritable.
We used a range of themost common and consensual processing proce-
dures for both resting state fMRI and graph theory, tomake these results
as applicable as possible to prior studies using these metrics.
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