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Linkage studies have successfully mapped loci underlying monogenic 
disorders, but mostly failed when applied to common diseases. Conversely, 
genome-wide association studies (GWASs) have identified replicable 
associations between thousands of SNPs and complex traits, yet capture 
less than half of the total heritability. In the present study we reconcile these 
two approaches by showing that linkage signals of height and body mass 
index (BMI) from 119,000 sibling pairs colocalize with GWAS-identified loci. 
Concordant with polygenicity, we observed the following: a genome-wide 
inflation of linkage test statistics; that GWAS results predict linkage signals; 
and that adjusting phenotypes for polygenic scores reduces linkage signals. 
Finally, we developed a method using recombination rate-stratified, 
identity-by-descent sharing between siblings to unbiasedly estimate 
heritability of height (0.76 ± 0.05) and BMI (0.55 ± 0.07). Our results imply 
that substantial heritability remains unaccounted for by GWAS-identified loci 
and this residual genetic variation is polygenic and enriched near these loci.

Genetic studies of human complex traits have progressed from using 
pedigree designs (for example, twin studies1) to estimating heritability 
from population-based genomic surveys for dissecting genetic vari-
ation at the level of individual loci. In between, there was a period of 
two decades (roughly from 1985 to 2005) where researchers used 
pedigree-based, genome-wide linkage scans to map disease loci. Link-
age analysis is an experimental design that studies the segregation 
of markers and phenotypes within a pedigree to map trait loci. It is 
robust to confounding effects caused by population stratification and 
requires only sparse marker maps, but is also low in power and map-
ping resolution, the latter because there are very few recombination 

events within a pedigree2,3. Linkage analyses have been highly success-
ful in mapping single-gene Mendelian disorders4. Linkage studies of 
complex traits were predicated on the success of mapping single-gene 
disorders and major risk loci affecting common diseases such as breast 
cancer5 and Alzheimer’s disease6. However, linkage studies for most 
common diseases and other complex traits were largely a disappoint-
ment in that they failed to produce robust and replicable results7. 
Many explanations have been given in the literature for this failure, 
including ‘genetic heterogeneity’ (family-specific genetic loci caus-
ing disease) and statistical artefacts resulting from model selection, 
insufficient correction for multiple testing and small sample sizes. The 
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population-based, whole-genome sequencing studies would be best 
for variant discovery.

Family-based designs combined with dense genome-wide marker 
(SNP) data can be used to address a number of questions that neither pedi-
gree nor GWAS designs alone can answer. They can be used to estimate 
genetic variance within families by exploiting the variation in actual relat-
edness around its expectation, resulting in estimates of heritability free 
from confounding owing to population stratification and other sources of 
biases14,15. Estimates of SNP effects within families are likewise unaffected 
by population stratification and can be contrasted with between-family 
estimates from population-based studies to dissect direct from indirect 
genetic effects16,17 and to estimate the effect of nonrandom mating18.

In the present study, we used data from n = 119,457 sibling pairs 
(sib-pairs) from six large cohorts of European ancestry participants (Gen-
eration Scotland19 (GS, n = 8,368), the Queensland Institute of Medical 
Research cohort (QIMR, n = 12,844), the Lifelines Cohort Study20,21 (LL, 
n = 16,836), the UK Biobank22 (UKB, n = 21,756), the Estonian Biobank23 
(EBB, n = 25,333) and the Trøndelag Health Study24,25 (HUNT, n = 34,575)). 
We estimated genome-wide and locus-specific genetic variation for 
height and BMI and assessed, through theory, simulation and analysis of 
real data, the consistency between linkage and population-based asso-
ciation studies. We investigated how genome-wide identity-by-descent 
(IBD) estimators from SNP data can yield biased heritability estimates 
under recombination rate (RR)-dependent genetic architectures and 
propose that RR-stratified analysis is a robust approach to reduce or 
eliminate this bias. We estimated a total heritability that is consistent 

lack of power and mapping resolution of linkage studies prompted 
the development of GWASs2.

Despite initial skepticism that GWASs would lead to marker-trait 
discoveries (for example, refs. 8,9), GWASs based on common SNP 
markers have been highly successful in detecting robust associations 
between SNPs and complex traits. Yet, SNPs tested for association in 
standard GWASs capture only a third to a half of the genetic variation 
estimated from pedigree data9. The polygenicity and effect size dis-
tribution of the genetic variation not accounted for by GWASs remain 
uncertain. Even after early GWAS results, it was hypothesized that 
family-specific rare mutations of large effect could explain a substan-
tial fraction of common and complex human diseases such as schizo-
phrenia10. Although this view has remained controversial11,12, it remains 
possible that certain genomic loci harbor multiple penetrant alleles 
with effects that cannot be fully captured in a GWAS but are detectable 
using a linkage design. Such loci might also contain common variants 
already detected by GWASs. The architecture of the genetic variation 
unaccounted for by GWASs determines what experimental design is 
best for its discovery and dissection. For example, if common varia-
tion acts on phenotypes through gene expression networks that ulti-
mately affect gene regulation at a small number of core genes13, then 
residual genetic variation caused by rare variants may concentrate 
on those core genes in cis, and either large-scale, population-based, 
exome sequencing studies or large-scale, family-based linkage stud-
ies may identify such genes. In contrast, if residual genetic variation 
is just as polygenic as common genetic variance, then large-scale, 
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Fig. 1 | RR-stratified estimates of heritability (hhh2
FS) and proportion of 

variance owing to common sibling effects are not correlated with IBD 
sharing for height and BMI. a,b, RR-stratified estimates of heritability and 
proportion of variance caused by common sibling effects uncorrelated with IBD 
sharing (c2) for height (a) and BMI (b). Estimates were obtained using restricted 
maximum likelihood in six cohorts of European ancestry individuals: the UKB, 

GS, LL, QIMR, EBB, HUNT and the fixed-effect meta-analysis results combining all 
cohorts (META). The number of quasi-independent sib-pairs (n) for each trait and 
cohort is indicated on the y axis. Each dot represents a point estimate and the 
corresponding error bar represents its s.e. Numeric values are given in 
Supplementary Table 6a. Estimated variance components (comp.) were not 
constrained to be positive to ensure unbiasedness.
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with that of pedigree (twin) studies and about twofold larger than that 
captured from common SNPs in GWASs, implying that a substantial 
proportion of genetic variation in the human genome is not captured 
by the common variant GWAS paradigm. We provided evidence that the 
residual genetic variation is also polygenic.

Results
Estimates of heritability from IBD regression
RR-dependent biases in IBD regression. We used the IBD regression 
method14,26 to partition the phenotypic correlation between siblings 
(r = 0.48 for height and r = 0.27 for BMI; Supplementary Table 1) into a 
genetic and a shared environment component. Classically, this method 
quantifies genome-wide IBD sharing as a fraction of the length of the 
genome measured in centimorgan (cM) units, which implicitly upweights 
the contribution of loci with high RRs. Alternatively, genome-wide IBD 
sharing could be quantified as the proportion of DNA base-pairs shared 
between relatives. The latter approach implicitly assumes independence 
between RR and the genomic distribution of genetic variance.

We tested these two implicit assumptions through simulations 
and found that using either measure of IBD sharing can lead to biased 
heritability estimates when the genomic distribution of causal variants 
depends on RR (Supplementary Note, Supplementary Figs. 1 and 2 and 
Supplementary Tables 2–5), as shown previously using population-based 
designs27. To remedy this problem, we proposed an RR-stratified estima-
tion method to account for variation in IBD sharing between loci with 
different RRs. Briefly, our method (1) groups genomic loci across the 
genome into four classes of homogeneous RR loci, (2) quantifies the 
average IBD sharing at each class, (3) estimates the contribution of each 

class to the phenotypic correlation between siblings and then (4) sums 
up those contributions to obtain a final estimate of heritability (more 
details in Supplementary Note). We show through simulations that 
RR-stratified estimation is robust to differences in RRs between markers 
and unobserved causal variants (Supplementary Table 5). Therefore, 
we hereafter report only results obtained with this approach. For com-
parison, we also report unstratified results in Supplementary Table 6.

RR-stratified estimates of heritability. The parameters of our RR-strat-
ified IBD regression model include the sum of RR-stratified, full-sib IBD 
heritability (hereafter denoted h2

FS) and the proportion of variance due 
to effects common to siblings and independent of IBD sharing (hereafter 
denoted c2). Estimates of h2

FS and c2 (hereafter denoted ĥ2
FS and ĉ2, respec-

tively) were obtained using unconstrained (that is, estimates are allowed 
to be negative to ensure unbiasedness), restricted, maximum likelihood 
(Methods) in each cohort. We then performed an inverse-variance-
weighted meta-analysis to combine estimates across cohorts (Fig. 1 and 
Supplementary Table 6a). Heritability estimates across cohorts were 
largely consistent for height (Cochran’s heterogeneity Q statistic 
I2 = 14.5%, PHET = 0.32), but showed moderate heterogeneity for BMI 
(I2 = 56.8%, PHET = 0.04). The meta-analyzed estimates of h2

FS were high for 
both height (ĥ2

FS = 0.76, s.e. = 0.05) and BMI (ĥ2
FS = 0.55, s.e. = 0.07), con-

sistent with large heritability estimates from twin studies1,28,29. We found 
a significant nonzero ĉ2 for height (ĉ2 = 0.11, s.e. = 0.03) but not for BMI 
(ĉ2 = −0.01, s.e. = 0.04), although both estimates showed moderate het-
erogeneity across cohorts (height: I2 = 61.7 %, PHET = 0.02; BMI: I2 = 51.3%, 
PHET = 0.07). A significantly positive ĉ2 could be the result of either assorta-
tive mating or shared environmental effects, or both. We show in 
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Fig. 2 | Chromosomes containing loci significantly linked with height. 
Linked loci were identified from the meta-analysis of 119,457 QISPs before and 
after adjustment for genetic predictors (PGS) derived from the largest available 
GWAS of height33 (average proportion of height variance explained across 
cohorts: R2 = 0.38). The genetic position of independent trait-associated SNPs is 
represented below the y = 0 line by blue dots, the radius of which is proportional 

to the association χ2 statistic. Results for all the autosomes for height and BMI are 
shown in Supplementary Fig. 4a,b. The vertical dashed lines indicate the two LOD 
drop-off CIs (relative to the peak LOD score) on each side of a genetic position 
where the linkage LOD score exceeds 3.6 (Table 1). The black horizontal dotted 
line represents the threshold for significantly linked loci (LOD score ≥ 3.6). The 
gray horizontal dashed line indicates an LOD score of 0.
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Supplementary Note that the significant ĉ2 observed for height can be 
mostly explained by assortative mating, thus leaving little room for other 
effects. We repeated all analyses using rank-based transformed traits and 
found highly consistent results (Supplementary Table 6b).

Locus-specific linkage analysis of height and BMI
Next, we performed a locus-by-locus linkage analysis to quantify the 
amount of variation explained by IBD status at 0.5-cM spaced loci across 
each autosome. As before, we analyzed each cohort separately and 
then meta-analyzed locus-specific linkage signals across cohorts. The 
mean linkage test statistic ( ̄χ2) across genomic locations was 3.43 
(s.e. = 0.38) for height and 1.43 (s.e. = 0.22) for BMI, consistent with 
estimates of h2

FS (Methods, Extended Data Fig. 1 and Supplementary 
Table 7a) and the effective number of independent genomic segments 
(Supplementary Table 8). Analyses of rank-based transformed traits 
yielded similar results (Supplementary Table 7b and Supplementary 
Fig. 3). We detected five loci on chromosomes 1, 5, 7, 10 and 19 showing 
significant linkage with height (Fig. 2 and Table 1; for all chromosomes, 
see Supplementary Fig. 4a), but none for BMI (Supplementary Fig. 4b). 
The statistical significance of linkage signals was determined using 3.6 
as the threshold for the logarithm of the odds (LOD) score, as previously 
suggested for genome-wide significance in linkage studies30. This 
threshold corresponds to a P value of 2.2 × 10−5.

For each locus, we defined a confidence interval (CI) for the loca-
tion of the underlying causal variants using the ‘two LOD drop-off’ 
method31 (Methods). We conservatively chose a two-unit LOD score 
drop-off to ensure a coverage of at least 95%. The length of these five 
CIs varied between 4.2 Mb (height-linked locus: chr19: 4,196,471–
8,360,632; genomic position in build hg19) and 38.8 Mb (height-linked 
locus: chr7: 42,401,253–81,189,104), which remained quite broad 
despite a sample size of >119,000 sib-pairs (Table 1).

In summary, we confirmed that widespread genetic variation 
underlies height and BMI and detected five loci showing significant 
linkage with height.

GWAS and linkage results are significantly correlated
Overview of the predLINK method. We developed a method, 
predLINK, to predict the variance explained at a given locus from a 
linkage genome scan. The predicted linkage signal is calculated as a sum 
of variances explained at all neighboring causal (or trait-associated) 
loci weighted by their genetic distance to the locus of interest  
(equation (1); Methods). This method builds on previous work in which 
the theoretical expectation of the genetic variance captured by a marker 
was derived for a linkage analysis in an outbred population under an 
infinitesimal architecture32. We assessed the performance of predLINK 
using the correlation (ϕ) between the observed and predicted variance 
explained at 0.5-cM spaced loci across each chromosome.

PredLINK applied to simulated data. We first performed large-scale 
simulations of up to 100,000 sib-pairs to validate predLINK under vari-
ous polygenic architectures. Overall, we found the largest correlation 

between the theoretically predicted (Extended Data Fig. 2a,b, black line) 
and observed linkage signals (Extended Data Fig. 2a,b, yellow and gray 
lines) for traits where the genetic variance is contributed by just a few 
causal variants with large effects and that it decreased with higher trait 
polygenicity (Extended Data Fig. 2a–c, left to right) and with a smaller 
discovery sample size (Extended Data Fig. 2a–c, yellow versus gray lines). 
The mean ϕ̂ across 100 replicates for the least polygenic genetic archi-
tecture was 0.91 (s.e. = 0.02) and 0.69 (s.e. = 0.04) in the linkage analyses 
of 100,000 and 20,000 sib-pairs, respectively (Extended Data Fig. 2c, 
left-most panel, enlarged symbols, and Supplementary Table 9) and 
decreased to 0.34 (s.e. = 0.00) and −0.01 (s.e. = 0.00), for the infinitesi-
mal model (Extended Data Fig. 2c, right-most panel, enlarged symbols, 
and Supplementary Table 9). Moreover, we found that errors in estimated 
SNP effects slightly decrease ϕ̂, especially when polygenicity is low 
(Extended Data Fig. 2c and Supplementary Table 9).

PredLINK applied to height and BMI. Next, we applied predLINK to 
assess the colocalization of observed and predicted linkage signals 
from GWASs, using 12,111 and 795 genome-wide significant SNPs associ-
ated with height33 and BMI (Supplementary Data), respectively (Meth-
ods). The 795 genome-wide significant SNPs associated with BMI were 
obtained from re-analyzing data from ref. 34 after excluding sib-pairs 
(and their close relatives) from the UKB also included in our linkage 
analyses (Methods). For height, the per-chromosome ϕ̂ ranged from 
0.11 to 0.93, with a length-weighted (length measured in cM) average 
across chromosomes of ϕ̂ = 0.51 (s.e. = 0.05) (Supplementary Fig. 5a 
and Supplementary Table 10). We found a smaller correlation ϕ̂ = 0.29 
(s.e. = 0.08) for BMI (Supplementary Fig. 5b and Supplementary 
Table 10), consistent with a lower power to detect association and link-
age for BMI compared with height (Supplementary Note, Supplemen-
tary Figs. 6–8 and Supplementary Tables 9 and 11).

Curvature effect. Under an infinitesimal genetic architecture, stronger 
linkage signals are expected at the center of a chromosome compared 
with its ends35. This is the result of centrally located markers being in 
linkage with more causal variants than those located terminally, which 
appears as a curved linkage signal (Extended Data Fig. 2a,b). Given that 
predLINK recapitulates such intrinsic curvature of linkage signals,  
a nonzero ϕ̂ is expected for polygenic traits such as height and BMI. 
We call this the ‘curvature effect’ (CE). As an empirical illustration of 
this CE, we observed a significant colocalization not only between 
height-associated SNPs and linkage signals for height (ϕ̂ = 0.51 , 
s.e. = 0.05; Fig. 3a), but also between height-associated SNPs and link-
age signals for BMI (ϕ̂ = 0.19, s.e. = 0.10; Fig. 3b and Supplementary 
Table 10). Similarly, we found a significant colocalization between 
BMI-associated SNPs and linkage signals for height (ϕ̂ = 0.37, s.e. = 0.08; 
Fig. 3c and Supplementary Table 10). This observation cannot be 
explained by pleiotropy alone, given the low genetic correlation 
between height and BMI36 (rG = −0.10).

To assess the significance of ϕ̂ beyond the expected correlation 
owing to the CE (ϕCE), we generated a null distribution from predicted 

Table 1 | Genomic regions significantly linked with height

Chr Start (bp) Stop (bp) Length (Mb) Start (cM) Stop (cM) Length (cM) Max. LOD 
score

Proportion of genes 
in peak

Proportion of 
trait-associated SNPs 
in peak

1 213,682,673 234,840,374 21.2 200.5 224.5 24 4.1 163 of 2,566 119 of 970

5 78,955,590 89,401,919 10.4 85.0 93.5 8.5 5.5 50 of 1,172 37 of 742

7 42,401,253 81,189,104 38.8 58.0 86.0 28 3.8 271 of 1,235 131 of 673

10 104,479,048 122,171,602 17.7 111.5 130.5 19 4.0 118 of 990 69 of 558

19 4,196,471 8,360,632 4.2 16.0 27.0 11 3.8 120 of 1,806 43 of 375

Linkage peaks were defined using the two LOD drop-off method on each side of a genetic position, where the linkage LOD score > 3.6. Proportion of genes (or trait-associated SNPs) in peaks is 
defined relative to the number of genes (or trait-associated SNPs) on the chromosome (Chr). Genomic positions correspond to the hg19 genome build.
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linkage based on random SNPs matched on minor allele frequency 
(MAF) and linkage disequilibrium (LD) with the actual trait-associated 
SNPs. For height, the average ϕ̂CE over 1,000 sets of 12,010 random SNPs 
was ϕ̂CE = 0.36 (s.e. = 0.04), which is significantly lower than ϕ̂ = 0.51 
(s.e. = 0.05) obtained using height-associated SNPs (Wald’s test P value: 
PWald = 3.8 × 10−5; Fig. 3a and Supplementary Table 10) and implies that 
predLINK can significantly predict a height-specific linkage signal over 
and above the CE. The same was true for BMI, where the observed 
ϕ̂ = 0.29 (s.e. = 0.08) was significantly higher than ϕ̂CE = 0.15 (s.e. = 0.05) 
obtained over 1,000 sets of 787 random SNPs (PWald = 1.7 × 10−3; Fig. 3d 
and Supplementary Table 10). Overall, these results show that the colo-
calization between GWAS and linkage signals for height and BMI is only 
partially explained by the high polygenicity of these two traits.

A polygenic missing heritability enriched near GWAS loci
We hypothesized that, if concordance between linkage and association 
results is the result of the same genetic loci, then correcting phenotypes 
for polygenic scores (PGSs) should reduce the test statistic for linkage. 
We focused on height to test this hypothesis and used a PGS based on 

12,111 height-associated variants33 explaining 0.35–0.41 (weighted 
mean = 0.38; Table 2) of phenotypic variance in our cohorts. After 
adjustment for the PGS, estimates of h2

FS  and c2 were ĥ2
FS  = 0.68 

(s.e. = 0.06) and ĉ2 = 0.08 (s.e. = 0.03), and the average test statistic 
decreased from 3.43 (s.e. = 0.38) to 2.2 (s.e. = 0.28) (Table 2), implying 
that ~51% (that is, (1 − (2.2 − 1))/(3.43 − 1)) of the height genetic variance 
in linkage analysis is captured by height-associated SNPs. Importantly, 
the proportion of height variance explained by each chromosome 
remained significantly correlated with chromosome length before and 
after adjustment for the PGS (before adjustment: 0.73 (s.e. = 0.17); after 
PGS adjustment: 0.61 (s.e. = 0.22); Fig. 4), implying that the unac-
counted genetic variance for height is also polygenic. Finally, adjust-
ment for the PGS reduced LOD scores to <3.6 at all height-linked loci 
(Fig. 2).

Next, we estimated the correlation between linkage signals for 
PGS-adjusted height and predicted linkage signals from 
height-associated SNPs. We found a correlation ϕ̂ = 0.38 (s.e. = 0.08), 
significant beyond the expected CE ( ϕ̂CE  = 0.26, s.e. = 0.03, 
PWald = 2.2 × 10−4 testing the difference between ϕ̂ and ϕ̂CE; Extended 
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Fig. 3 | Colocalization between observed and GWAS-predicted linkage 
signals. a–d, Row panels (row 1 (a and b), row 2 (c and d)) representing predicted 
linkage signals based on a given set of trait-associated SNPs and column panels 
representing observed linkage signals for height (a and c) and BMI (b and d). The 
x axis in each panel displays the correlation (ϕ̂) between observed and predicted 
(from GWAS results; Methods) linkage signals. The y axis represents counts. In 
each panel, the vertical dashed line represents the correlation between observed 
linkage signals for the trait specified in the corresponding column panel header 
and predicted linkage signals from either 12,010 height-associated SNPs (a and b) 
or 787 BMI-associated SNPs (c and d). Predicted linkage signals were also 
obtained under the null hypothesis (that is, ‘the correlation between observed 
and predicted linkage signals is due to the curvature effect’) using 1,000 draws of 
random SNPs with similar MAF and LD properties to trait-associated SNPs. The 

histogram in each panel represents the distribution of correlations (under the 
null) between observed linkage for the trait indicated in the corresponding 
column panel and predicted linkage obtained from these 1,000 draws. The mean 
of correlations obtained under the null hypothesis is denoted ϕ̂CE. The P values 
reported in the top-left corner of each panel assess the statistical significance of 
the difference between ϕ̂ and ϕ̂CE using a two-sided Wald’s test (conditional on ϕ̂) 
and based on the sampling variance of ϕ̂CE across replicates. At a significance 
threshold P < 0.05, our results imply that linkage signals for height are 
predictable from height-associated SNPs (a), but not from BMI-associated SNPs 
(c) and that linkage signals for BMI are also predictable from BMI-associated SNPs 
(d), but not from height-associated SNPs (b). Numeric values are presented in 
Supplementary Table 10.
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Data Fig. 3 and Supplementary Table 10), which provides evidence that 
causal variants for height not captured by current GWASs are also 
enriched within GWAS-detected, height-associated loci.

In conclusion, our results support the hypothesis that the same 
genetic loci underlie association and linkage signals, and suggest 
that the missing heritability of height is polygenic and involves causal 
variants enriched near height-associated SNPs identified through 
large-scale GWASs.

Discussion
We conducted a large linkage analysis of complex traits in humans 
using ~119,000 sib-pairs. We first estimated the variance explained by 
degree of IBD sharing across the entire genome and subsequently esti-
mated the variance explained by IBD sharing at specific loci across the 
genome (a traditional linkage scan across the genome). We estimated 
a heritability of 0.76 (s.e. = 0.05) and 0.55 (s.e. = 0.07) for height and 
BMI, respectively, and detected multiple significant linkage peaks 
for height. Analyses were repeated after adjusting the phenotype for 
known population-wide associations from GWASs, using a PGS, and this 
showed a reduction both of the heritability and in the linkage signal, 
consistent with a theoretical expectation.

Whether genetic associations and linkage peaks are caused by the 
same loci had been previously debated37. For example, a difference 
would be expected if family-specific mutations with large effects 
are the cause of the observed phenotype. Previous linkage studies 
in 20,240 sib-pairs failed to detect a colocalization between link-
age signals and trait-associated SNPs from an independent GWAS of 
height and BMI in ~130,000 individuals38. This lack of concordance 
could be the result of insufficient power in either or both linkage 
studies and GWASs. Our study revisited this observation using a new 
method, predLINK, and data from a fivefold larger linkage study and 
from currently the largest GWAS of height (N = 5 million) and BMI 
(N = 650,000). We show that observed and GWAS-predicted linkage 
signals are correlated across the genome, confirming that some of the 
same genetic loci contribute to within-family and population-wide 
genetic and phenotypic variance.

The heritability estimates for both height and BMI are remark-
ably similar to those estimated from twin studies1,28,29, despite the 

experimental designs being orthogonal (between versus within fami-
lies). This concordance suggests that assumptions underlying twin 
studies (for example, the ‘equal environment’ assumption for identical 
and nonidentical twin pairs) may not be strongly violated, at least for 
the traits studied. A large meta-analysis of twin studies across multiple 
complex traits concluded that the most parsimonious explanation of 
observed twin correlations was a simple model in which all familial 
correlations are the result of additive genetic variance1. Our results for 
height and BMI agree with that conclusion in that we find no evidence 
of a residual sibling covariance (c2) for BMI, whereas the significant  
c2 observed for height is largely explained by assortative mating. Nev-
ertheless, we cannot rule out that the similarity of estimates from 
twin studies and within-family segregation for height and BMI is just 
a coincidence. Research involving more complex pedigrees and the 
analysis of multiple traits is needed to thoroughly test the congruence 
of estimates of both genetic segregation variance and genetic variance 
from the phenotypic correlation between relatives.

Our heritability estimates for height (0.76) and BMI (0.55) are sig-
nificantly larger than 0.55 (s.e. = 0.04) and 0.29 (s.e. = 0.06) obtained 
by Young and colleagues15 from data in Iceland, using their relatedness 
disequilibrium regression method (a generalization of the sibling IBD 
regression method to estimate heritability in a complex pedigree). It 
is interesting that their estimates from an analysis of a large collection 
of full sib-pairs (n = 56,461−64,847) were 0.68 (s.e. = 0.10) and 0.39 
(s.e. = 0.12) for height and BMI, respectively, not significantly differ-
ent from our estimates. There are many reasons why estimates of 
segregation variance from complex pedigrees could differ from those 
obtained using only nuclear families. First, although unaccounted 
interactions between genes and shared environment can yield biases 
in both contexts, the magnitude of these biases can differ across 
study designs if the amount of shared environment varies between 
first-degree and distant relatives. Moreover, estimates of additive 
genetic variance in a sibling design could also be biased upwards in 
the presence of dominance and epistatic effects, and any such bias is 
probably smaller in a complex pedigree. Yet there is little evidence of 
nonadditive genetic variance for height and BMI39,40. Moreover, our 
estimates of 0.76 and 0.55 can also be compared with estimates from 
GWAS and whole-genome sequencing (WGS) data. For height, the 

Table 2 | Estimates from linkage analyses of PGS-adjusted traits

Trait GS QIMR LL UKB EBB HUNT Meta-analysis

Height h2
SNP

0.44 (0.03) 0.43 (0.04) 0.48 (0.01) 0.50 (0.01) 0.52 (0.02) 0.50 (0.01) 0.50 (0.01)

Height 
(PGS 
adjusted)

R2
PGS

0.41 (0.009) 0.35 (0.009) 0.38 (0.006) 0.41 (0.005) 0.37 (0.005) 0.39 (0.005) 0.38 (0.002)

Mean χ2 (s.e.) 1.05 (0.17) 1.02 (0.13) 1.20 (0.18) 1.01 (0.13) 1.34 (0.16) 1.09 (0.15) 2.2 (0.28)

Median χ2 0.87 1.22 1.13 1.14 1.64 1.18 2.44

Proportion χ2 > 0 0.62 0.65 0.67 0.62 0.74 0.74 0.84

ĥ2
FS (s.e.) 0.76 (0.21) 0.80 (0.21) 0.71 (0.15) 0.45 (0.13) 0.81 (0.13) 0.67 (0.12) 0.68 (0.06)

ĉ2  (s.e.) 0.08 (0.11) −0.10 (0.11) 0.11 (0.08) 0.25 (0.07) 0.02 (0.07) 0.05 (0.06) 0.08 (0.03)

BMI h2
SNP

0.26 (0.03) 0.25 (0.04) 0.27 (0.01) 0.26 (0.01) 0.30 (0.02) 0.25 (0.01) 0.26 (0.01)

BMI (PGS 
adjusted)

R2
PGS

0.11 (0.006) 0.09 (0.006) 0.10 (0.004) 0.10 (0.003) 0.09 (0.003) 0.08 (0.003) 0.09 (0.002)

Mean χ2 (s.e.) 0.84 (0.11) 0.87 (0.14) 0.68 (0.09) 1.01 (0.15) 0.77 (0.11) 1.04 (0.16) 1.39 (0.21)

Median χ2 0.95 0.85 0.72 0.99 0.64 0.99 1.38

Proportion χ2 > 0 0.54 0.61 0.58 0.71 0.62 0.62 0.76

ĥ2
FS (s.e.) 0.26 (0.27) 0.75 (0.22) 0.44 (0.19) 0.96 (0.17) 0.70 (0.16) 0.33 (0.14) 0.58 (0.07)

ĉ2  (s.e.) 0.15 (0.13) −0.14 (0.11) 0.04 (0.1) −0.23 (0.09) −0.12 (0.08) 0.05 (0.07) −0.05 (0.04)

R2
PGS denotes the prediction accuracy of the PGS in each cohort measured by the squared correlation between the trait and the PGS. Approximated s.e. values for R2

PGS were obtained using the 
delta method. The mean test statistic for linkage is denoted as χ2. The s.e. values denoted as s.e. ĥ2

FS and ĉ2 were obtained using recombination rate stratified estimation. Note that three 
significant digits were used to report s.e. values for R2

PGS because of the larger precision of R2
PGS estimates relative to that of heritability estimates.
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SNP-based estimate is about 0.55–0.60 (ref. 41) and the WGS estimate 
~0.70 (ref. 42), but with a large s.e. = ~0.10. These estimates imply that 
for height there is substantial genetic variation not captured by either 
SNP array and, to a lesser extent, sequence data, presumably ultra-rare 
variants (frequency <1 of 10,000 not included in ref. 42) and, perhaps, 
complex structural variation not captured by short-read sequencing 
technologies. For BMI, the gap is much larger, because estimates from 
both GWAS and WGS data are about 0.30 (refs. 41,42). Large exome 
studies have detected multiple genes with a significant burden of 
rare coding variants43,44, but these variants together explain a trivial 
amount of variation in the population. Our results after an adjustment 
for PGS imply that the remaining (‘still-missing’) genetic variation for 
height is also polygenic and not concentrated in a small number of 
genes. It is currently unknown what the genetic architecture of the 
remaining variants is in terms of allele frequency and effect sizes. All 
we can say for now is that they are not captured by common SNPs and 
large whole-exome sequencing studies. Future studies on WGS data 
and large sample sizes, for example, in the UKB, may be able to refine 
the genetic architecture for height and BMI and other complex traits.

The estimate of genetic trait variation from realized relationships 
is, per definition, within-family segregation variance. Usually, this 
variance is the same as genetic variance in the population. However, 
correlation across genes and environments, assortative mating and 
population stratification can all lead to a difference between popula-
tion and within-family variance3. For height, and less so for BMI, there 
is strong evidence for assortative mating, including in the UKB45–47. In 
the presence of assortative mating, the estimate of heritability from 
‘sib regression’, as used in our study, is biased downwards with respect 
to the heritability in the assortatively mating current population26. 
Therefore, if we account for assortative mating and assume that the 
resemblance between siblings is solely the result of genetic effects (and 
not of common environmental effects), then our data are consistent 
with a heritability of 0.87 (s.e. = 0.05) for height in the current popula-
tion (Supplementary Note). Under these assumptions, the still-missing 
heritability for height is even larger.

Our genome-wide linkage scan detected several regions that 
traditionally would be termed ‘significant’ and followed up with 

fine-mapping or candidate gene studies. This experimental design 
hypothesized that the cause of the linkage peak was a single genomic 
locus with one or more sequence variants of large effect which 
co-segregated with the trait in families. However, linkage analyses for 
complex traits were largely unsuccessful in identifying individual loci 
responsible for the observed linkage peaks. Our study provides strong 
empirical evidence that part, and perhaps most, of the explanation of 
the failure of the linkage design is that polygenic variation creates the 
appearance of ‘major loci’ when there are none. For example, the link-
age peak for height on chromosome 10, which contains 69 independent 
height-associated SNPs (Table 1), disappears completely after adjust-
ment for the PGS (Fig. 2). However, it is also possible that the cluster-
ing of height-associated SNPs at that locus is caused by an underlying 
structural variant partially tagged by each of those 69 SNPs33. If the null 
hypothesis being tested in linkage analysis is a highly polygenic model 
(for example, the infinitesimal model), instead of the traditional null 
hypothesis of no genetic variation anywhere in the genome, then the 
threshold for declaring a significant linkage peak would be larger and 
most declared ‘significant’ loci would probably disappear48.

There are several limitations to our study. First, even with more than 
100,000 sibling pairs, the s.e. values of heritability estimates are still 
0.05–0.07 and the linkage scans show large sampling variance (as shown 
in our simulations; Extended Data Fig. 2). The noncentrality parameter 
(NCP) of the χ2 test to detect locus-specific linkage with a sib-pairs design 
is approximately nq4(1+r2sib)/[8(1−r

2
sib)

2
] , with n the number of sib-pairs, rsib 

the phenotypic correlation between siblings and q2 the variance 
explained by a locus49,50. Therefore, if a gene contains multiple rare vari-
ants of large effect that cumulatively explain 0.5% of height variance 
(assuming rsib ≈ 0.5), then at least 3.5 million sib-pairs would be required 
to yield 80% statistical power (at a 5% significance threshold) to detect 
linkage with that gene. Although the use of extended families (that is, 
beyond sib-pairs) could improve power, a large number of informative 
meioses are still needed. Second, we did not use a sex-specific recombi-
nation map in our RR-stratified analyses, which implies that our esti-
mates might be affected by residual biases if height and BMI heritability 
are enriched at loci where RR varies between males and females. How-
ever, to the best of our knowledge, this is not supported by any evidence 
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Fig. 4 | Correlation between chromosome length and estimates of variance 
explained from linkage analyses of height. Analyses were based on summary 
statistics from a linkage meta-analysis of height and height adjusted for PGSs in 
119,457 QISPs. Each dot represents a chromosome. The x axis represents the 
physical length of each chromosome relative to the size of the autosome (that is, 
~2,879 Mb) and the y axis the expected variance explained (q2s) for each 
chromosome (s = 1–22) estimated as q2s = ms ̄q2, where ̄q2 is the mean across the 

chromosome of estimates of locus-specific variance and ms an effective number 
of independent markers per chromosome (Supplementary Table 8). Error bars 
around each dot represent ms× the s.d. of the linkage estimate across the 
chromosomes. The s.e. values of the regression slopes were obtained using a 
leave-one-chromosome-out jackknife approach. The 95% CIs for the regression 
slopes were calculated as 1.96 × s.e.
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and would warrant further investigations beyond the present study. 
Nevertheless, our RR-stratified framework can be easily extended to 
incorporate sex-specific information by using a partition of the genome 
that distinguishes loci with discordant RR between sexes. Third, our 
conclusions are limited to height and BMI because they are among the 
most commonly measured complex traits and, hence, provide the largest 
sample sizes. Fourth, our study focused on individuals of European 
ancestries because <5% of all sib-pairs available across cohorts could be 
assigned to other ancestry groups. Fifth, our investigation considered 
only autosomal genetic variation. Finally, future family-based studies 
on common disease and traits for which there is evidence of assortative 
mating and indirect genetic effects (for example, educational attain-
ment) could provide estimates of genetic variance that are not con-
founded by such population-level effects. Supplementary Discussion 
addresses additional points about lack of power for analyses of the 
missing heritability of BMI (Table 2 and Extended Data Fig. 4) and the 
effect of dominance (Supplementary Table 12).

In conclusion, we report strong evidence of a high heritability of 
both height and BMI, consistent with inferences from twin and family 
studies. Our results imply a substantial still-missing heritability, that 
is, a large gap between the estimate of total additive genetic variation 
from our study and estimates of SNP heritability from GWAS data, in 
particular for BMI, where this gap is approximately 30% of phenotypic 
variance. We reconcile results from linkage and association studies, 
and show that ‘significant’ linkage peaks can be created from polygenic 
signals and that the still-missing heritability is also polygenic.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-024-01940-2.
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Methods
Ethics declaration
The research was carried out under the University of Queensland Insti-
tutional Human Research Ethics (UQ-HREC) approval no. UQ 2020/
HE002938. Written informed consent was obtained from every par-
ticipant in each study and the study was approved by relevant ethics 
committees. For the UKB study ethics approval was obtained from the 
North West Centre for Research Ethics Committee (no. 11/NW/0382). 
The HUNT study was approved by the Regional Committee for Medical 
and Health Research Ethics, Norway and all participants gave informed 
written consent (REK Central application no. 2018/2488). The LL was 
approved by the ethics committee of the University Medical Center 
Groningen, document no. METC UMCG METc 2007/152. The EBB is 
regulated by the Estonian Human Genes Research Act and all partici-
pants signed a broad informed consent form. The use of the informa-
tion for the present study was approved by the Estonian Committee on 
Bioethics and Human Research (approval no, 1.1-12/1478). The QIMR 
studies were approved by the Human Research Ethics Committee of 
the QIMR Berghofer Medical Research Institute. Ethical approval for 
the GS Scottish Family Health Study (GS: SFHS) was obtained from the 
Tayside Committee on Medical Research Ethics A (ref. no. 05/S1401/89). 
GS obtained Research Tissue Bank approval from the East of Scotland 
Research Ethics Service (ref. no. 20/ES/0021).

Genotyping and phenotyping
Sample selection. Genotypic and phenotypic information was col-
lected for six large cohorts: the UKB22 (N = 488,410), GS19 (N = 20,032), 
the LL study20,21 (N = 64,623), the QIMR cohort (N = 13,154), the EBB23 
(N = 197,582) and the HUNT study24,25 (N = 70,517), where the sample 
size (N) refers to the number of genotyped individuals before selection 
of siblings and quality control. Sample overlap (N = 622) between GS 
and UKB was handled by removing the overlapping individuals from 
the UKB full-sib sample (N = 90). We restricted our analyses to adult 
(that is, aged at least 18 years) full siblings of European ancestries with 
available phenotype measurements. Ancestry inference and sample 
exclusions are described in Supplementary Methods.

Sibship inference. We identified sib-pairs using the estimated kinship 
coefficients and, where available, pedigree information. In the UKB, 
the kinship coefficients and the proportion of markers for which pairs 
share no alleles (IBS0) were provided as a part of data release (estimated 
using KING51 software) and were used to infer the sib-pairs following the 
procedure outlined in Bycroft et al.22. For all other cohorts, we similarly 
used the KING software (v.2.2.7; option ‘--related’) to estimate pairwise 
kinship coefficients and to infer IBD-sharing segments for first-degree 
relationships, and then selected the inferred full-sib (FS) pairs using 
either SNP information (EBB, HUNT and LL) or both SNP and pedigree 
information where available (GS and QIMR). Consistent with previous 
studies14,38, we used a simplified data structure for our analyses by 
assuming sib-pairs to be independent even when the siblings involved 
were from the same family. We referred to those as quasi-independent 
sib-pairs (QISPs). For example, a sibship of four siblings would lead to 
4 × 3/2 = 6 QISPs included in our analysis. In total, 119,457 adult QISPs 
with available measures of height and/or BMI were taken forward for 
the analysis: 8,368 from GS, 12,844 from QIMR, 16,581 from LL, 21,756 
from UKB, 25,333 from EBB and 34,575 from HUNT. Further details for 
each cohort are provided in Supplementary Table 13 and Supplemen-
tary Methods.

SNP selection for IBD inference. We selected approximately 25,000 
directly genotyped and LD-independent SNPs per cohort to be used in 
the analysis, with an exception for LL data where high-quality (imputa-
tion r2 > 0.9)-imputed, LD-independent HapMap3 markers were used 
(Supplementary Methods). SNP genotyping array, number of SNPs 
available for analysis, number of SNPs passing quality control steps and 

FST metrics are presented in Supplementary Table 14. Genomic posi-
tions used in the present study correspond to the hg19 genome build.

Phenotype quality control. Phenotype adjustments were performed 
within a sample of siblings in each cohort, separately for males and 
females. We set phenotype outliers (>6 s.d. away from the mean) to 
missing and residualized phenotypes by fitting the age at assessment 
(AGE) as well as AGE2 in a linear regression model as covariates. The 
phenotypes were then scaled to have a mean = 0 and a variance = 1 
(or rank-based inverse normally transformed) within each sex. The 
cohort-specific phenotype means (before adjusting for fixed effects) 
and s.d. values (after adjusting for fixed effects, before scaling) are pro-
vided in Supplementary Table 15. The age distribution across cohorts 
is presented in Supplementary Table 16.

IBD estimation and linkage analysis
Estimation of IBD coefficients. IBD coefficients between siblings were 
estimated along a grid of 0.5-cM spaced locations on each chromosome 
(genetic map positions from the interpolated CEU (northern Europeans 
from Utah) genetic map generated by the 1000 Genomes Project using 
OMNI arrays; ‘Data availability’) using the MERLIN52 software package 
(v.1.1.2). Before IBD estimation, we detected and set unlikely genotypes 
to missing (--error function and pedwipe module in the MERLIN52 soft-
ware package, respectively). Using the estimated IBD probabilities, we 
further calculated the locus-specific, IBD-sharing proportions as 
π̂k = P1k/2 + P2k , where P1k  and P2k  are the probabilities of the siblings 
sharing one or two alleles identical by descent at locus k, respectively. 
For dominance IBD coefficients (IBD2), the proportion of sharing two 
alleles by descent was estimated as π̂dk = P2k . Subsequently, the 
chromosome-wide IBD and IBD2 were estimated as an average of π̂k  
and π̂dk , respectively, across the chromosome grid locations. The 
genome-wide IBD was obtained as the length-weighted (length 
expressed in cM) average of chromosome-wide IBD coefficients. Coor-
dinates on our genetic map (in cM) were converted to hg19 genomic 
positions to re-estimate IBD-sharing proportions in mega-base-pairs 
(Mb). The distributions of genome-wide and chromosome-wide IBD 
coefficients between siblings are presented for each cohort in Sup-
plementary Table 2 and Supplementary Fig. 1.

RR-stratified IBD coefficients. We stratified the genome into four 
groups of 0.5-cM-long genomic segments corresponding to quartile 
groups of RRs within those segments. The RR within each segment was 
calculated as the ratio of its genetic length (that is, 0.5 cM) over its 
physical length in Mb, both obtained from the interpolated CEU genetic 
map used in our linkage analyses. The physical length and RR distribu-
tion across these segments are shown in Supplementary Fig. 2. IBD 
sharing within each RR-quartile group was calculated as the 
length-weighted (in cM or Mb) average of π̂k for segments allocated to 
that group.

Genome-wide linkage analysis. Locus-specific linkage analysis was 
performed along the same 0.5-cM grid using the Visscher–Hopper com-
putationally fast regression approach50, which performs a weighted 
analysis of separate regressions of sibling, phenotypic, mean-centered 
squared differences and squared sums on their locus-specific estimated 
IBD coefficients. Significant linkage peaks were determined as when the 
LOD score at a given locus exceeds 3.6, as recommended previously30. The 
CIs for the location of causal variants underlying significant linkage peaks 
were calculated using the LOD drop-off method31. In brief, this method 
determines CIs by finding the genomic locations on both sides of the peak 
corresponding to a decrease in LOD score of 1 or 2 units. We conservatively 
chose a 2-unit LOD score drop-off to ensure a coverage of at least 95%.

Heritability estimation. We estimated h2
FS and c2 (and dominance vari-

ance; Supplementary Table 12) in each cohort using the REstricted 
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Maximum Likelihood (REML) implemented in a customized R-script 
available on Zenodo (‘Code availability’).

GWAS of BMI
We previously published a large GWAS of BMI34 (N = ~700,000 partici-
pants) combining data from the GIANT consortium53 (hereafter simply 
referred to as GIANT) and the UKB. To avoid biases resulting from the 
sample overlap with UKB (in particular for our prediction analyses), we 
regenerated GWAS summary statistics for BMI after excluding sib-pairs 
(and their relatives, defined as when the estimated genomic relation-
ship exceeds 0.05) identified in the UKB. We then used the same analysis 
pipeline as Yengo et al.34 after excluding that sample.

In brief, we first conducted a GWAS of BMI using BOLT-LMM v.2.4.1 
(ref. 54), in a subsample of 397,279 UKB participants excluding sib-pairs 
and their relatives. The BMI phenotype was as described previously34. 
We analyzed SNPs from the third (v.3) release of imputed UKB data 
(imputed to the Haplotype Reference Consortium (HRC) and UK10K 
reference panel) with an imputation quality score >0.3. For each UKB 
participant, the genotypes were hard-called with posterior probability 
>0.9 and removing SNPs with call rate >0.95, P value for Hardy–Wein-
berg test >1 × 10−5 and MAF = 0.001. We used a set of 561,573 HM3 SNPs 
(MAF 1% and LD pruned with r2 > 0.9) as ‘model SNPs’ to control for 
population structure and remaining relatedness in the sample. We 
then meta-analyzed our results from UKB with summary statistics 
from GIANT across a subset of ∼1.1 million HM3 SNPs with MAF 1% and 
consistent alleles and allele frequencies (maximum absolute difference 
<0.15) between the UKB and GIANT. Finally, we used Genome-wide 
Complex Trait Analysis (GCTA)55 to perform a COnditional and JOint 
(COJO) analysis of summary statistics from the latter meta-analysis 
using a random sample of 50,000 UKB participants as LD reference. 
This analysis identified 795 conditionally and jointly significant SNPs 
at a genome-wide significant threshold P = 5 × 10−8 (Supplementary 
Data), explaining ~5% of BMI variance. We then relaxed the significance 
threshold to P = 1 × 10−3 to include 4,582 SNPs (Supplementary Data), 
collectively explaining ~9% of BMI variance (Table 2).

Predicted linkage signal
For each chromosome, we predicted the expected linkage signal, meas-
ured as predicted variance explained, E [q2

k], at a given genetic position 
Lk (in morgans) using equation (1):

E [q2
k] =

M
∑
j=1

[2pj (1 − pj)β2
j ] e

−4||Lk−Lj || , (1)

where M is the number of causal SNPs on the chromosome and pj, βj 
and Lj are the MAF, the minor allele effect and the genetic position of 
the jth causal SNP, respectively.

The intuition behind equation (1) is to predict linkage as the prod-
uct between the variance explained by the jth causal SNP (that is, 
h2
j = 2pj (1 − pj)β2

j ) and the expected correlation rjk between indicators 
that alleles at positions Lj and Lk are inherited by both siblings from the 
same parent14. Assuming Haldane’s mapping function, rjk can be 
expressed as rjk = e−4||Lk−Lj || (ref. 14). Then, the overall expectation E [q2

k] 
is obtained by summing up the products h2

j rjk across all causal SNPs on 
the chromosome. If each causal variant equally contributes to heritabil-
ity, then equation (1) describes a discretized version of Dekkers and 
Dentine’s32 results obtained under an infinitesimal genetic architecture. 
We implemented this method in an R script available via Zenodo (‘Code 
availability’).

We used the same framework to derive an expectation of linkage 
signal even when causal variants were unknown by replacing causal 
SNPs with independent trait-associated SNPs identified from GWASs 
and causal SNP effects βj, with the estimated joint SNP effects obtained 
from GWAS summary statistics using the GCTA-COJO module56. On 
average the number of trait-associated SNPs (for height and BMI) is 

proportional to the length of the chromosome. Genetic distances 
were obtained using sex-averaged genetic map positions from the 
interpolated CEU genetic map generated by the 1000 Genomes Project 
from OMNI arrays (‘Data availability’). We used 12,111 genome-wide 
significant SNPs jointly associated with height33 and 795 genome-wide 
significant SNPs jointly associated with BMI (GWAS of BMI). Unique 
genetic positions on the CEU genetic map were available for 12,010 
height-associated and 787 BMI-associated SNPs, and the allele frequen-
cies were from the UKB sib-pair sample.

We assessed the accuracy of equation (1) to predict observed link-
age signals by calculating Pearson’s correlation between observed and 
expected linkage signals for each chromosome. We also reported the 
chromosome-length-weighted (length measured in cM) average of 
these correlations (ϕ̂) across chromosomes. The s.e. of ϕ̂ is calculated 
based on a leave-one-chromosome-out jackknife procedure using 
equation (2):

s.e. (ϕ̂) =
√√√
√

(1 − 1
22 )

22
∑
s=1

(ϕ̂ − ϕ̂−s)
2, (2)

where ϕ̂−s denotes the chromosome-length-weighted average across 
all chromosomes except chromosome s. Note that this s.e. does not 
capture sampling variation across individuals, but only tracks LD and 
genetic architecture differences between chromosomes.

Simulated null distribution reflecting curvature effects
We first grouped all SNPs in the HapMap3 panel into 28 MAF–LD catego-
ries corresponding to 7 MAF classes (defined as: <1%; between 1% and 
5%; between 5% and 10%; between 10% and 20%; between 20% and 30%; 
between 30% and 40%; and between 40% and 50%) and 4 LD classes 
(defined by quartile groups of the LD score distribution across Hap-
Map3 SNPs). For each simulation replicate, we sampled the same num-
ber of SNPs as trait-associated SNPs present within each MAF–LD 
category. Finally, randomly sampled SNPs were allocated effect sizes 
that were also randomly sampled from the set of estimated SNP effects 
at trait-associated SNPs present in the corresponding MAF–LD cate-
gory. We tested the statistical significance of the difference between 
ϕ̂ and ϕ̂CE using a Wald’s test conditional on the observed value of ϕ̂ 
(that is, ϕ̂ is assumed to be fixed) and based on sampling variance of 
ϕ̂CE across simulation replicates.

PGSs and PGS-adjusted phenotypes
For each individual, we calculated the PGS based on the COJO effect 
estimates ( β̂j, at SNP j) of height- and BMI-associated SNPs from GWASs 
on ~650,000 (‘GWAS of BMI’) and >5 million individuals33. We used 12,111 
genome-wide significant SNPs for height and 4,582 SNPs with a less 
stringent P-value threshold (P = 1 × 10−3) for BMI. We applied allelic 
scoring implemented in the PLINK v.1.90b6.20 software package57 
(--score option), to calculate the PGS of each individual included in our 
study. More specifically, the PGS of individual i (hereafter denoted 
PGSi) was calculated as PGSi = ∑ β̂jxij, where xij is the minor allele count 
of individual i at SNP j and β̂j the estimated effect of the minor allele at 
SNP j. In each cohort the imputed genotypes were used to extract avail-
able trait-associated SNPs. The imputation panel and the number of 
SNPs used in PGS calculations are reported in Supplementary Table 17 
and the amount of variance explained by the PGS in each cohort is 
shown in Table 2.

Estimation of SNP-based heritability
We estimated the SNP heritability of height and BMI in each cohort using 
the Genome-based Restricted Maximum Likelihood (GREML) method 
implemented in GCTA55. We calculated genomic relationship matrices 
(GRMs) using SNPs in the HapMap3 panel selected to have a MAF > 0.01 
and P value for the Hardy–Weinberg equilibrium test >1 × 10−6. We here-
after refer to this GRM as the full GRM. We modeled shared genetic 
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and environmental effects between close relatives using another GRM 
obtained from the full GRM by setting all off-diagonal elements lower 
than 0.05 to 0. We used these two GRMs to jointly estimate the SNP-based 
heritability and the residual component capturing familial effects as 
done previously58. Sample sizes for these analyses are reported in Supple-
mentary Table 13. SNP-based heritability estimates are shown in Table 2.

Simulation of linkage studies
We performed simulations to assess the predictive performances of 
equation (1) under various genetic architectures. We simulated traits 
with a heritability h2 = 1 (to maximize statistical power) and varied the 
proportion of causal variants across the genome among 0.1%, 0.5%, 1%, 
5%, 10%, 20%, 50% and 100%, thus defining eight different scenarios. All 
simulations were conditional on real data, as described below.

Simulation of genotypes for IBD inference. We simulated genotypes 
of 100,000 sib-pairs using phased haplotypes of 972 unrelated indi-
viduals in the UKB. As previously described59, phasing was performed 
with SHAPEIT v.2 (ref. 60) using genotypes of both parents for these 
972 individuals, who were also participants of the UKB. We modified 
the R script proposed in ref. 59 (which initially focused on simulating 
inbreeding) to simulate sib-pairs. Our modified R script is available on 
Zenodo (‘Code availability’). We simulated genotypes over 301,412 SNPs 
but focused our analyses on 26,136 LD-pruned (LD r2 < 0.05 in a 5-Mb 
window) SNPs with MAF > 10%, consistent with our real data analysis in 
the UKB. Genetic positions were updated using the genetic maps down-
loaded from the Bcftools software website (‘Data availability’). Geno-
types were simulated once and then fixed across simulation replicates.

Simulation of phenotypes. Phenotypes were simulated conditionally 
on the simulated genotypes described above. Under each scenario (that 
is, proportion of causal variants) and for each simulation replicate, we 
randomly sampled Mc causal variants out of the 26,136 SNPs and then 
assigned each of them an allelic effect βj (for causal SNP j with MAF pj) 
such that each causal SNP explains the same amount of trait variance. 
To achieve this, we set:

βj =√
h2

2pj (1 − pj)Mc
. (3)

Next, we simulated the phenotype yi of individual i using  
equation (4):

yi =
Mc

∑
j=1

βjXij, (4)

where Xij is the minor allele count for individual i at causal SNP j. By 
construction the phenotypic variance is var ( yi) = h2 = 1.

Impact of estimation error in SNP effects from GWASs. We assessed 
the impact on ϕ̂ of errors in estimated causal SNP effects (Extended 
Data Fig. 2c) by replacing βj with β̂j = βj + εj, where εj is a random error 
term with mean = 0 and variance σ2

β̂j
 defined as:

σ2
β̂j
=

1 − (h2/Mc)
2pj (1 − pj)NR2

g

. (5)

In equation (5), NR2
g
 denotes the sample size of a hypothetical GWAS 

from which SNP effects were estimated. We chose NR2
g
= R2

g/ [Mc (1 − R2
g)] 

such that the expected prediction accuracy of a PGS calculated from 
the β̂j values is R2

g  (ref. 61).

Expected linkage test statistics under an infinitesimal genetic 
architecture
As in ref. 14, we determined for each chromosome s an effective number 
(ms) of independent chromosomal segments (Supplementary Table 8). 
This number corresponds to the number of independent loci over 

which the variance of IBD sharing would be equivalent to the observed 
variance for the whole genome. Note that the sum of ms across chro-
mosomes is m ≈ 94, which is ~10% larger than that obtained by Visscher 
and colleagues14 using microsatellites.

Under an infinitesimal genetic architecture, each of the m inde-
pendent segments is expected to explain q2 = h2

FS

m
 of trait variance. 

Therefore, we used q2 to predict the NCP of the linkage test statistic (χ2) 
across the genome as:

NCP = n log
⎧
⎨
⎩

(1 − ρ2
1/2)

1
2

(1 − ρ2
0)

1
4 (1 − ρ2

1 )
1
4

⎫
⎬
⎭
≈

nq4 (1 + r2sib)

[8(1 − r2sib)
2
]

(6)

with n the number of sib-pairs and rsib the phenotypic correlation 
between siblings, ρ0 = rsib − 0.5q2 , ρ1/2 = rsib  and ρ1 = rsib + 0.5q2   
(refs. 49,50), and thereby derived expectations for the mean and s.d. 
of χ2 across loci as E [χ2] = 1 + NCP and s.d. (χ2) = √2 [1 + 2NCP]. Finally, 
we predicted the proportion of test statistics with a positive value using 
the cumulative distribution function of the normal distribution with 
mean = 0 and variance equal to NCP.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Individual-level data used in the present study are available through 
application to the relevant cohort. The individual-level UKB data 
are available upon application to the UKB (http://www.ukbiobank.
ac.uk, accessed under project no. 12505). Average IBD status across 
four groups of loci defined by quartiles of the RR distribution will be 
returned (to the UKB) for 21,756 sib-pairs analyzed in the present study. 
These data will be accessible to researchers registered with the UKB.  
A genetic map for linkage analyses of height and BMI was downloaded 
from https://github.com/joepickrell/1000-genomes-genetic-maps/
tree/master/interpolated_OMNI. A genetic map used in simulations was 
obtained from Bcftools: https://samtools.github.io/bcftools/bcftools.
html. Summary statistics from GWASs of BMI conducted in the present 
study are available in Supplementary Data and in the GWAS Catalog 
(https://www.ebi.ac.uk/gwas) under accession no. GCST90446645.

Code availability
The customized code generated in this paper (source code of predLINK, 
R script to simulate sib-pairs, R script to run restricted maximum likeli-
hood estimation for QISPs) is available via Zenodo at https://doi.org/ 
10.5281/zenodo.10416893 (ref. 62). All other analyses were performed 
using publicly available software. Statistical analyses were performed 
using R (v.4.1.0, v.4.2.1; https://cran.r-project.org). MERLIN v.1.1.2 
software was used to estimate IBD sharing (https://csg.sph.umich.edu/
abecasis/Merlin/download/). KING v.2.2.7 software was used to identify 
sib-pairs (https://www.kingrelatedness.com/Download.shtml). GWAS 
of BMI was performed using BOLT-LMM v.2.4.1 (https://alkesgroup.
broadinstitute.org/BOLT-LMM/BOLT-LMM_manual.html). GCTA soft-
ware (gcta_1.93.1beta, v.1.93.2beta) was used for genotype data quality 
control (including principal component (PC) calculation, SNP loading 
calculation and PC projection for ancestry inference), SNP heritabil-
ity estimation and COJO analysis (https://yanglab.westlake.edu.cn/
software/gcta/index.html). Genotype data quality control, including 
filtering and LD pruning, as well as allelic scoring, was performed with 
PLINK v.1.90b6.20 (https://www.cog-genomics.org/plink).
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Extended Data Fig. 1 | Observed and theoretically predicted statistics for 
locus-specific linkage analysis. a,The observed and predicted mean test 
statistics of linkage (χ2) test statistics for height and BMI. The error-bars indicate 
standard errors (s.e.) calculated as the standard deviation of locus-specific 
statistics divided by the square root of the effective number independent 
markers, that is ~94 (Supplementary Table 8). The size of the circle is proportional 
to sample size. The theoretically predicted values are based on the REML 
estimates of heritability from genome wide IBD regression ( ĥ2

FS) and the observed 
correlation between siblings. b, The proportion of loci with positive (i) estimated 
linkage (the bars and the values) and (ii) theoretically predicted (the black 

rectangles +/- s.e., Methods). The dotted horizontal line represents the 
proportion (that is, 0.5) expected in the absence of a genetic contribution to the 
trait. The data is shown for Generation Scotland (GS, number of quasi-
independent sib-pairs (n) = 8,368), the Queensland Institute of Medical Research 
cohort (QIMR, n = 12,844), the Lifelines Cohort (LL, n = 16,581), the UK Biobank 
(UKB, n = 21,756), the Estonian Biobank (EBB, n = 25,333) the HUNT study (HUNT, 
n = 34,575) and the meta-analysis combining all cohorts (META, n = 119,457). The 
numerical values for mean and median χ2 and proportion of χ2 > 0 are presented 
in Supplementary Table 7a.
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Extended Data Fig. 2 | Effect of polygenicity and sample size of linkage 
studies on the correlation between predicted and observed linkage signals in 
simulated data. The results are shown for 8 simulated genetic architectures 
(polygenicity = 0.1%-100%) with a genome-wide h2 = 1. a-b, show the observed and 
predicted linkage signals (measured as variance explained) on chromosomes 1 
(a) and 22 (b), respectively, for one simulation replicate. The simulated causal 
variants are depicted as green stars. The predicted signal, estimated as a 
weighted sum of simulated effects (Methods, equation (1)) is depicted by the 
black curve. The grey and yellow lines show the observed linkage signal from the 
analysis of 20,000 and 100,000 simulated sib-pairs, respectively, where the 
phenotypes were simulated using the same causal variants (green stars). The 
correlations ϕ̂ for each polygenicity panel are the chromosome-wide estimates 
for each linkage sample size (yellow: n=20,000; grey: n=100,000). c, the 

summary of results across 100 replicates. ϕ̂ is estimated per chromosome across 
the grid of 0.5 cM, then a chromosome length weighted average is calculated for 
each replicate. Each symbol represents a mean value across 100 simulation 
replicates and the error bars are standard deviation across replicates. The 
left-most enlarged symbols for each polygenicity panel indicate that the true 
simulated SNP effects were used predict linkage signal, that is, the expected 
prediction accuracy from polygenic scores (R2

g) using these causal variants = 1.  
To approximate estimation errors of SNP effects in a GWAS of finite sample, ϕ̂ was 
also calculated using causal variants with R2

g  <1 (regular symbols). For the 
numeric values see Supplementary Table 9. Estimated variance components were 
not constrained to ensure unbiasedness. Therefore, if a region of the genome 
does not explain any genetic variation, then 50% of the estimates are expected  
to be negative.
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Extended Data Fig. 3 | Colocalization between GWAS-predicted and observed 
linkage signals for traits adjusted for polygenic scores (PGS). a, The 
correlation between observed linkage signals for PGS-adjusted height and 
predicted linkage signals from 12,010 height-associated SNPs. b, The correlation 
between observed linkage signals for PGS-adjusted BMI and predicted linkage 
signals from 787 BMI-associated SNPs. Height was adjusted using a PGS based on 
the same 12,010 height-associated SNPs (explaining 38% of height variance), 
while BMI was adjusted using a PGS including 4,582 SNPs (explaining 9% of BMI 
variance). The x-axis in each panel displays the correlation (ϕ̂) between observed 
and predicted (from GWAS results; Methods) linkage signals. In each panel, the 
vertical dashed line represents the correlation between observed and predicted 
linkage signals from either height-associated SNPs (a) or 787 BMI-associated 

SNPs (b). Predicted linkage signals were also obtained under the null hypothesis 
(that is ‘the correlation between observed and predicted linkage signals is due to 
the curvature effect’) using 1,000 draws of random SNPs with similar minor allele 
frequency and linkage disequilibrium properties as trait-associated SNPs. The 
histogram in each panel represents the distribution of correlations (under the 
null) between observed linkage for the trait indicated in the corresponding 
column-panel and predicted linkage obtained from these 1,000 draws. The mean 
of correlations obtained under the null hypothesis is denoted ϕ̂CE. The P-values 
(P) reported in the top-left corner of each panel assess the statistical significance 
of the difference between ϕ̂ and ϕ̂CE using a two-sided Wald test. Numeric values 
are presented in Supplementary Table 10.
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Extended Data Fig. 4 | Correlation between chromosome length and 
estimates of variance explained from linkage analyses of BMI. Analyses were 
based on summary statistics from a linkage meta-analysis of BMI and BMI 
adjusted for polygenic score (PGS). The x axis represents the physical length of 
each chromosome relative to the size of the autosome (that is, ~2879 Mb). The  
y axis represents the expected variance explained (q2s) for each chromosome  
(s = 1–22) estimated as q2s = ms ̄q2, where ̄q2 is the mean across the chromosome 

of estimates of locus-specific variance, and ms an effective number of 
independent markers per chromosome (Supplementary Table 8). Error bars 
around each dot represent ms times the standard deviation of linkage estimate 
across the chromosomes. Standard errors (s.e.) of the regression slopes were 
obtained using a leave-one-chromosome-out jackknife approach.  
95% confidence intervals (CI) were calculated as 1.96×s.e.

http://www.nature.com/naturegenetics




≥




	Genetic architecture reconciles linkage and association studies of complex traits
	Results
	Estimates of heritability from IBD regression
	RR-dependent biases in IBD regression
	RR-stratified estimates of heritability

	Locus-specific linkage analysis of height and BMI
	GWAS and linkage results are significantly correlated
	Overview of the predLINK method
	PredLINK applied to simulated data
	PredLINK applied to height and BMI
	Curvature effect

	A polygenic missing heritability enriched near GWAS loci

	Discussion
	Online content
	Fig. 1 RR-stratified estimates of heritability () and proportion of variance owing to common sibling effects are not correlated with IBD sharing for height and BMI.
	Fig. 2 Chromosomes containing loci significantly linked with height.
	Fig. 3 Colocalization between observed and GWAS-predicted linkage signals.
	Fig. 4 Correlation between chromosome length and estimates of variance explained from linkage analyses of height.
	Extended Data Fig. 1 Observed and theoretically predicted statistics for locus-specific linkage analysis.
	Extended Data Fig. 2 Effect of polygenicity and sample size of linkage studies on the correlation between predicted and observed linkage signals in simulated data.
	Extended Data Fig. 3 Colocalization between GWAS-predicted and observed linkage signals for traits adjusted for polygenic scores (PGS).
	Extended Data Fig. 4 Correlation between chromosome length and estimates of variance explained from linkage analyses of BMI.
	Table 1 Genomic regions significantly linked with height.
	Table 2 Estimates from linkage analyses of PGS-adjusted traits.




