Supplementary Figures

Supplementary Figure 1 | Quantile-quantile plots of sex-combined and sex-specific SNP associations with six waist-related traits
Supplementary Figure 2 | Manhattan plots of sex-combined SNP associations for six waist-related traits
Supplementary Figure 3 | Regional association plots for 68 novel loci achieving genome-wide evidence of association with six waist-related traits
Supplementary Figure 4 | Chicago plots of sex-specific SNP associations with six waist-related traits
Supplementary Figure 5 | Regional association plots of WHRadjBMI signals covered with fine-mapping density on the Metabochip

Supplementary Tables

Supplementary Table 5 | Estimated narrow-sense age-adjusted heritability (h^2) for waist-related traits, height, weight, and body mass index
Supplementary Table 6 | Variance in WHRadjBMI explained by all current loci compared to only previously established loci
Supplementary Table 7 | 99% credible intervals for fine-mapped waist-related loci
Supplementary Table 9 | Genome-wide significant associations of waist-related SNPs with metabolic and anthropometric traits
Supplementary Table 10 | Joint associations of 39 WHRadjBMI SNPs with metabolic and anthropometric traits
Supplementary Table 12 | Candidate functional nonsynonymous variants
Supplementary Table 13 | CNV-tagging variants associated with waist traits in sex-combined European-ancestry meta-analyses
Supplementary Table 14 | Candidate variants at transcription start sites
Supplementary Table 17 | Sources of data sets used for regulatory annotation
Supplementary Table 20 | Significant gene sets based on the WHRadjBMI sex-combined GWA analysis results using the MAGENTA gene set enrichment method
Supplementary Table 24 | Phenotypic correlations among waist-related traits, height, weight, and body mass index

Supplementary Note and Methods

- Candidate genes at new loci for WHRadjBMI achieving genome-wide significance
- Candidate genes at new loci for five additional waist and hip traits
- Comparison of ARIC and PIVUS as reference panels for GCTA
- Genetic risk score comparison of high versus average genetic susceptibility
- Directional consistency of effects in GWAS and Metabochip meta-analyses
- Copy-number variant analysis
- Comparison of results from MAGENTA, DEPICT and GRAIL analyses
- Evaluation of potential sources of heterogeneity
- Sources of data for expression QTL analyses
- Author contributions
- Detailed acknowledgements
- Contributing consortia
- Supplementary references
Supplementary Figures

This document contains Supplementary Figures 1, 2, 3, 4, and 5.
Supplementary Figure 1 | Quantile-quantile plots of sex-combined and sex-specific SNP associations with six waist-related traits. Sex-combined (A, C, E, G, I, K) and sex-specific (B, D, F, H, J, L) SNP associations are shown for six waist-related traits (waist-hip ratio (WHR), waist circumference (WC), and hip circumference (HIP), adjusted and not adjusted for body mass index (BMI)). Only SNPs with \(N \geq 50,000 \) samples are shown. In the panels containing sex-combined data, SNPs are marked in black. In the WHR data (A), after removing all SNPs within 500 kb of the 16 previously reported WHR loci the remaining SNPs are colored green and after removing all SNPs within 500 kb of the 48 WHR loci reported in Table 1 the remaining SNPs are colored purple. In the panels containing sex-specific data, the SNPs are colored red for female-specific associations and blue for male-specific associations. In each panel, the uniform null distribution is marked with a solid black line and the related 95% confidence interval is marked with dashed gray lines. While the substantial departure from the null distribution suggests an excess of strongly associated SNPs in each panel, the corresponding genomic control values do not suggest strong evidence of systematic association inflation (\(\lambda_{GC} = 1.01–1.05 \)).
Supplementary Figure 2 | Manhattan plots of sex-combined SNP associations for six waist-related traits. The traits are waist-hip ratio (WHR), waist circumference (WC), and hip circumference (HIP), with and without adjustment for body mass index (BMI)). Only SNP results with \(N > 50,000 \) samples are shown. Dashed gray lines mark statistical significance at the genome-wide level (\(P = 5 \times 10^{-8} \)). Novel loci achieving genome-wide significance in sex-combined WHR association analysis in Europeans are highlighted in red on all figures (A–F) and annotated in panel A. Novel loci achieving genome-wide significance in Europeans in other waist-related traits (B–F) are highlighted in red and annotated only on the relevant figure. Previously established loci are highlighted in blue (A–F). Additional novel loci achieving genome-wide significance when all ancestries were analyzed are marked as black triangles and annotated. SNP association signals that achieve genome-wide significance and are previously established height or BMI loci are shown in light or dark grey. Detailed information about the loci is presented in Tables 1 and 3 and Supplementary Tables 4 and 25.
Supplementary Information

A. WHRadjBMI

B. WHR

C. WCadjBMI

(Chromosome plots showing loci for WHRadjBMI, WHR, and WCadjBMI, with markers for previous, novel, and novel loci across different chromosomes.)
Supplementary Figure 3 | Regional association plots for 68 novel loci achieving genome-wide evidence of association with six waist-related traits. The signals shown for waist-hip ratio (WHR), waist circumference, and hip circumference, adjusted and not adjusted for body mass index (BMI) do not overlap with association signals with height or BMI. Plots are arranged in the same order as Tables 1 and 3. In the plot of the HOXA11 locus, the eponymous gene was automatically omitted by LocusZoom for space; it is located just to the left of HOXA13 (upstream with respect to the genome).
DCST2 (Waist–Hip Ratio adjusted for BMI, European Women)

GORAB (Waist–Hip Ratio adjusted for BMI, European Women)

MEIS1 (Waist–Hip Ratio adj. for BMI, European Sex–Combined)
CALCRL (Waist–Hip Ratio adj. for BMI, European Sex–Combined)

PLXND1 (Waist–Hip Ratio adjusted for BMI, European Women)

LEKR1 (Waist–Hip Ratio adj. for BMI, European Sex–Combined)
NMU (Waist–Hip Ratio adjusted for BMI, European Women)

![Graph showing association between NMU and waist-to-hip ratio adjusted for BMI in European women.]

FAM13A (Waist–Hip Ratio adjusted for BMI, European Women)

![Graph showing association between FAM13A and waist-to-hip ratio adjusted for BMI in European women.]

These graphs illustrate the genetic influence on waist-to-hip ratio adjusted for BMI in European women, highlighting specific SNPs associated with these ratios.
SUPPLEMENTARY INFORMATION

SPATA5–FGF2 (WHR adjusted for BMI, European Sex–Combined)

![Graph showing genetic associations between SNP and WHR adjusted for BMI](image)

MAP3K1 (Waist–Hip Ratio adjusted for BMI, European Women)

![Graph showing genetic associations between SNP and WHR adjusted for BMI](image)

FGFR4 (Waist–Hip Ratio adj. for BMI, European Sex–Combined)

![Graph showing genetic associations between SNP and WHR adjusted for BMI](image)
NKX2-6 (Waist–Hip Ratio adjusted for BMI, European Women)

MSC (Waist–Hip Ratio adj. for BMI, European Sex–Combined)

ABCA1 (Waist–Hip Ratio adj. for BMI, European Sex–Combined)
SFXN2 (Waist–Hip Ratio adjusted for BMI, European Women)

![Graph showing genetic data for SFXN2](image1)

MACROD1–VEGFB (WHR adjusted for BMI, European Women)

![Graph showing genetic data for MACROD1–VEGFB](image2)

CCDC92 (Waist–Hip Ratio adj. for BMI, European Sex–Combined)

![Graph showing genetic data for CCDC92](image3)
BMP2 (Waist–Hip Ratio adj. for BMI, European Sex–Combined)

GDF5 (Waist–Hip Ratio adjusted for BMI, European Men)

EYA2 (Waist–Hip Ratio adj. for BMI, European Sex–Combined)
SUPPLEMENTARY INFORMATION

LYPLAL1 (Waist–Hip Ratio adj. for BMI, European Women)

Our SNPs

GRB14–COBL1 (WHR adj. for BMI, European Women)

Our SNPs

PPARG (Waist–Hip Ratio adjusted for BMI, European Women)

Our SNPs
PBRM1 (Waist–Hip Ratio adj. for BMI, European Sex–Combined)

![Graph showing PBRM1 association with BMI and waist-to-hip ratio](image1)

ADAMTS9 (Waist–Hip Ratio adjusted for BMI, European Women)

![Graph showing ADAMTS9 association with BMI and waist-to-hip ratio](image2)

TNFAIP3–HSD17B4 (WHR adj. for BMI, European Women)

![Graph showing TNFAIP3–HSD17B4 association with BMI and waist-to-hip ratio](image3)
CPEB4 (Waist–Hip Ratio adj. for BMI, European Sex–Combined)

LY86 (Waist–Hip Ratio adj. for BMI, European Sex–Combined)

VEGFA (Waist–Hip Ratio adjusted for BMI, European Women)
RSPO3 (Waist–Hip Ratio adj. for BMI, European Sex–Combined)

NFE2L3 (Waist–Hip Ratio adj. for BMI, European Sex–Combined)

ITPR2–SSPN (WHR adj. for BMI, European Sex–Combined)
HOXC13 (Waist–Hip Ratio adjusted for BMI, European Women)

ZNFR3–KREMEN1 (WHR adj. for BMI, European Sex–Combined)

OR2W5–NLRP3 (Waist Circ. adjusted for BMI, European Men)
KLHL31 (Hip Circumference adjusted for BMI, European Women)

KLF14 (Hip Circumference adjusted for BMI, European Women)

C5 (Hip Circumference adjusted for BMI, European Women)
SUPPLEMENTARY INFORMATION

HMGXB4 (Hip Circumference adjusted for BMI, European Women)

ARL15 (Waist–Hip Ratio adjusted for BMI, All Ancestries Men)

GMDS (Hip Circumference adjusted for BMI, All Ancestries Men)
Supplementary Figure 4 | Chicago plots of sex-specific SNP associations for six waist-related traits. Sex-specific SNP associations are shown for waist-hip ratio (WHR), waist circumference (WC), and hip circumference (HIP), with and without adjustment for body mass index (adjBMI). Associations in women are shown above the x-axis as \(-\log_{10}(P\text{ values})\), and associations in men are shown below as \(\log_{10}(P\text{ values})\). Only SNP results with \(N > 50,000\) samples are shown. Dashed gray lines mark statistical significance at the genome-wide level \((P = 5 \times 10^{-8})\). Novel loci achieving genome-wide significance in sex-stratified WHR association analysis in Europeans are highlighted in red on all figures (A–F) and annotated on figure A. One additional novel locus achieving genome-wide significance when all ancestries were analyzed is marked as black triangles and annotated on figure A. Novel loci achieving genome-wide significance in Europeans in other waist-related traits (B–F) are highlighted in red and annotated only on the relevant figure. Previously established loci are highlighted in blue (A–F). Additional novel loci achieving genome-wide significance when all ancestries were analyzed in other waist-related traits (B–F) are marked as black triangles and annotated. SNP association signals that achieve genome-wide significance and are previously established height or BMI loci are shown in light or dark grey. In figure A, the asterisk indicates that different lead SNPs were identified in women and men. Detailed information about the loci is presented in Tables 1 and 3 and Supplementary Tables 4 and 25.
Supplementary Figure 5 | Regional association plots of WHRadjBMI signals covered with fine-mapping density on the Metabochip. Plots of 17 waist-hip ratio adjusted for body mass index (WHRadjBMI) signals from Table 1 are arranged in chromosomal order.
TBX15-WARS2 (WHR adjusted for BMI, Sex-Combined)

European

rs2645284

Non-European

rs12083843

All Ancestries

rs10923724

Supplementary Information
doi:10.1038/nature14132

Position on chr1 (Mb)

Metabolic traits

Type 2 diabetes

All SNPs

European 99% CI: 6 SNPs, 71kb

Non-European 99% CI: 833 SNPs, 956kb

TBX15 → WARS2 → HADO → HSOD81 → JNPS97 → HAM2CS2 → ADAM50

HIST1H1L2 → HIST3H2A → RHOC2H → ARPCF7 → NOTCH2

LOC5442342 → HG4

Recombination rate (cM/Mb)

-Log10(p-value)
LYPLAL1 (WHR adjusted for BMI, Women)

Our SNPs

Adiponectin levels
Waist-hip ratio
Adiposity

All 99% CI: 5 SNPs, 88kb
European: 99% CI: 5 SNPs, 88kb
Non-European: 99% CI: 826 SNPs, 896kb

Position on chr1 (Mb)

rs2620443
chr1:217684764
GRB14-COBLL1 (WHR adjusted for BMI, Women)

European

- \(\log_{10}(P_{\text{value}}) \)

Non-European

- \(\log_{10}(P_{\text{value}}) \)

All Ancestries

- \(\log_{10}(P_{\text{value}}) \)

Supplementary Information

- **diabetes**
- **Waist-hip ratio**
- **I-SDL cholesterol**
- 1 GWAS h omitted

Association at 99% CI: 5 SNPs, 31 kb
- European 99% CI: 5 SNPs, 31 kb
- Non-European 99% CI: 485 SNPs, 809 kb

Position on chr2 (Mb)

- GRB14
- COBL1
- SNCH470F

DOI: 10.1038/nature14132
ADAMTS9 (WHR, Women)

- **Europeans**
- **Non-Europeans**
- **All Ancestries**

![Graph showing genetic data for ADAMTS9 (WHR, Women)](image)

Position on chr3 (Mb)

- **Wast-hip ratio**
- **Type 2 diabetes**

Genetic Data
- rs2371767
- rs2059092

Publication Details
- doi:10.1038/nature14132
LY86 (WHR adjusted for BMI, Sex-Combined)

Supplementary Information

doi:10.1038/nature14132

Europeans

Non-Europeans

All Ancestries
VEGFA (WHR adjusted for BMI, Women)

- **Europeans**
 - rs1358980
 - chr6:43869623
- **Non-Europeans**
- **All Ancestries**
 - rs1358980

Adiponectin levels
Coronary heart disease
Waist: hip ratio

- **All European 99% CI:** 2 SNPs, 8.7 kb
- **Non-European 99% CI:** 8 SNPs, 969 kb
- **VEGFA**

Position on chr6 (Mb): 43.862 - 43.872
RSPO3 (WHR adjusted for BMI, Sex-Combined)

Supplementary Information

doi:10.1038/nature14132
SFXN2 (WHR adjusted for BMI, Women)

<table>
<thead>
<tr>
<th>Variants</th>
<th>Position on chr10 (Mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs7917772</td>
<td>104.4</td>
</tr>
<tr>
<td>chr10:104342902</td>
<td>104.5</td>
</tr>
</tbody>
</table>

Legend:
- All 99% CI: 136 SNPs, 7293b
- European 99% CI: 62 SNPs, 631kb
- Non-European 99% CI: 1307 SNPs, 818kb
- Systolic blood pressure
- Blood pressure
- Coronary heart disease

Note:
- The image shows association plots for SFXN2 variants adjusted for BMI in women, with recombination rate (cM/Mb) on the Y-axis and position on chr10 (Mb) on the X-axis. The plots are stratified by ancestry, with Europeans and All Ancestries compared.
ITPR2-SSPN (WHR adjusted for BMI, Sex-Combined)

Europeans

- rs10842707

Non-Europeans

- chr12:26376715

All Ancestries

- rs10842708

Wast-to-hip ratio

- All 99% CI: -13 SNPs, 475kb
- European 99% CI: 13 SNPs, 45kb
- Non-European 99% CI: 30 SNPs, 874kb

Position on chr12 (Mb)

- 26.34
- 26.36
- 26.38
- 26.4
- 26.42

Supplementary Information

doi:10.1038/nature14132
ZNFR3-KREMEN1 (WHR adjusted for BMI, Sex-Combined)

- Europeans
- Non-Europeans
- All Ancestries

Position on chr22 (Mb)

- rs2294239
- chr22:27757333

Wast-ho ratio

- All 99% CI: 3 SNPs, 2ko
- European 99% CI: 3 SNPs, 2.24b
- Non-European 99% CI: 158 SNPs, 880kb

Supplementary Information
Supplementary Tables

This document contains Supplementary Tables 5, 6, 7, 9, 10, 12, 13, 14, 17, 20, and 24.
Supplementary Table 5 | Estimated narrow-sense age-adjusted heritability (h^2) for waist-related traits, height, weight, and body mass index

<table>
<thead>
<tr>
<th>Traits</th>
<th>Women Framingham Heart Study</th>
<th>TWINGENE</th>
<th>Women Framingham Heart Study</th>
<th>TWINGENE</th>
<th>Men Framingham Heart Study</th>
<th>TWINGENE</th>
<th>Sex Difference P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>h^2 (SE)</td>
<td>P</td>
<td>n</td>
<td>h^2 (95% CI)</td>
<td>P</td>
<td>n</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>1,595</td>
<td>0.463 (0.10)</td>
<td>6.00E-07</td>
<td>6,471</td>
<td>0.558 (0.441, 0.595)</td>
<td>1.46E-14</td>
<td>1,446</td>
</tr>
<tr>
<td>WHR</td>
<td>1,599</td>
<td>0.388 (0.10)</td>
<td>4.39E-05</td>
<td>6,704</td>
<td>0.577 (0.488, 0.612)</td>
<td>3.15E-18</td>
<td>1,452</td>
</tr>
<tr>
<td>BMI</td>
<td>4,177</td>
<td>0.492 (0.04)</td>
<td>8.50E-47</td>
<td>6,515</td>
<td>0.702 (0.576, 0.730)</td>
<td>2.83E-93</td>
<td>3,528</td>
</tr>
<tr>
<td>Height</td>
<td>4,181</td>
<td>0.999 (0.03)</td>
<td>1.25E-193</td>
<td>6,515</td>
<td>0.908 (0.811, 0.921)</td>
<td>2.31E-105</td>
<td>3,528</td>
</tr>
<tr>
<td>Weight</td>
<td>4,177</td>
<td>0.550 (0.04)</td>
<td>9.56E-60</td>
<td>6,515</td>
<td>0.718 (0.688, 0.745)</td>
<td>3.14E-169</td>
<td>3,528</td>
</tr>
<tr>
<td>WC</td>
<td>3,615</td>
<td>0.473 (0.04)</td>
<td>2.36E-38</td>
<td>6,738</td>
<td>0.661 (0.627, 0.693)</td>
<td>3.56E-28</td>
<td>3,233</td>
</tr>
<tr>
<td>WCadjBMI</td>
<td>3,610</td>
<td>0.505 (0.04)</td>
<td>5.20E-43</td>
<td>6,496</td>
<td>0.595 (0.363, 0.633)</td>
<td>5.45E-13</td>
<td>3,227</td>
</tr>
<tr>
<td>HIP</td>
<td>1,601</td>
<td>0.447 (0.09)</td>
<td>3.00E-07</td>
<td>6,718</td>
<td>0.675 (0.595, 0.706)</td>
<td>3.50E-32</td>
<td>1,455</td>
</tr>
<tr>
<td>HIPadjBMI</td>
<td>1,597</td>
<td>0.495 (0.09)</td>
<td>6.37E-09</td>
<td>6,476</td>
<td>0.592 (0.519, 0.631)</td>
<td>2.61E-20</td>
<td>1,449</td>
</tr>
</tbody>
</table>

Narrow-sense heritability estimated separately from the Framingham Heart Study and the TWINGENE study. SE, standard error; CI, confidence interval; WHR, waist-to-hip ratio; WC, waist circumference; HIP, hip circumference; adjBMI, adjusted for body mass index.
Supplementary Table 6 | Variance in WHRadjBMI explained by all current loci compared to only previously established loci

<table>
<thead>
<tr>
<th>Loci Source</th>
<th>Sex-combined R^2</th>
<th>Male-specific R^2</th>
<th>Female-specific R^2</th>
<th>Data set</th>
<th>Phenotype Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Heid et al. loci</td>
<td>1.03%<sup>a</sup></td>
<td>0.46%<sup>a</sup></td>
<td>1.34%<sup>a</sup></td>
<td>Heid et al. (Follow-up studies)</td>
<td>Raw</td>
</tr>
<tr>
<td>14 Heid et al. loci</td>
<td>0.60%<sup>b</sup></td>
<td>0.31%<sup>b</sup></td>
<td>1.03%<sup>b</sup></td>
<td>Heid et al. (Follow-up studies)</td>
<td>Inverse-normalized</td>
</tr>
<tr>
<td>2 Randall et al. loci (additional to Heid et al.)</td>
<td>0.05%<sup>c</sup></td>
<td>0.02%<sup>c</sup></td>
<td>0.12%<sup>c</sup></td>
<td>Randall et al. (Follow-up studies)</td>
<td>Inverse-normalized</td>
</tr>
<tr>
<td>16 previously reported loci (14 Heid et al. + 2 Randall et al.)</td>
<td>0.66%<sup>d</sup></td>
<td>0.28%<sup>d</sup></td>
<td>1.27%<sup>d</sup></td>
<td>This paper; all studies</td>
<td>Inverse-normalized</td>
</tr>
<tr>
<td>49 current loci</td>
<td>1.36%<sup>e</sup></td>
<td>0.82%<sup>e</sup></td>
<td>2.40%<sup>e</sup></td>
<td>This paper; all studies</td>
<td>Inverse-normalized</td>
</tr>
</tbody>
</table>

The variance explained by all waist-hip ratio adjusted for body mass index (WHRadjBMI) loci reported in this paper compared to WHRadjBMI loci in two previous reports. ^aThe 14 previously reported loci from Heid et al. [PMID: 20935629] as presented there based on meta-analyzed beta-estimates of follow-up studies ($N > 110,000$) using “raw” WHRadjBMI (i.e., residuals of WHR adjusted for BMI, age, age², and study-specific covariates, stratified by sex but not inverse normal transformed) using a model variance of that trait as observed in the population-based cross-sectional study KORA S3 ($N = 3,996$). ^bThe 14 previously reported loci from Heid et al. [PMID: 20935629] using the same data as in (a) using the meta-analyzed beta estimates of the inverse normal transformed values of WHRadjBMI (thus Var(Y)=1). ^cThe two additional reported loci from Randall et al. [PMID:23754948] (PPARG and HSD17B4) based on meta-analyzed beta-estimates of follow-up studies ($N > 105,000$) using inverse normal transformed values of WHRadjBMI (thus Var(Y)=1). ^dThe 16 previously reported loci using the here presented data ($N > 210,000$) based on meta-analyzed beta-estimates of the inverse normal transformed values of WHRadjBMI (thus Var(Y)=1). ^eThe 49 reported loci using the same data as in (c) also on inverse normal transformed values of WHRadjBMI (as in (c)).
Supplementary Table 7 | 99% credible intervals for fine-mapped waist-related loci

<table>
<thead>
<tr>
<th>Trait</th>
<th>Analysis</th>
<th>Gene</th>
<th>Index SNP</th>
<th>Chr</th>
<th>Position (bp)</th>
<th>NCBI build 36</th>
<th>Europeans only</th>
<th>Non-Europeans</th>
<th>All ancestries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td># of SNPs</td>
<td>Distance (bp)</td>
<td># of SNPs</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Overall</td>
<td>TBX15-WARS2</td>
<td>rs2645294</td>
<td>1</td>
<td>119,376,110</td>
<td>6</td>
<td>70,745</td>
<td>833</td>
<td>956,454</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Overall</td>
<td>DNM3-PIGC</td>
<td>rs714515</td>
<td>1</td>
<td>170,619,613</td>
<td>11</td>
<td>54,038</td>
<td>474</td>
<td>969,517</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Overall</td>
<td>PBRM1</td>
<td>rs2276824</td>
<td>3</td>
<td>52,612,526</td>
<td>11</td>
<td>272,987</td>
<td>865</td>
<td>908,219</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Overall</td>
<td>CPEB4</td>
<td>rs7705502</td>
<td>5</td>
<td>173,253,421</td>
<td>9</td>
<td>63,849</td>
<td>339</td>
<td>894,027</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Overall</td>
<td>LY86</td>
<td>rs1294410</td>
<td>6</td>
<td>6,683,751</td>
<td>7</td>
<td>17,038</td>
<td>198</td>
<td>971,095</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Overall</td>
<td>RSPO3</td>
<td>rs1936805</td>
<td>6</td>
<td>127,493,809</td>
<td>5</td>
<td>6,890</td>
<td>365</td>
<td>982,689</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Overall</td>
<td>NFE2L3</td>
<td>rs10245353</td>
<td>7</td>
<td>25,825,139</td>
<td>15</td>
<td>32,536</td>
<td>217</td>
<td>954,173</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Overall</td>
<td>ITPR2-SSPN</td>
<td>rs10842707</td>
<td>12</td>
<td>26,362,631</td>
<td>13</td>
<td>45,153</td>
<td>309</td>
<td>974,009</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Overall</td>
<td>ZNRF3-KREMEN1</td>
<td>rs2294239</td>
<td>22</td>
<td>27,779,477</td>
<td>3</td>
<td>2,195</td>
<td>158</td>
<td>879,614</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Women</td>
<td>LYPLAL1</td>
<td>rs2820443</td>
<td>1</td>
<td>217,820,132</td>
<td>5</td>
<td>98,141</td>
<td>828</td>
<td>897,911</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Women</td>
<td>COBLL1</td>
<td>rs10195252</td>
<td>2</td>
<td>165,221,337</td>
<td>5</td>
<td>31,273</td>
<td>465</td>
<td>800,236</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Women</td>
<td>ADAMTS9</td>
<td>rs2371767</td>
<td>3</td>
<td>64,693,298</td>
<td>7</td>
<td>17,834</td>
<td>193</td>
<td>989,524</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Women</td>
<td>MAP3K1</td>
<td>rs9687846</td>
<td>5</td>
<td>55,897,651</td>
<td>5</td>
<td>5,520</td>
<td>163</td>
<td>954,728</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Women</td>
<td>VEGFA</td>
<td>rs1358980</td>
<td>6</td>
<td>43,872,529</td>
<td>2</td>
<td>6,656</td>
<td>85</td>
<td>959,317</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Women</td>
<td>SFXN2</td>
<td>rs7917772</td>
<td>10</td>
<td>104,477,433</td>
<td>82</td>
<td>631,096</td>
<td>1397</td>
<td>898,492</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Women</td>
<td>HOXC13</td>
<td>rs1443512</td>
<td>12</td>
<td>52,628,951</td>
<td>1</td>
<td>1</td>
<td>37</td>
<td>969,387</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>Women</td>
<td>KCNJ2</td>
<td>rs8066985</td>
<td>17</td>
<td>65,964,940</td>
<td>34</td>
<td>119,579</td>
<td>1003</td>
<td>866,939</td>
</tr>
<tr>
<td>HIPadjBMI</td>
<td>Women</td>
<td>KLF14</td>
<td>rs13241538</td>
<td>7</td>
<td>130,090,402</td>
<td>22</td>
<td>34,374</td>
<td>130</td>
<td>968,985</td>
</tr>
</tbody>
</table>

Fine-mapping analysis was performed at loci with high-density coverage on the Metabochip, which included 17 waist-hip ratio adjusted for body mass index (WHRadjBMI) loci and one hip circumference adjusted for body mass index (HIPadjBMI) locus. Association summary statistics were used to define credible sets of variants with a high probability of containing the likely functional variant (see Methods). The number of SNPs in the credible sets and the distance in kilobases spanned by those variants are shown. The Metabochip does not include all known SNPs. Previously reported genome-wide associated loci from the Heid et al. (2010) paper are marked in bold.
Supplementary Table 9 | Genome-wide significant associations of waist-related SNPs with metabolic and anthropometric traits

<table>
<thead>
<tr>
<th>Trait</th>
<th>WHRadjBMI SNPs with look-up $P < 5 \times 10^{-8}$</th>
<th>Corresponding WHRadjBMI locus names</th>
<th>Other waist and hip trait SNPs with look-up $P < 5 \times 10^{-8}$</th>
<th>Corresponding other waist and hip trait locus names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 diabetes (T2D)</td>
<td>1</td>
<td>GRB14-COBLL1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Fasting glucose (FG)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Fasting insulin adjusted for BMI (FAdjBMI)</td>
<td>2</td>
<td>LYPLAL1,GRB14-COBLL1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>2-hour glucose (G120)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Diastolic blood pressure (DBP)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Systolic blood pressure (SBP)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Body mass index (BMI)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Height</td>
<td>7</td>
<td>FGFR4, HMGA1, SFXN2, SMAD6, BMP2, GDF5, NFE2L3, FAM13A, MAP3K1, CCDC92, CMIP, PBRM1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>High-density lipoprotein cholesterol (HDL-C)</td>
<td>7</td>
<td>GRB14-COBLL1, PPARG, MAP3K1, CCDC92, CMIP, GRB14-COBLL1, VEGFA, RSPO3</td>
<td>1</td>
<td>KLF14</td>
</tr>
<tr>
<td>Low-density lipoprotein cholesterol (LDL-C)</td>
<td>2</td>
<td>GRB14-COBLL1, PPARG, MAP3K1, CCDC92, GRB14-COBLL1, VEGFA, RSPO3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Triglycerides (TG)</td>
<td>5</td>
<td>GRB14-COBLL1, PPARG, MAP3K1, CCDC92, GRB14-COBLL1, VEGFA, RSPO3</td>
<td>1</td>
<td>KLF14</td>
</tr>
<tr>
<td>Adiponectin adjusted for BMI</td>
<td>3</td>
<td>CCDC92, CMIP, PBRM1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Nephropathy (in Chinese subjects)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Nephropathy (in Italian subjects)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Estimated glomerular filtration rate of creatinine (eGFRcrea)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Chronic kidney disease (CKD)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Urine albumin-to-creatinine ratio (UACR)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Endometriosis</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Coronary artery disease (CAD)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Menopause</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Menarche</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Femoral neck bone mineral density (FN-BMD)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Trait</td>
<td>WHRadjBMI SNPs with look-up $P < 5 \times 10^{-8}$</td>
<td>Corresponding WHRadjBMI locus names</td>
<td>Other waist and hip trait SNPs with look-up $P < 5 \times 10^{-8}$</td>
<td>Corresponding other waist and hip trait locus names</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-----------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Lumbar spine bone mineral density (LS-BMD)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

This table summarizes the cross-trait association data as provided by other consortia. Waist-hip ratio adjusted for body mass index (WHRadjBMI) SNPs and locus names refer to SNPs presented on Table 1. Other waist and hip trait SNPs refer to the SNPs presented on Table 3. *KLF14* is a hip circumference adjusted for body mass index (HIPadjBMI) locus.
Supplementary Table 10 | Joint associations of 39 WHRadjBMI SNPs with metabolic and anthropometric traits

<table>
<thead>
<tr>
<th>Trait</th>
<th># of SNPs</th>
<th>β</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 diabetes (T2D)</td>
<td>39</td>
<td>0.502</td>
<td>0.077</td>
<td>6.3E-11</td>
</tr>
<tr>
<td>Fasting glucose (FG)</td>
<td>39</td>
<td>0.061</td>
<td>0.014</td>
<td>6.1E-06</td>
</tr>
<tr>
<td>Fasting insulin adjusted for BMI (FladjBMI)</td>
<td>39</td>
<td>0.226</td>
<td>0.013</td>
<td>1.7E-04</td>
</tr>
<tr>
<td>2-hour glucose (G120)</td>
<td>39</td>
<td>0.221</td>
<td>0.079</td>
<td>5.0E-03</td>
</tr>
<tr>
<td>Diastolic blood pressure (DBP)</td>
<td>39</td>
<td>1.450</td>
<td>0.405</td>
<td>3.6E-04</td>
</tr>
<tr>
<td>Systolic blood pressure (SBP)</td>
<td>39</td>
<td>2.470</td>
<td>0.639</td>
<td>1.1E-04</td>
</tr>
<tr>
<td>Body mass index (BMI)</td>
<td>39</td>
<td>-0.217</td>
<td>0.020</td>
<td>2.0E-28</td>
</tr>
<tr>
<td>Height</td>
<td>39</td>
<td>-0.010</td>
<td>0.019</td>
<td>0.62</td>
</tr>
<tr>
<td>High-density lipoprotein cholesterol (HDL-C)</td>
<td>39</td>
<td>-0.356</td>
<td>0.023</td>
<td>1.1E-55</td>
</tr>
<tr>
<td>Low-density lipoprotein cholesterol (LDL-C)</td>
<td>39</td>
<td>0.157</td>
<td>0.024</td>
<td>1.1E-10</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>39</td>
<td>0.131</td>
<td>0.024</td>
<td>4.7E-08</td>
</tr>
<tr>
<td>Triglycerides (TG)</td>
<td>39</td>
<td>0.366</td>
<td>0.022</td>
<td>2.7E-65</td>
</tr>
<tr>
<td>Adiponectin</td>
<td>39</td>
<td>-0.351</td>
<td>0.029</td>
<td>1.5E-34</td>
</tr>
<tr>
<td>Endometriosis</td>
<td>36</td>
<td>-0.284</td>
<td>0.291</td>
<td>0.33</td>
</tr>
<tr>
<td>Nephropathy (in Chinese subjects)</td>
<td>35</td>
<td>0.192</td>
<td>0.445</td>
<td>0.67</td>
</tr>
<tr>
<td>Nephropathy (in Italian subjects)</td>
<td>34</td>
<td>0.264</td>
<td>0.398</td>
<td>0.51</td>
</tr>
<tr>
<td>Estimated glomerular filtration rate of creatinine (eGFRcrea)</td>
<td>39</td>
<td>0.010</td>
<td>0.007</td>
<td>0.14</td>
</tr>
<tr>
<td>Chronic kidney disease (CKD)</td>
<td>39</td>
<td>-0.122</td>
<td>0.135</td>
<td>0.37</td>
</tr>
<tr>
<td>Urine albumin-to-creatinine ratio (UACR)</td>
<td>39</td>
<td>-0.026</td>
<td>0.059</td>
<td>0.67</td>
</tr>
<tr>
<td>Menopause</td>
<td>39</td>
<td>0.211</td>
<td>0.193</td>
<td>0.28</td>
</tr>
<tr>
<td>Menarche</td>
<td>39</td>
<td>0.030</td>
<td>0.048</td>
<td>0.53</td>
</tr>
<tr>
<td>Coronary artery disease (CAD)</td>
<td>38</td>
<td>0.041</td>
<td>0.058</td>
<td>0.48</td>
</tr>
<tr>
<td>Femoral neck bone mineral density (FN-BMD)</td>
<td>39</td>
<td>-0.002</td>
<td>0.053</td>
<td>0.98</td>
</tr>
<tr>
<td>Lumbar spine bone mineral density (LS-BMD)</td>
<td>39</td>
<td>-0.011</td>
<td>0.057</td>
<td>0.85</td>
</tr>
</tbody>
</table>

This table shows the results of a meta-regression of beta (β) estimates of the 39 waist-hip ratio adjusted for body mass index (WHRadjBMI)-increasing alleles that exhibit genome-wide significant association in the sex-combined analysis with beta estimates of metabolic traits from other consortia (DIAGRAM, MAGIC, ICBP, GLGC, ADIPOgen, IEC, IgAN-Chinese, IgAN-Italian, CKDgen, ReproGEN and CARDIoGRAM). Significant associations ($P < 0.05 / 24$) are marked in bold.
Supplementary Table 12 | Candidate functional nonsynonymous variants

<table>
<thead>
<tr>
<th>Trait</th>
<th>Index SNP</th>
<th>Proxy SNP</th>
<th>r^2</th>
<th>Effect allele</th>
<th>Non-effect allele</th>
<th>Distance (bp)</th>
<th>Coding impact</th>
<th>Gene</th>
<th>Gene/transcript annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHRadjBMI</td>
<td>rs224333</td>
<td>rs224331</td>
<td>0.96</td>
<td>A</td>
<td>C</td>
<td>1,575</td>
<td>nonsynonymous</td>
<td>GDF5</td>
<td>NM_000557p.S276A</td>
</tr>
<tr>
<td>HIPadjBMI</td>
<td>rs1053593</td>
<td>rs1053593</td>
<td>-</td>
<td>G</td>
<td>T</td>
<td>0</td>
<td>nonsynonymous</td>
<td>HMGXB4</td>
<td>NM_001003681:p.G165V</td>
</tr>
<tr>
<td>WCadjBMI</td>
<td>rs1664789</td>
<td>rs1135999</td>
<td>0.89</td>
<td>A</td>
<td>G</td>
<td>2,503</td>
<td>nonsynonymous</td>
<td>NTAN1</td>
<td>NM_173474:p.S287P</td>
</tr>
<tr>
<td>WCadjBMI</td>
<td>rs1664789</td>
<td>rs1136001</td>
<td>0.89</td>
<td>G</td>
<td>T</td>
<td>2,515</td>
<td>nonsynonymous</td>
<td>NTAN1</td>
<td>NM_173474p.H283N</td>
</tr>
</tbody>
</table>

Variants identified in 1000G CEU individuals annotated as nonsynonymous and in linkage disequilibrium (r^2) with index SNPs. WHR, waist-to-hip ratio; WC, waist circumference; HIP, hip circumference; adjBMI, adjusted for body mass index.
Supplementary Table 13 | CNV-tagging variants associated with waist traits in sex-combined European-ancestry meta-analyses

<table>
<thead>
<tr>
<th>Trait</th>
<th>CNV-tagging SNP</th>
<th>Chr</th>
<th>Position (bp)</th>
<th>Nearby Gene</th>
<th>CNV name</th>
<th>SNP-trait association sex-combined P^a</th>
<th>Nearest index SNP from waist trait association results</th>
<th>r^2 between CNV tagging SNP and index SNP b</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHRadjBMI</td>
<td>rs1294421</td>
<td>6</td>
<td>6,688,148</td>
<td>LY86</td>
<td>CNVR2760.1</td>
<td>8.16E-18</td>
<td>rs1294410</td>
<td>0.83</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>rs3733034</td>
<td>3</td>
<td>52,927,473</td>
<td>SFMBT1</td>
<td>RR_CNV_269</td>
<td>1.75E-06</td>
<td>rs2276824</td>
<td>0.11</td>
</tr>
<tr>
<td>WHRadjBMI</td>
<td>rs1150753</td>
<td>6</td>
<td>32,167,845</td>
<td>TNXB</td>
<td>CNVR2843.1</td>
<td>4.45E-06</td>
<td>rs7759742</td>
<td>-</td>
</tr>
<tr>
<td>HIPadjBMI</td>
<td>rs1543302</td>
<td>22</td>
<td>33,976,861</td>
<td>HMGXB4</td>
<td>CNVR8147.1</td>
<td>1.13E-07</td>
<td>rs1053593</td>
<td>0.86</td>
</tr>
</tbody>
</table>

A total of 6,200 copy number variant (CNV)-tagging SNPs were looked up in sex-combined SNP association results with waist traits. Positions are shown in NCBI build 36.

aThe SNP-trait P value achieving genome-wide significance is shown in **bold** and was described previously in Heid et al. (2010). The other P values are significant at $P < 0.05 / 6,200$.

bLinkage disequilibrium (LD) r^2 values were based on 1000G Pilot1 CEU dataset. CNVs in the SFMBT1 and TNXB gene regions are in low LD with index SNPs from main results and may represent independent or partially independent signals from these regions. Waist-hip ratio adjusted for body mass index (WHRadjBMI); hip circumference adjusted for body mass index (HIPadjBMI).
Supplementary Table 14 | Candidate variants at transcription start sites

<table>
<thead>
<tr>
<th>SNP</th>
<th>Chr</th>
<th>Position (bp)</th>
<th>Distance to nearest TSS (bp)</th>
<th>Nearest transcript</th>
</tr>
</thead>
<tbody>
<tr>
<td>New WHRadjBMI Loci</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs62310884</td>
<td>4</td>
<td>56,458,400</td>
<td>-21</td>
<td>PDCL2</td>
</tr>
<tr>
<td>rs5007262</td>
<td>6</td>
<td>32,379,011</td>
<td>500</td>
<td>BTNL2</td>
</tr>
<tr>
<td>rs5007261</td>
<td>6</td>
<td>32,379,031</td>
<td>480</td>
<td>BTNL2</td>
</tr>
<tr>
<td>rs5007260</td>
<td>6</td>
<td>32,379,047</td>
<td>464</td>
<td>BTNL2</td>
</tr>
<tr>
<td>rs5007259</td>
<td>6</td>
<td>32,379,101</td>
<td>410</td>
<td>BTNL2</td>
</tr>
<tr>
<td>rs5007258</td>
<td>6</td>
<td>32,379,239</td>
<td>272</td>
<td>BTNL2</td>
</tr>
<tr>
<td>rs6906730</td>
<td>6</td>
<td>32,379,445</td>
<td>-66</td>
<td>BTNL2</td>
</tr>
<tr>
<td>rs6911383</td>
<td>6</td>
<td>32,379,682</td>
<td>-171</td>
<td>BTNL2</td>
</tr>
<tr>
<td>rs7801581</td>
<td>7</td>
<td>27,223,771</td>
<td>-365</td>
<td>HOXA11-AS</td>
</tr>
<tr>
<td>rs17427875</td>
<td>7</td>
<td>27,225,558</td>
<td>406</td>
<td>HOXA11-AS</td>
</tr>
<tr>
<td>rs1550279</td>
<td>8</td>
<td>23,600,854</td>
<td>-299</td>
<td>RP11-213G6.2</td>
</tr>
<tr>
<td>rs11680316</td>
<td>2</td>
<td>188,135,298</td>
<td>233</td>
<td>U6</td>
</tr>
<tr>
<td>rs11057360</td>
<td>12</td>
<td>124,419,062</td>
<td>469</td>
<td>DNAH10OS</td>
</tr>
<tr>
<td>rs11057397</td>
<td>12</td>
<td>124,419,728</td>
<td>-197</td>
<td>DNAH10OS</td>
</tr>
<tr>
<td>rs3186071</td>
<td>12</td>
<td>124,429,279</td>
<td>-363</td>
<td>CCDC92</td>
</tr>
<tr>
<td>rs11835839</td>
<td>12</td>
<td>124,431,049</td>
<td>271</td>
<td>CCDC92</td>
</tr>
<tr>
<td>rs34180676</td>
<td>12</td>
<td>124,431,519</td>
<td>-199</td>
<td>CCDC92</td>
</tr>
<tr>
<td>rs7966192</td>
<td>12</td>
<td>124,431,701</td>
<td>-381</td>
<td>CCDC92</td>
</tr>
<tr>
<td>rs12823740</td>
<td>12</td>
<td>124,458,002</td>
<td>161</td>
<td>ZNF664</td>
</tr>
<tr>
<td>rs1075403</td>
<td>19</td>
<td>18,384,950</td>
<td>369</td>
<td>KIAA1683</td>
</tr>
<tr>
<td>rs7247222</td>
<td>19</td>
<td>18,392,873</td>
<td>-441</td>
<td>JUND</td>
</tr>
<tr>
<td>rs6088816</td>
<td>20</td>
<td>33,982,435</td>
<td>-461</td>
<td>UQCC</td>
</tr>
<tr>
<td>rs6142379</td>
<td>20</td>
<td>33,999,267</td>
<td>499</td>
<td>UQCC</td>
</tr>
<tr>
<td>rs143384</td>
<td>20</td>
<td>34,025,756</td>
<td>267</td>
<td>GDF5</td>
</tr>
<tr>
<td>rs143383</td>
<td>20</td>
<td>34,025,983</td>
<td>40</td>
<td>GDF5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Previously Established WHRadjBMI Loci</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rs4846302</td>
<td>1</td>
<td>219,730,586</td>
<td>53</td>
<td>RP11-95P13.2</td>
</tr>
<tr>
<td>rs4846303</td>
<td>1</td>
<td>219,730,799</td>
<td>266</td>
<td>RP11-95P13.2</td>
</tr>
<tr>
<td>rs6753142</td>
<td>2</td>
<td>165,544,071</td>
<td>216</td>
<td>SNORA70F</td>
</tr>
<tr>
<td>rs6738627</td>
<td>2</td>
<td>165,544,450</td>
<td>-163</td>
<td>SNORA70F</td>
</tr>
<tr>
<td>chr2:165544572</td>
<td>2</td>
<td>165,544,572</td>
<td>-285</td>
<td>SNORA70F</td>
</tr>
<tr>
<td>chr2:165544573</td>
<td>2</td>
<td>165,544,573</td>
<td>-286</td>
<td>SNORA70F</td>
</tr>
<tr>
<td>rs10933</td>
<td>3</td>
<td>52,719,816</td>
<td>36</td>
<td>PBRM1</td>
</tr>
<tr>
<td>rs1108842</td>
<td>3</td>
<td>52,720,080</td>
<td>49</td>
<td>GNL3</td>
</tr>
<tr>
<td>rs2302417</td>
<td>3</td>
<td>52,814,256</td>
<td>320</td>
<td>ITIH1</td>
</tr>
<tr>
<td>chr5:173315416</td>
<td>5</td>
<td>173,315,416</td>
<td>134</td>
<td>CPEB4</td>
</tr>
<tr>
<td>rs55946741</td>
<td>5</td>
<td>173,345,023</td>
<td>-195</td>
<td>CPEB4</td>
</tr>
<tr>
<td>rs2800709</td>
<td>6</td>
<td>127,439,297</td>
<td>-451</td>
<td>RSPO3</td>
</tr>
<tr>
<td>SNP</td>
<td>Chr</td>
<td>Position (bp)</td>
<td>Distance to nearest TSS (bp)</td>
<td>Nearest transcript</td>
</tr>
<tr>
<td>---------------</td>
<td>-----</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>rs4963979</td>
<td>12</td>
<td>26,468,964</td>
<td>317</td>
<td>RP11-612B6.1</td>
</tr>
<tr>
<td>rs10842705</td>
<td>12</td>
<td>26,469,016</td>
<td>369</td>
<td>RP11-612B6.1</td>
</tr>
<tr>
<td>rs7132434</td>
<td>12</td>
<td>26,472,562</td>
<td>91</td>
<td>RP11-283G6.5</td>
</tr>
<tr>
<td>rs1049380</td>
<td>12</td>
<td>26,489,544</td>
<td>339</td>
<td>RP11-612B6.2</td>
</tr>
<tr>
<td>chr12:54348554</td>
<td>12</td>
<td>54,348,554</td>
<td>-63</td>
<td>HOXC12</td>
</tr>
<tr>
<td>rs10876529</td>
<td>12</td>
<td>54,421,810</td>
<td>-331</td>
<td>HOXC6</td>
</tr>
<tr>
<td>chr12:54422043</td>
<td>12</td>
<td>54,422,043</td>
<td>-98</td>
<td>HOXC6</td>
</tr>
<tr>
<td>rs2071449</td>
<td>12</td>
<td>54,428,011</td>
<td>278</td>
<td>MIR615</td>
</tr>
</tbody>
</table>

Secondary Signals

<table>
<thead>
<tr>
<th>SNP</th>
<th>Chr</th>
<th>Position (bp)</th>
<th>Distance to nearest TSS (bp)</th>
<th>Nearest transcript</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs4282054</td>
<td>3</td>
<td>52,566,065</td>
<td>465</td>
<td>NT5DC2</td>
</tr>
<tr>
<td>rs7636227</td>
<td>3</td>
<td>52,566,682</td>
<td>-152</td>
<td>NT5DC2</td>
</tr>
<tr>
<td>rs7614981</td>
<td>3</td>
<td>52,566,914</td>
<td>-384</td>
<td>NT5DC2</td>
</tr>
<tr>
<td>rs12489828</td>
<td>3</td>
<td>52,567,014</td>
<td>-484</td>
<td>NT5DC2</td>
</tr>
<tr>
<td>rs66782572</td>
<td>3</td>
<td>52,567,617</td>
<td>176</td>
<td>NT5DC2</td>
</tr>
<tr>
<td>rs7639267</td>
<td>3</td>
<td>52,568,805</td>
<td>265</td>
<td>C3orf78</td>
</tr>
</tbody>
</table>

Variants at novel and previously known waist-hip ratio adjusted for body mass index (WHRadjBMI)-associated loci located within 500 bp of the nearest transcription start (TSS) site are displayed. Negative distance from nearest GENCODE v12 TSS indicates the variant is 5' of the TSS.
Supplementary Table 17 | Sources of data sets used for regulatory annotation

<table>
<thead>
<tr>
<th>Roadmap Epigenomics Project</th>
<th>Sample</th>
<th>Tissue</th>
<th>DNase</th>
<th>H3K4me1</th>
<th>H3K27ac</th>
<th>H3K4me3</th>
<th>H3K9ac</th>
<th>FAIRE</th>
<th>H3K4me2</th>
<th>TF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adipose Nuclei</td>
<td>Adipose</td>
<td>-</td>
<td>IDR</td>
<td>MACS2</td>
<td>IDR</td>
<td>IDR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anterior Caudate</td>
<td>Brain</td>
<td>-</td>
<td>IDR</td>
<td>MACS2</td>
<td>IDR</td>
<td>MACS2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mid Frontal Lobe</td>
<td>Brain</td>
<td>-</td>
<td>IDR</td>
<td>MACS2</td>
<td>IDR</td>
<td>MACS2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Substantia Nigra</td>
<td>Brain</td>
<td>-</td>
<td>IDR</td>
<td>-</td>
<td>IDR</td>
<td>MACS2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Adult Liver</td>
<td>Liver</td>
<td>-</td>
<td>IDR</td>
<td>-</td>
<td>IDR</td>
<td>IDR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Skeletal Muscle</td>
<td>Muscle</td>
<td>-</td>
<td>IDR</td>
<td>MACS2</td>
<td>IDR</td>
<td>IDR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pancreatic Islet</td>
<td>Pancreatic Islet</td>
<td>-</td>
<td>MACS2</td>
<td>-</td>
<td>MACS2</td>
<td>MACS2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENCODE Consortium</th>
<th>Sample</th>
<th>Tissue</th>
<th>DNase</th>
<th>H3K4me1</th>
<th>H3K27ac</th>
<th>H3K4me3</th>
<th>H3K9ac</th>
<th>FAIRE</th>
<th>H3K4me2</th>
<th>TF</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM12878</td>
<td>Blood</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative (75)</td>
</tr>
<tr>
<td>Osteoblasts</td>
<td>Bone</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Original</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Integrative</td>
<td>Integrative (1)</td>
</tr>
<tr>
<td>Astrocytes</td>
<td>Brain</td>
<td>Integrative</td>
<td>Original</td>
<td>Integrative</td>
<td>Integrative</td>
<td>-</td>
<td>Integrative</td>
<td>-</td>
<td>Integrative</td>
<td>Integrative (1)</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>Brain</td>
<td>Original</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cerebrum Frontal</td>
<td>Brain</td>
<td>Original</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Frontal Cortex</td>
<td>Brain</td>
<td>Original</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HUVEC</td>
<td>Endothelial</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative (11)</td>
</tr>
<tr>
<td>HepG2</td>
<td>Liver</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative (61)</td>
</tr>
<tr>
<td>Hepatocytes</td>
<td>Liver</td>
<td>Integrative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Huh-7</td>
<td>Liver</td>
<td>Integrative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Myocyte</td>
<td>Muscle</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative</td>
<td>-</td>
<td>Integrative</td>
<td>Integrative</td>
<td>Integrative (1)</td>
</tr>
<tr>
<td>PSOAS Muscle</td>
<td>Muscle</td>
<td>Original</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pancreatic Islet</td>
<td>Pancreatic Islet</td>
<td>Integrative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Integrative</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tables indicate the source of regulatory data used to annotate associated SNPs. Peaks were identified in Roadmap Epigenomics data using Irreproducible Discovery Rate methods (IDR; multiple replicates) or MACS2 alone (single replicate). For ENCODE data, peak calls were obtained from the Integrative analysis (when available) or the original analyses. Numbers in parentheses indicate the number of datasets when more than one is available. TF, Transcription Factor Binding; -, Dataset not available.
Supplementary Table 20 | Significant gene sets based on the WHRadjBMI sex-combined GWA analysis results using the MAGENTA gene set enrichment method

<table>
<thead>
<tr>
<th>Database</th>
<th>Gene set</th>
<th>Effective gene set size</th>
<th># of expected genes (> 95th percentile cutoff)</th>
<th># of observed genes (> 95th percentile cutoff)</th>
<th>P value</th>
<th>False-discovery rate</th>
<th>Nominally significant genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingenuity</td>
<td>VEGF Signaling</td>
<td>15</td>
<td>1</td>
<td>6</td>
<td>0.0001</td>
<td>0.0006</td>
<td>SHC1, RAF1, BAD, BCL2, PXN, PTK2B</td>
</tr>
<tr>
<td>Ingenuity</td>
<td>PTEN Signaling</td>
<td>22</td>
<td>1</td>
<td>7</td>
<td>0.0002</td>
<td>0.0008</td>
<td>SHC1, RAF1, BAD, CDKN1B, PTEN, BCL2, BCL2L11</td>
</tr>
<tr>
<td>Ingenuity</td>
<td>ERK MAPK Signaling</td>
<td>22</td>
<td>1</td>
<td>6</td>
<td>0.0006</td>
<td>0.0076</td>
<td>SHC1, RAF1, PPARG, BAD, PXN, PTK2B</td>
</tr>
<tr>
<td>Ingenuity</td>
<td>Neuregulin Signaling</td>
<td>25</td>
<td>1</td>
<td>6</td>
<td>0.0007</td>
<td>0.0082</td>
<td>HOXC9, SMAD6, RAF1, ZNF423, SMAD7, NOG</td>
</tr>
<tr>
<td>Ingenuity</td>
<td>BMP Signaling pathway</td>
<td>24</td>
<td>1</td>
<td>6</td>
<td>0.0009</td>
<td>0.0097</td>
<td>SHC1, RAF1, BAD, CDKN1B, PTEN, BCL2</td>
</tr>
<tr>
<td>Ingenuity</td>
<td>PI3K AKT Signaling</td>
<td>27</td>
<td>1</td>
<td>6</td>
<td>0.0015</td>
<td>0.0117</td>
<td>RAF1, BAD, DIABLO, BCL2, CNKSR1</td>
</tr>
<tr>
<td>Ingenuity</td>
<td>Ceramide Signaling</td>
<td>15</td>
<td>1</td>
<td>4</td>
<td>0.0051</td>
<td>0.0148</td>
<td>VEGFA, NSD1, IGFBP3, PML, RELA, PTEN, RAC1, PSMC5</td>
</tr>
<tr>
<td>Ingenuity</td>
<td>RAR Activation</td>
<td>46</td>
<td>2</td>
<td>8</td>
<td>0.0014</td>
<td>0.0153</td>
<td>SHC1, RAF1, BAD, SOCS3, INSR, PTEN</td>
</tr>
<tr>
<td>Ingenuity</td>
<td>Insulin Receptor Signaling</td>
<td>31</td>
<td>2</td>
<td>6</td>
<td>0.0035</td>
<td>0.0208</td>
<td>SHC1, RAF1, BAD, CDKN1B, PTEN, BCL2</td>
</tr>
<tr>
<td>Ingenuity</td>
<td>PPAR Signaling</td>
<td>17</td>
<td>1</td>
<td>4</td>
<td>0.0082</td>
<td>0.0265</td>
<td>SHC1, RAF1, PPARG, INSR</td>
</tr>
<tr>
<td>Ingenuity</td>
<td>IGF-1 Signaling</td>
<td>18</td>
<td>1</td>
<td>4</td>
<td>0.0095</td>
<td>0.0275</td>
<td>SHC1, RAF1, BAD, PXN, NEDD4</td>
</tr>
<tr>
<td>Ingenuity</td>
<td>Tight Junction Signaling</td>
<td>35</td>
<td>2</td>
<td>6</td>
<td>0.0076</td>
<td>0.0314</td>
<td>CEBPA, RHOA, PTEN, LLGL1, RAC1, VASP, PAR6A</td>
</tr>
<tr>
<td>Ingenuity</td>
<td>Integrin Signaling</td>
<td>37</td>
<td>2</td>
<td>6</td>
<td>0.0087</td>
<td>0.0346</td>
<td>SHC1, RAF1, MAP3K11, PTEN, PXN, VASP</td>
</tr>
<tr>
<td>Ingenuity</td>
<td>Glucocorticoid Receptor Signaling</td>
<td>92</td>
<td>5</td>
<td>11</td>
<td>0.0048</td>
<td>0.0351</td>
<td>CEBPA, SHC1, POMC, RAF1, RELA, HMG1L1, SCGB1A1, IL3, CSF2, BCL2, IFNG, RAC1, PBX1</td>
</tr>
<tr>
<td>Ingenuity</td>
<td>TGF-beta Signaling</td>
<td>28</td>
<td>1</td>
<td>5</td>
<td>0.0124</td>
<td>0.0352</td>
<td>HOXC9, SMAD6, RAF1, ZNF423, SMAD7, AMH</td>
</tr>
<tr>
<td>Ingenuity</td>
<td>Erythropoietin Signaling</td>
<td>13</td>
<td>1</td>
<td>3</td>
<td>0.0213</td>
<td>0.0377</td>
<td>SHC1, RAF1, SOCS3</td>
</tr>
<tr>
<td>Ingenuity</td>
<td>Chemokine Signaling</td>
<td>21</td>
<td>1</td>
<td>4</td>
<td>0.0181</td>
<td>0.0400</td>
<td>RAF1, RHOA, ROCK2, PTK2B</td>
</tr>
<tr>
<td>PANTHER</td>
<td>Molecular Function</td>
<td>Hydroxylase</td>
<td>17</td>
<td>1</td>
<td>5</td>
<td>0.0006</td>
<td>PH-4, P4HA2, ASPH, DBH, MUS81</td>
</tr>
</tbody>
</table>

PANTHER Molecular Function
<table>
<thead>
<tr>
<th>Database</th>
<th>Gene set</th>
<th>Effective gene set size</th>
<th># of expected genes (> 95th percentile cutoff)</th>
<th># of observed genes (> 95th percentile cutoff)</th>
<th>P value</th>
<th>False-discovery rate</th>
<th>Nominally significant genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEGG</td>
<td>Focal Adhesion</td>
<td>179</td>
<td>9</td>
<td>22</td>
<td>0.0001</td>
<td>0.0496</td>
<td>VEGFA, SHC1, RAF1, LAMB1, COL5A3, VEGFC, BAD, LAMB2, VEGFB, LAMB3, COL6A1, COL6A2, RHOA, PTEN, BCL2, ITGB3, PXN, ROCK2, RAC1, ITGA9, VAV3, ITGB6, VASP, ITGB8, FN1, CDC42</td>
</tr>
</tbody>
</table>

The table lists waist-hip ratio adjusted for body mass index (WHRadjBMI) gene sets that reached significance (false-discovery rate < 0.05) using MAGENTA and its 95-percentile cutoff model. Using the 75th-percentile cutoff, ‘PTEN Signaling’ was the only gene set that reached significance (\(P = 3.2 \times 10^{-3}\); false-discovery rate = 3.7 \times 10^{-2}\). The ‘Nominally Significant Genes’ column lists genes that were part of a given gene set and exhibited nominally significant MAGENTA gene \(P\) values.
Supplementary Table 24 | Phenotypic correlations among waist-related traits, height, weight, and body mass index

<table>
<thead>
<tr>
<th></th>
<th>BMI</th>
<th>WHR</th>
<th>HEIGHT</th>
<th>WEIGHT</th>
<th>HIP</th>
<th>WC</th>
<th>WHRadjBMI</th>
<th>WCadjBMI</th>
<th>HIPadjBMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI: KORA</td>
<td>0.56</td>
<td>-0.07</td>
<td>0.87</td>
<td>0.59</td>
<td>0.88</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>EGCUT</td>
<td>-</td>
<td>0.46</td>
<td>0.00</td>
<td>0.90</td>
<td>0.73</td>
<td>0.82</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>TWINGENE</td>
<td>0.41</td>
<td>-0.01</td>
<td>NA</td>
<td>0.81</td>
<td>0.78</td>
<td>-0.06</td>
<td>0.00</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>FRAMINGHAM</td>
<td>0.57</td>
<td>-0.02</td>
<td>0.88</td>
<td>0.83</td>
<td>0.88</td>
<td>0.01</td>
<td>-0.02</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>WHR: KORA</td>
<td>0.44</td>
<td>-0.04</td>
<td>0.49</td>
<td>0.18</td>
<td>0.76</td>
<td>0.83</td>
<td>0.56</td>
<td>-0.19</td>
<td></td>
</tr>
<tr>
<td>EGCUT</td>
<td>-</td>
<td>0.40</td>
<td>0.03</td>
<td>0.43</td>
<td>0.10</td>
<td>0.70</td>
<td>0.89</td>
<td>0.56</td>
<td>-0.36</td>
</tr>
<tr>
<td>TWINGENE</td>
<td>0.41</td>
<td>-</td>
<td>0.42</td>
<td>NA</td>
<td>0.14</td>
<td>0.79</td>
<td>0.89</td>
<td>0.76</td>
<td>-0.23</td>
</tr>
<tr>
<td>FRAMINGHAM</td>
<td>0.48</td>
<td>-0.04</td>
<td>0.49</td>
<td>0.30</td>
<td>0.75</td>
<td>0.82</td>
<td>0.52</td>
<td>-0.31</td>
<td></td>
</tr>
<tr>
<td>HEIGHT: KORA</td>
<td>-0.13</td>
<td>-0.05</td>
<td>0.42</td>
<td>0.35</td>
<td>0.16</td>
<td>0.00</td>
<td>0.48</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>EGCUT</td>
<td>-0.06</td>
<td>-0.03</td>
<td>0.42</td>
<td>0.26</td>
<td>0.20</td>
<td>0.04</td>
<td>0.35</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>TWINGENE</td>
<td>-0.02</td>
<td>0.42</td>
<td>0.14</td>
<td>0.38</td>
<td>0.47</td>
<td>0.64</td>
<td>0.24</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>FRAMINGHAM</td>
<td>-0.08</td>
<td>-0.02</td>
<td>0.45</td>
<td>0.34</td>
<td>0.21</td>
<td>-0.04</td>
<td>0.48</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>WEIGHT: KORA</td>
<td>0.92</td>
<td>0.41</td>
<td>0.28</td>
<td>0.71</td>
<td>0.88</td>
<td>0.00</td>
<td>0.24</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>EGCUT</td>
<td>0.93</td>
<td>0.38</td>
<td>0.30</td>
<td>0.77</td>
<td>0.82</td>
<td>0.02</td>
<td>0.15</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>TWINGENE</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>FRAMINGHAM</td>
<td>0.94</td>
<td>0.46</td>
<td>0.26</td>
<td>0.89</td>
<td>0.88</td>
<td>-0.01</td>
<td>0.21</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>HIP: KORA</td>
<td>0.67</td>
<td>0.11</td>
<td>0.21</td>
<td>0.73</td>
<td>0.58</td>
<td>-0.18</td>
<td>0.14</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>EGCUT</td>
<td>0.82</td>
<td>0.14</td>
<td>0.16</td>
<td>0.84</td>
<td>0.78</td>
<td>-0.27</td>
<td>0.31</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>TWINGENE</td>
<td>0.81</td>
<td>0.14</td>
<td>0.14</td>
<td>NA</td>
<td>0.71</td>
<td>-0.26</td>
<td>0.12</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>FRAMINGHAM</td>
<td>0.92</td>
<td>0.33</td>
<td>0.12</td>
<td>0.93</td>
<td>0.85</td>
<td>-0.20</td>
<td>0.25</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>WC: KORA</td>
<td>0.88</td>
<td>0.72</td>
<td>0.05</td>
<td>0.87</td>
<td>0.60</td>
<td>0.32</td>
<td>0.47</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>EGCUT</td>
<td>0.83</td>
<td>0.71</td>
<td>0.09</td>
<td>0.82</td>
<td>0.80</td>
<td>0.36</td>
<td>0.58</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>TWINGENE</td>
<td>0.78</td>
<td>0.79</td>
<td>0.38</td>
<td>NA</td>
<td>0.71</td>
<td>0.47</td>
<td>0.62</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>FRAMINGHAM</td>
<td>0.89</td>
<td>0.75</td>
<td>0.07</td>
<td>0.89</td>
<td>0.86</td>
<td>0.31</td>
<td>0.45</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>WHRadjBMI: KORA</td>
<td>0.00</td>
<td>0.90</td>
<td>0.01</td>
<td>0.01</td>
<td>-0.20</td>
<td>0.37</td>
<td>0.68</td>
<td>-0.22</td>
<td></td>
</tr>
<tr>
<td>EGCUT</td>
<td>NA</td>
<td>0.92</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.21</td>
<td>0.41</td>
<td>0.63</td>
<td>-0.40</td>
<td></td>
</tr>
<tr>
<td>TWINGENE</td>
<td>0.10</td>
<td>0.95</td>
<td>0.46</td>
<td>NA</td>
<td>-0.13</td>
<td>0.59</td>
<td>0.84</td>
<td>-0.37</td>
<td></td>
</tr>
<tr>
<td>FRAMINGHAM</td>
<td>0.01</td>
<td>0.88</td>
<td>0.02</td>
<td>0.02</td>
<td>-0.12</td>
<td>0.38</td>
<td>0.65</td>
<td>-0.36</td>
<td></td>
</tr>
<tr>
<td>WCadjBMI: KORA</td>
<td>0.00</td>
<td>0.70</td>
<td>0.35</td>
<td>0.14</td>
<td>0.03</td>
<td>0.47</td>
<td>0.78</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>EGCUT</td>
<td>NA</td>
<td>0.66</td>
<td>0.25</td>
<td>0.10</td>
<td>0.21</td>
<td>0.56</td>
<td>0.72</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>TWINGENE</td>
<td>0.06</td>
<td>0.79</td>
<td>0.63</td>
<td>NA</td>
<td>0.17</td>
<td>0.67</td>
<td>0.83</td>
<td>-0.19</td>
<td></td>
</tr>
<tr>
<td>FRAMINGHAM</td>
<td>0.01</td>
<td>0.73</td>
<td>0.31</td>
<td>0.12</td>
<td>0.11</td>
<td>0.47</td>
<td>0.83</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>HIPadjBMI: KORA</td>
<td>0.00</td>
<td>-0.24</td>
<td>0.39</td>
<td>0.16</td>
<td>0.75</td>
<td>0.02</td>
<td>-0.27</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>EGCUT</td>
<td>NA</td>
<td>-0.33</td>
<td>0.37</td>
<td>0.13</td>
<td>0.57</td>
<td>0.21</td>
<td>-0.36</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>TWINGENE</td>
<td>-0.14</td>
<td>-0.38</td>
<td>0.25</td>
<td>NA</td>
<td>0.47</td>
<td>0.02</td>
<td>-0.36</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>FRAMINGHAM</td>
<td>0.01</td>
<td>-0.28</td>
<td>0.49</td>
<td>0.17</td>
<td>0.40</td>
<td>0.12</td>
<td>-0.32</td>
<td>0.25</td>
<td></td>
</tr>
</tbody>
</table>

Phenotypic trait correlations were evaluated in four studies (KORA, EGCUT, TWINGENE and FRAMINGHAM, see Online Methods). Trait correlations in men are listed in the upper triangle and correlations in women are listed in the lower triangle. Correlations > 0.75 are marked in bold. Missing correlations are marked with "NA". BMI, body mass index; WHR, waist-to-hip ratio; HIP, hip circumference; WC, waist circumference; adjBMI, adjusted for body mass index.
Supplementary Note and Methods

Candidate genes at new loci for WHRadjBMI achieving genome-wide significance

1. Chromosome 1q21.3-q22: DCST2, DC-STAMP domain containing 2

 DCST2 encodes dendritic cell-specific transmembrane protein domain containing 2, a multimembrane spanning protein that contains a domain similar to that found in dendritic cells. DC-STAMP proteins have been implicated in skewing hematopoietic differentiation of bone marrow cells toward the myeloid lineage, and in cell fusion during osteoclastogenesis and giant cell formation97. A nearby gene is ZBTB7B, zinc finger and BTB domain containing 7B, also known as ThPOK, which encodes a zinc finger transcription factor that is critical to CD4+ T cell development in CD4/CD8 lineage commitment, and suppresses CD8-lineage gene expression98,99. ZBTB7B has been shown to function as a transcriptional repressor of fibronectin and alpha1 collagen genes100.

2. Chromosome 1q24.2: GORAB, golgin, RAB6-interacting

 GORAB encodes a member of the golgin family, and is a coiled-coil protein localized to the Golgi apparatus. This protein family may play a role in Rab6-regulated membrane-tethering events101.

3. Chromosome 2p14: MEIS1, Meis homeobox 1

 The lead WHRadjBMI-associated SNP is located ~500 kb from MEIS1, which encodes a transcription factor that is a member of the three-amino-acid loop extension family of homeobox-containing proteins. Meis1 is essential for hematopoiesis and vascular patterning in the mouse embryo102 and regulates vascular development in zebrafish103. Dysregulation of MEIS1 expression has been linked to a variety of leukemias104-106. The lead SNP is also <400 kb from miR4778.

4. Chromosome 2q32.1: CALCRL, calcitonin receptor-like

 CALCRL encodes calcitonin receptor-like protein receptor, involved in G-protein coupled receptor-like signaling. Calcitonin receptor-like receptor, CRLR, along with receptor activity-modifying protein-2, RAMP2, is a receptor for adrenomedullin. Adrenomedullin and CRLR/RAMP2 levels were increased in epididymal, mesenteric, and retroperitoneal adipose tissue in rats fed a high-fat diet compared to rats fed a normal diet107. CRLR mRNA levels were decreased in epicardial white adipose tissue compared to subcutaneous white adipose tissue from human biopsies108. A nearby gene, TFPI, encodes a protease inhibitor that regulates the tissue factor (TF)-dependent pathway of blood coagulation. The encoded protein is predominantly found in the vascular endothelium and plasma in both free forms and in complexes with plasma lipoproteins.
5. **Chromosome 3q22.1:** *PLXND1*, plexin D1

PLXND1 encodes plexin D1 protein, a co-receptor for semaphorin proteins109. *Plxnd1* is expressed in cells from the central nervous system and vascular endothelium in mouse embryos110. Plexin D1 plays a role in vascular patterning; *plxnD1*-deficient zebrafish embryos show defects in segmental artery development such as premature and ectopic sprouting and improper blood vessel branching111. Semaphorin-plexinD1 signaling antagonizes the proangiogenic activity of vascular endothelial growth factor, VEGF34.

6. **Chromosome 3q25.31:** *LEKR1*, leucine, glutamate and lysine rich 1 protein

LEKR1 encodes leucine, glutamate and lysine rich 1 protein with unknown function. The lead WHRadjBMI-associated SNP is also located near *CCNL1*, encoding cyclin L1, and two uncharacterized noncoding RNAs, LINC00880 and LINC00881. Also nearby, *TIPARP* encodes a poly(ADP-ribose) polymerase superfamily member, which catalyzes the transfer of multiple ADP-ribose groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, and *VEPH1* encodes ventricular zone expressed PH domain-containing 1.

7. **Chromosome 4q12:** *NMU*, neuromedin U

NMU encodes neuromedin U, a highly conserved neuropeptide. NMU is found at highest levels in the gastrointestinal tract and pituitary, and has been implicated in the regulation of smooth muscle contraction, blood pressure and local blood flow, ion transport in the gut, stress responses, cancer, gastric acid secretion, and feeding behavior112. *Nmu* knockout mice are hyperphagic and obese36. Rare coding variants in NMU have been found to be associated with obesity113.

8. **Chromosome 4q22.1:** *FAM13A*, family with sequence similarity 13, member A

FAM13A has a putative role in signal transduction, however is poorly described. SNPs in this gene region were found to be associated with chronic obstructive pulmonary disease and lung function114,115. Other nearby genes include *HERC3*, *NAP1L5*, *PIGY* (phosphatidylinositol-glycan biosynthesis class Y protein), and *TIGD2*.

9. **Chromosome 4q28.1:** *SPATA5*, spermatogenesis associated 5 – *FGF2*, fibroblast growth factor 2

SPATA5 belongs to the AAA ATPase family and AFG2 subfamily, and may be involved in mitochondrial transformation during spermatogenesis. SNPs at *SPATA5* have been associated with alopecia areata116. Other nearby genes include *FGF2*, *NUDT6*, and *SPRY1*. FGF2 enhanced vascularization for human adipose tissue engineering117. *NUDT6* (nudix-type motif 6) is an antisense gene to *FGF2* that showed associations with fat deposition related traits in pigs118. Conditional *Spry1* (sprouty homolog 1) expression
in mouse adipose tissue protected against high-fat diet-induced obesity, bone loss, and metabolic dysfunction119.

10. **Chromosome 5q11.2: MAP3K1**, mitogen-activated protein kinase kinase kinase 1, E3 ubiquitin protein ligase

The lead SNP is located within the intron of an uncharacterized transcript \textit{AC022431}. Located 250 kb away, \textit{MAP3K1}, also known as \textit{MEKK1}, encodes a protein in the MAPK group of serine/threonine protein kinases. The protein contains a PHD plant homeodomain that exhibits E3 ubiquitin ligase activity toward ERK1/2120. \textit{MAP3K1} also activates the JNK signaling pathway and plays a role in apoptosis121 and wound healing122. Along with IL-1beta, \textit{MAP3K1} inhibited basal and membrane depolarization and cAMP-induced transcription of the insulin gene in a hamster beta cell line123.

11. **Chromosome 5q35.2: FGFR4**, fibroblast growth factor receptor 4

\textit{FGFR4} is a member of the receptor tyrosine kinase family124. \textit{FGFR4} is expressed mainly in lung, kidney, pancreas, spleen and developing muscle125. \textit{FGFR4}-deficient mice on a normal diet displayed increased mass of white adipose tissue, hyperlipidemia, glucose intolerance, insulin resistance and hypercholesterolemia37.

12. **Chromosome 6p21.32: BTNL2**, butyrophilin-like 2 (MHC class II associated)

Located 30 kb from the HLA cluster, \textit{BTNL2} is an MHC class II gene-linked butyrophilin family member that inhibits T-cell activation126. Variants in \textit{BTNL2} are associated with inflammatory diseases127,128. Other nearby genes include \textit{HLA-DRA}, \textit{HLA-DRB5}, \textit{HLA-DRB1}, \textit{HLA-DRB6}, \textit{HLA-DRB1}, \textit{HLA-DQA1}, \textit{HLA-DQB1}. These HLA genes belong to the HLA class II proteins, which are expressed in antigen presenting cells, such as B lymphocytes, macrophages, and dendritic cells.

13. **Chromosome 6p21.31: HMGA1**, high mobility group AT-hook 1

\textit{HMGA1} encodes a protein that binds to the minor groove of stretches of A-T-rich DNA129. \textit{HMGA1} is a downstream nuclear target of the insulin receptor signaling pathway130, and \textit{Hmga1} knockout mice showed decreased insulin receptor expression, impaired insulin signaling and reduced insulin secretion38.

14. **Chromosome 7p15.2: HOXA11**, homeobox A11

There are 12 \textit{HOXA} genes at this locus, as well as several antisense transcripts. HOX genes encode conserved transcription factors containing a homeodomain that regulate body and axis development and organogenesis131. \textit{HOXA11} is necessary for female fertility and regulates embryonic uterine and endometrium development132,133. \textit{HOXA11} mutations were found in individuals affected with the blood disease amegakaryocytic thrombocytopenia and the skeletal defect radio-ulnar synostosis134.
15. **Chromosome 8p21.2: NKX2-6, NK2 homeobox 6**

NKX2-6 encodes a homeobox-containing protein that is a homolog of Drosophila tinman. At early stages of mouse embryogenesis, NKX2-6 is expressed in the pharyngeal endoderm, developing gut endoderm, cardiac progenitors, and heart. Nearby NKX3-1 is also a homeobox gene that is involved in prostate epithelium development during embryogenesis and is androgen-regulated. STC1 encodes a secreted, homodimeric glycoprotein that is expressed in a wide variety of tissues and is upregulated by VEGFD. STC1 may play a role in the regulation of renal and intestinal calcium and phosphate transport, cell metabolism, and angiogenesis.

16. **Chromosome 8q13.3: MSC, musculin**

MSC encodes a basic helix-loop-helix transcription factor expressed in developing skeletal muscle and mouse embryonic ectoderm. EYA1 encodes eyes absent homolog 1, a protein phosphatase and co-activator for the transcription factor SIX1, which regulates skeletal muscle fiber-type and development. Mutations in EYA1 cause Branchio-oto-renal syndrome and Branchiootic syndrome, which are characterized by hearing loss, branchial arch defects and renal abnormalities. EYA protein phosphatase activity promotes angiogenesis.

17. **Chromosome 9q31.1: ABCA1, ATP-binding cassette, sub-family A (ABC1), member 1**

This gene encodes an ATP-binding cassette transporter. Mutations in ABCA1 have been found to be associated with Tangier’s disease and familial high-density lipoprotein deficiency. Adipose tissue abundantly expresses ABCA1, and adipose tissue ABCA1-dependent cholesterol efflux and nascent HDL particle formation contribute to systemic HDL biogenesis.

18. **Chromosome 10q24.32: SFNX2, sideroflexin 2**

SFNX2 encodes a mitochondrial transmembrane protein that may facilitate transport of pyridoxine or enzyme cofactors involved in heme synthesis into the mitochondria. The gene is widely expressed, and is expressed at particularly high levels in adult kidney and liver. Sfxn2 was found upregulated in pancreatic islets from streptozotocin-induced diabetic rats compared to normal rats.

19. **Chromosome 11q13.1: MACROD1, MACRO domain containing 1, VEGFB, vascular endothelial growth factor B**

Macrodomains are known to bind ADP-ribose derivatives. Also known as LRP16, MACROD1 was found to play a role in estrogen signaling by interacting with estrogen receptor alpha and enhancing the receptor’s transcriptional activity. It has also been found to bind to the androgen receptor via its macro domain and amplifies the transactivation of androgen receptor in response to androgen. LRP16 regulated insulin content and glucose-stimulated insulin secretion in MIN6 cells, and overexpression of this
gene protected MIN6 cells from fatty acid-induced apoptosis152. Diabetic db/db \textit{Vegfb} knockout mice had ectopic lipid deposition, increased muscle glucose uptake and maintained normoglycemia, and treatment of db/db mice with a VEGF-B antibody enhanced glucose tolerance, preserved pancreatic islet architecture, improved β-cell function and improved dyslipidemia153. The index SNP is located ~6 kb from \textit{FLRT1}, fibronectin leucine rich transmembrane protein 1, involved in cell adhesion and fibroblast growth factor mediated signaling154.

20. Chromosome 12q24.31: \textit{CCDC92}, coiled-coil domain containing 92 protein

The closest genes to the index variant are not obvious candidate genes. \textit{CCDC92} encodes a protein with unknown function that was found to be upregulated in human B lymphoblastoid cells treated with a polychlorinated biphenyl pollutant10. \textit{DNAH10} encodes dynein, axonemal, heavy chain 10, which may play a role in cilia or flagella. \textit{ZNF664} encodes zinc finger protein 664; coding variants in ZNF664 have been implicated in myopia155.

\textit{KLF13} encodes Kruppel-like factor 13, which belongs to the Sp1-like family of transcription factors that contain 3 C-terminal zinc finger DNA-binding domains, and bind to GC-rich sequences156. \textit{KLF13} is a regulator of heart development157, and was also found to bind and repress the low density lipoprotein receptor promoter158. A nearby gene, \textit{OTUD7A}, belongs to a deubiquitinating enzyme subfamily characterized by an ovarian tumor (OTU) domain. This gene encodes a protease that cleaves ubiquitin linkages.

22. Chromosome 15q21.3: \textit{RFX7}, regulatory factor X, 7

\textit{RFX7} encodes a member of the regulatory factor X family of transcription factors. It is a winged-helix transcription factor and contains a well-conserved RFX DNA binding domain. It has high ubiquitous expression, particularly in brain159. \textit{TEX9}, encoding testis-expressed sequence 9, is poorly described. Another nearby gene, \textit{NEDD4}, encodes neural precursor cell expressed, developmentally down-regulated 4, an E3 ligase. Overexpression of Nedd4 suppressed BMP-induced osteoblast transdifferentiation process of mouse premyoblast C2C12 cells, and \textit{NEDD4} was also found to be an important modulator of phospho-Smad1 in both BMP-2 and TGF-β1 action160.

23. Chromosome 15q22.31: \textit{SMAD6}, SMAD family member 6

\textit{SMAD6} belongs to the SMAD family of proteins, which are related to \textit{Drosophila} ‘mother’s against decapentaplegic’ and \textit{C elegans} Sma. SMAD proteins are signal transducers of the TGF-β superfamily and are involved in cell growth, morphogenesis, development and immune responses161. \textit{SMAD6} inhibits the...
Bone morphogenetic protein/Smad1 signaling pathway. 3T3-F442A mouse pre-adipocytes overexpressing Smad6 show increased TGF-β signaling and decreased adipocyte differentiation.

24. Chromosome 16q23.3: CMIP, c-MAF inducing protein
This gene encodes C-maf inducing protein, which interacts with phosphatidylinositol 3-kinase complex and plays a role in ERK signaling. CMIP is expressed in peripheral blood mononuclear cells, kidney, fetal liver, and adult brain and liver. A nearby gene, PLCG2, encodes phospholipase C, gamma 2 (phosphatidylinositol-specific), which hydrolyzes phosphatidyl inositol 4,5-biphosphate (PIP2) to inositol-1,4,5-triphosphate (IP3), resulting in an increase in intracellular calcium levels.

25. Chromosome 17p11.2: PEMT, phosphatidylethanolamine N-methyltransferase
This gene encodes a liver enzyme that converts phosphatidylethanolamine to the phospholipid phosphatidylcholine by methylation in the liver. The protein localizes to the endoplasmic reticulum and mitochondria-associated membranes. Pemt knockout mice on a high fat diet show adipocyte hypertrophy. Pemt mRNA and protein increase upon adipocyte differentiation in 3T3-L1 cells.

26. Chromosome 17q24.3: KCNJ2, potassium inwardly-rectifying channel, subfamily J, member 2
Inwardly rectifying K+ channels control the resting K+ conductance and stabilize the resting potential in many cells. KCNJ2 was upregulated during myoblast differentiation into skeletal muscle and was expressed in smooth muscle and cardiomyocytes.

27. Chromosome 18q21.33: BCL2, B-cell CLL/lymphoma 2
B-cell CLL/lymphoma 2 encodes an anti-apoptotic protein that binds the BH3 domain of pro-apoptotic factors and regulates permeabilization of the outer mitochondrial membrane, a critical step in apoptosis. Bcl2 was upregulated and apoptosis was reduced in rat pancreatic beta-cells treated with leptin.

28. Chromosome 19p13.11: JUND, jun D proto-oncogene
JUND is a component of the Activating protein 1 transcription factor; AP-1 is a dimeric transcription factor with basic leucine zipper domains. JunD dimerizes with DeltaFosB and binds to the IL-11 gene promoter. Suppression of osteoblast differentiation by aging involved decreased JunD binding to the IL-11 promoter and reduced IL-11 transcription. IL-11 inhibits the accumulation of adipose in human long-term bone marrow culture stromal layers. Other nearby genes include KIAA1683, LSM4 PIK3R2, PDE4C, and miR3188.
29. Chromosome 19q13.11: CEBPA, CCAAT/enhancer binding protein alpha

C/EBP alpha is a basic leucine zipper transcription factor that is highly expressed in liver and adipose tissue, and is required for differentiation of white adipose tissue. C/ebp alpha knockout mice have defects in gluconeogenesis, are hypoglycemic, and die shortly after birth. Additionally, C/EBP alpha also binds to the leptin promoter, a gene that plays an important role in body weight homeostasis. Other nearby genes include C/EBPG, encoding C/EBP gamma, which forms heterodimers with C/EBP beta, and PEPD, encoding peptidase D.

30. Chromosome 20p12.3: BMP2, bone morphogenetic protein 2

BMP2 belongs to the transforming growth factor beta (TGF-β) superfamily of genes. BMPs signal through transmembrane serine/threonine kinase receptors and stimulate Smad, MAPK and Akt signaling pathways. High levels of BMP2 induce chondrogenesis or osteogenesis, while low levels of BMP2 promote adipogenesis. BMP2 stimulates commitment of C3H10T1/2 pluripotent stem cells into adipocytes. BMP2, along with IGF-1, induces differentiation of adipose-derived mesenchymal stem cells into cartilage cells.

GDF5 is a member of the bone morphogenetic protein BMP family and the transforming growth factor-beta superfamily. GDF5 promoted osteogenic differentiation of rat fat-derived stromal cells and may promote angiogenic activity of stromal cells by increasing vascular endothelial growth factor gene expression in vitro. GDF5 also induced chondrogenesis in rat adipose-derived stem cells. Human mesenchymal stem cells that overexpressed GDF5 displayed osteogenic differentiation. UQCC is a nearby gene, which encodes ubiquinol-cytochrome c reductase complex chaperone, a ZIC-binding protein repressed by basic fibroblast growth factor.

32. Chromosome 20q13.12: EYA2, eyes absent homolog 2

This gene encodes a member of the eyes absent, EYA, family of proteins. EYA2 is a transcriptional co-activator and protein phosphatase. Eya2 acts synergistically with both Dach2 and Six1 to regulate myogenic differentiation and development. Eya2 also prevents adverse cardiac remodeling under pressure overload. Nearby, SLC2A10 encodes solute carrier family 2 (facilitated glucose transporter) member 10.

33. Chromosome 7p15.2: SNX10, sorting nexin 10

SNX10 encodes a nexin family protein involved in intracellular trafficking. SNX10 has been shown to cause osteopetrosis, a rare disorder resulting from osteoclast dysfunction, and to regulate ciliogenesis and endosome homeostasis.
Candidate genes at new loci for five additional waist and hip traits

1. **Chromosome 1q44: OR2W5** olfactory receptor family 2, subfamily W, member 5 and **NLRP3**, NLR family, pyrin domain containing 3

 OR2W5 encodes an olfactory receptor. NLRP3 regulates inflammation, immune response, and apoptosis, and is associated with several inflammatory and autoimmune disorders. Other variants near NLRP3 are associated with C-reactive protein levels. NLRP3-containing inflammasome and proinflammatory T cell populations in adipose tissue contribute to inflammation and in insulin resistance. Other nearby genes include **OR2C3**, encoding an olfactory receptor, and **GCSAML-AS1** antisense non-coding RNA.

2. **Chromosome 2p25: SOX11**, SRY (sex determining region Y)-box 11

 This intronless gene encodes a member of the SOX (SRY-related HMG-box) family of transcription factors involved in the regulation of embryonic development and in the determination of the cell fate. SOX11 plays a role in the embryonic development of the central nervous system (CNS) and is expressed in the adult immature neuron. Knockdown of SOX11 with siRNA decreased the proliferation and osteogenic differentiation potential of mesenchymal stem cells. SOX11 has tumor suppressor function in hematopoietic malignancies, and prevents tumorigenesis of glioma initiating cells by inducing neuronal differentiation.

3. **Chromosome 2q24.2: ITGB6**, Integrin, beta 6

 ITGB6 encodes a heterodimeric cell surface receptor, which is absent from the normal epithelium but is expressed in wound-edge keratinocytes during re-epithelialization. ITGB6 is involved in tumor growth and metastasis and may serve a protective role in re-epithelialization of diabetic wounds. Other nearby genes encode **PLA2R1**, phospholipase A2 receptor, and **RBMS1**, a protein that binds single-stranded DNA and RNA.

4. **Chromosome 5q11.2: ARL15**, ADP-ribosylation factor-like 15

 ARL15 encodes an ADP-ribosylation factor-like (ARL) protein. ARL proteins are small GTPases that regulate the affinity of ARLs for binding other proteins, lipids, or membranes. ARL15 is expressed in insulin-responsive tissues, including adipose tissue and skeletal muscle. Other SNPs at ARL15 have previously been associated with adiponectin levels, HDL levels and replicated CNVs in childhood obesity.
5. **Chromosome 5q33.3: CCNJL**, cyclin J-like
 This gene encodes a protein that belongs to the cyclin family, cyclin J subfamily, which regulates cyclin dependent kinases\(^{207}\). A nearby gene is **FABP6**, encoding fatty acid binding protein 6, which binds fatty acids and is involved in fatty acid uptake, transport and metabolism\(^{208}\). **Fabp6** is necessary for absorption and transport of bile acids in mouse small intestine\(^{209}\). Other nearby genes include **PWWP2A**, encoding PWWP domain containing 2A; and **C1QTNF2**, encoding C1q and tumor necrosis factor related protein 2.

6. **Chromosome 6p25: GMDS**, GDP-mannose 4,6-dehydratase
 GMDS catalyzes the first step of GDP-fucose synthesis from GDP-mannose and can inhibit apoptosis in colon cancers\(^ {210}\). Other nearby genes include **FOXC1** (forkhead box C1), **FOXQ1** (forkhead box Q1), **FOXF2** (forkhead box F2), all of which are DNA-binding proteins involved in cell growth, apoptosis, migration and differentiation\(^ {211}\). **FOXQ1** is negatively regulated by Oct4 in adipose tissue stromal cells\(^ {212}\).

7. **Chromosome 6p12.1: KLHL31**, kelch-like 31
 KLHL31 regulates transcription in the MAPK/JNK pathway\(^ {213}\). In chicken, **Klh31** was found to be highly expressed in the somite myotome, heart, and in differentiated myocardium and skeletal muscle\(^ {214}\). Nearby gene **GCLC**, encodes the glutamate-cysteine ligase catalytic subunit, which plays a regulatory role in glutathione synthesis, and may play a role in growth and development\(^ {215}\). Another nearby gene, **ELVOL**, encodes fatty acid elongase 5, which is involved in fatty acid synthesis and elongation. Increased expression of **Elvol** has been shown to restore glucose homeostasis and decrease insulin localization in hyperglycemic mice fed a high-fat diet\(^ {216}\).

8. **Chromosome 7q22.3: SRPK2**, Serine/arginine-rich splicing factor protein kinase 2
 SRPK2 encodes a non-small nuclear ribonucleoprotein particle that regulates the intracellular storage of splicing factors\(^ {217,218}\). Knockdown of **SRPK2** by RNAi in HeLa cells demonstrated that this gene essential for cell viability\(^ {219}\). Nearby genes include **LHFPL3** (lipoma HMGIC fusion partner-like 3), **MLL5** (myeloid/lymphoid or mixed-lineage leukemia 5), which is suggested to have a role in chromatin remodeling and cellular growth suppression\(^ {220}\), and several non-coding RNAs.

9. **Chromosome 7q32: KLF14**, Kruppel-like factor 14
 KLF14 encodes an imprinted developmental transcription factor exhibiting maternal allelic expression induced by TGF-beta. **KLF14** has been shown to be a master trans-regulator affecting multiple metabolic phenotypes\(^ {221}\). Other nearby genes include **CPA4** (carboxypeptidase A4), **CPA2** (carboxypeptidase 2), **MEST** (mesoderm specific transcript homolog), and **COPG2** (coatomer protein complex, subunit gamma 2).
10. **Chromosome 9q22.32: PTPDC1, protein tyrosine phosphatase domain containing 1**

PTPDC1 is a member of a protein family known to play roles in molecular signaling in a wide variety of biological processes\(^{222,223}\). Mouse *Ptpcd1* was suggested to play a role in centriole duplication and cytokinesis\(^{224}\) and depletion has been shown to correlate with cilia elongation\(^{225}\). Nearby genes include *BARX1*, encoding BARX homeobox transcription factor, implicated in dentition and cleft lip syndrome\(^{226}\), and *ZNF169*, which encodes zinc finger protein 169 transcription factor. A near genome-wide significant association has been found between a nearby SNP (rs10993160, \(P=5.5\times10^{-7}\)) and BMI in East Asians\(^{47,227}\).

11. **Chromosome 9q33-q34: C5, complement component 5 (also known as CPAMD4)**

C5 encodes the fifth component of complement, which plays an important role in host defense and inflammatory processes. Mutations in C5 cause a propensity for severe recurrent infections. Complement component 5 contributes to poor disease outcome in humans and mice with pneumococcal meningitis\(^{228}\). Defects in this gene have also been linked to susceptibility to liver fibrosis and rheumatoid arthritis\(^{229}\). Other nearby genes include *PSMD5*, encoding 26S proteasome non-ATPase regulatory subunit 5, *FBXW2*, encoding F-box and WD repeat domain containing 2, and *TRAF1*, TNF receptor-associated factor 1.

12. **Chromosome 11q13: MYEOV, myeloma overexpressed**

MYEOV, encoding myeloma overexpressed (in a subset of t(11;14) positive multiple myelomas) has been implicated in multiple myeloma, as well as some other cancer types\(^{230}\). Nearby are members of the fibroblast growth factor family *FGF19*, *FGF4* and *FGF3*. FGFs play important roles in multiple physiologic functions, including angiogenesis, mitogenesis, pattern formation, cellular differentiation, metabolic regulation, tissue repair, and oncogenesis. *FGF19* has been shown to activate an insulin-independent endocrine pathway that regulates hepatic protein and glycogen metabolism\(^{231}\). Other nearby genes include *CCND1* (cyclin D1) and *ORAOV1* (oral cancer overexpressed 1).

13. **Chromosome 11q21: KIAA1731**

RNAi analyses suggest that *KIAA1731* encodes a centrosomal protein responsible for centriole formation/stability\(^{232}\). Other nearby genes include *TAF1D* (TATA box binding protein associated factor, RNA polymerase I), which plays a role in RNA polymerase I transcription\(^{233,234}\), *MED17* (mediator complex subunit 17), *C11orf54*, *C11orf54*, *SCARNA9* and *VSTM5*.

14. **Chromosome 11q22.1: CNTN5, contactin 5**

CNTN5 is a glycosylphosphatidylinositol (GPI)-anchored neuronal membrane protein that functions as a cell adhesion molecule. CNTN5 may play a role in the formation of axon connections in the developing nervous system\(^{235}\). Other nearby genes include *PGR*, encoding the progesterone receptor, and *TMEM133*, encoding transmembrane protein 133.
15. **Chromosome 13q31.3, GPC6, glypican 6**

GPC6 is a member of a family of glycosylphosphatidylinositol-anchored heparan sulfate proteoglycans that are ubiquitously expressed in most fetal and adult tissues. GPC6 may influence cellular growth control and differentiation during development, and mutations in this gene have been shown to cause the rare skeletal dysplasia autosomal recessive generalized omodysplasia.

16. **Chromosome 16p13.11: PDXDC1, pyridoxal-dependent decarboxylase domain containing 1**

PDXDC1 has been predicted to belong to the family of group II pyridoxal-dependent decarboxylases, which includes enzymes that decarboxylate glutamate, histidine, tyrosine and tryptophan. Nearby gene PLA2G10 (phospholipase A2, group X), is important for the breakdown of phospholipids and cholesterol into fatty acids. Nearby gene NTAN1 (N-terminal asparagine amidase) is an integral part of the N-end rule pathway; disruption of this pathway by knocking out the Ubr1 gene resulted in mice with decreased body weight due to reduced skeletal muscle and adipose tissue.

17. **Chromosome 16q12: ZNF423, zinc finger protein 423**

ZNF423 encodes a zinc finger transcription factor that associates with RARalpha/RXRalpha nuclear receptor complex and is critical for retinoic acid-induced differentiation. Delayed induction of preadipocyte transcription factor ZNF423 in fibroblasts resulted in delayed adipogenesis. A nearby gene, CNEP1R1, encoding CTD nuclear envelope phosphatase 1 regulatory subunit 1 is involved in the conversion of phosphatidic acid to diacylglycerols and may indirectly modulate the lipid composition of nuclear and/or endoplasmic reticulum membranes and to regulate the production of lipid droplets and triacylglycerol.

The VPS53 protein is a component of the Golgi-associated retrograde protein complex, and is required to maintain the cycling of mannose 6-phosphate receptors between the trans-Golgi network and endosomes. Other nearby genes include FAM101B, which encodes an actin regulator that stabilizes perinuclear actin filament bundles.

19. **Chromosome 22q12.3: HMGXB4, high mobility group (HMG) box domain containing 4**

HMGXB4 encodes a DNA-binding protein responsible for repression of smooth muscle differentiation. HMGXB4 was previously named HMG2L1. Nearby genes include TOM1 (target of myb1), HMOX1 (heme oxygenase 1), ISX (intestine-specific homeobox), and MCM5 (minichromosome maintenance complex component 5).
Comparison of ARIC and PIVUS as reference panels for GCTA

To evaluate robustness of the GCTA results, we compared results using reference datasets from PIVUS (949 individuals with GWAS and Metabochip data) and ARIC (6,654 individuals with GWAS data, see Online Methods). Although the sets of SNPs selected by GCTA as independently associated with waist-hip ratio adjusted for body mass index (WHRadjBMI) when using either reference dataset were very similar, with the estimated effect sizes in the joint association model highly correlated, a few differences were observed. Given that ARIC includes only GWAS genotype data, while our combined European ancestry meta-analysis includes both GWAS and Metabochip SNPs, any Metabochip SNP in the meta-analysis for which ARIC does not have genotype data was excluded from the GCTA search for independent association signals. These missing reference dataset genotypes explained the majority of the differences observed between the two analyses, including the larger number of loci with multiple association signals identified when estimating the correlation between the variants from PIVUS. In addition, a small number of discrepancies between the two analyses were the result of minor differences between the estimated association p-value for the joint model, with some SNPs reaching the $P < 5 \times 10^{-8}$ threshold when using one dataset as reference, and therefore being selected by GCTA, while they did not reach that threshold when the correlation between SNPs was estimated from the other dataset.

In our particular setting, the choice of the preferable reference dataset is equivalent to the choice to give preference to the larger sample size provided by ARIC or to the larger SNP coverage obtained when using PIVUS. Given the observations, and in this particular case, we believe that we could achieve more insights into the genetic basis of body fat distribution by having a more dense coverage of the SNPs in our meta-analysis as that provided by PIVUS.

Genetic risk score comparison of high versus average genetic susceptibility

We further used the genetic risk score to compare high genetic susceptibility with the average population. We used the linear regression estimates (see Main text) to calculate the difference in WHR units between the 95th percentile and the median of the sex-combined score (median: 46; 95th percentile: 53), the women-specific score (median: 45; 95th percentile: 52) and the men-specific score (median: 31; 95th percentile: 37).

The difference between individuals at the 50th percentile and at the 95th percentile genetic susceptibility risk score groups was 0.007 WHRadjBMI units overall, 0.014 in women and 0.004 in men. These results would imply, for example, that two people from the 50th and 95th percentiles of this risk score distribution and of the same sex, BMI, age, and hip circumference of 100 cm would exhibit a 0.7 cm difference in waist circumference because of differences in their genotypes at these genetic variants (1.4 cm in women and 0.4 cm in men).
Directional consistency of effects in GWAS and Metabochip meta-analyses

To investigate whether additional common variants may contribute to the phenotypic variance of WHRadjBMI, we compared directional consistency in sex-combined allelic effects between GWAS and Metabochip studies in the European-ancestry meta-analysis. We considered the distribution of association Z-scores from the Metabochip European ancestry sex-combined meta-analysis for WHRadjBMI, aligned to the trait-increasing allele from the GWA meta-analysis, at a subset of 1,343 independent WHRadjBMI "replication" variants on Metabochip\(^\text{13}\) (CEU \(r^2 < 0.1\)), excluding SNPs within 500 kb of the lead SNPs at identified WHRadjBMI loci. We counted the number of SNPs with the same direction of effect in both GWAs and Metabochip meta-analysis, and performed a one-sided binomial test for enrichment in concordance over that expected by chance (50%). For comparison, we repeated this process by obtaining a subset of 775 independent QT-interval "replication" variants\(^\text{13}\) (CEU \(r^2 < 0.1\) with each other and >300 kb from any WHRadjBMI "replication" variants) not expected to be associated with anthropometric traits.

Among the 1,343 SNPs included on the Metabochip array based on nominal significance for WHRadjBMI\(^\text{13}\), we observed 797 (59%) directionally consistent SNPs compared to 671.5 expected by chance (\(P_{\text{binomial}} = 3.9 \times 10^{-12}\)). The set of 775 SNPs selected for the array on the basis of QT interval\(^\text{13}\) did not show such enrichment (372 SNPs, or 48%, compared to 388 expected, \(P_{\text{binomial}} = 0.87\)). These results suggest that additional common WHRadjBMI variants may be found to be reproducible with larger samples.

Copy-number variant analysis

To investigate the associations with copy number variants (CNVs), we used a list of SNPs that are known to be robust tags of CNVs due to high linkage disequilibrium (LD) in European cohorts. Altogether four different CNV-tagging SNPs were genome-wide significant in sex-combined analysis. In Supplementary Table 13, all CNV-tagging SNP results are given from the 49 identified loci, which remained significant after multiple testing correction.

In the WHRadjBMI analysis, the marker rs1294421 (\(P = 8.2 \times 10^{-18}\)), which is in LD with CNVR2760.1 near \(LY86\) gene, was strongly associated. The same association was described in the previous GIANT analysis\(^9\). The same CNV tagging SNP was found to be genome-wide significant in the WHR analysis without BMI correction (\(P = 6.9 \times 10^{-14}\)). Additionally we were able to detect statistically significant results after multiple testing correction at three additional loci: \(SFMBT1\) (WHRadjBMI: rs3733034 has \(P = 1.75 \times 10^{-6}\)); \(TNXB\) (WHRadjBMI: rs1150753 has \(P = 4.45 \times 10^{-6}\)), and \(HMGXB4\) (HIPadjBMI: rs1543302 has \(P = 1.13 \times 10^{-7}\)).
Comparison of results from MAGENTA, DEPICT, and GRAIL analyses

Overlap of gene sets for WHRadjBMI that were significantly prioritized by the MAGENTA and DEPICT pathway methods. The Data-driven Enrichment-Prioritized Integration for Complex Traits (DEPICT) assesses for enrichment of 14,462 reconstituted gene sets, while MAGENTA assesses for enrichment of 3,216 gene sets. Consequently, there may be gene sets with different gene IDs that represent similar molecular functions or pathways (e.g., the BMP.Signaling.pathway in MAGENTA may represent similar biological pathways as the BMP4, BMP6, and BMPR1B protein complexes). To compare overlap of significantly enriched gene sets, we manually identified reconstituted DEPICT gene sets (false discovery rate (FDR) < 0.05) with gene set IDs similar to the enriched MAGENTA gene sets (FDR < 0.05). Among the 19 WHRadjBMI gene sets significantly prioritized by MAGENTA, 9 highly similar gene sets were prioritized by DEPICT (Supplementary Table 22).

Overlap of predicted genes for WHRadjBMI identified by both the GRAIL and DEPICT pathway methods. The following 14 genes were significantly predicted by GRAIL (adjusted P < 0.05) and DEPICT (FDR < 0.05): TBX15, EYA2, HOXA11, GDF5, WNT4, BMP2, CITED2, SMAD6, VEGFA, LAMB1, PPARG, RSPO3, DNMT3A, and CDC42EP3.

Evaluation of potential sources of heterogeneity

We tested for heterogeneity of effects to determine if the locus discovered through all ancestries meta-analysis in women (SNX10) was the result of increased sample size or due to heterogeneity. We used effect estimates from non-European women (Metabochip meta-analysis) and European descent-only women (GWAS+Metabochip meta-analysis) in the method outlined in Randall et al., and determined there was no evidence for heterogeneity.

To address the effects of study ascertainment for specific diseases or phenotypes, we compared effects in seven subsets of our study sample using population-based studies as described in the Methods. We evaluated significance for heterogeneity tests within each comparison using a Bonferroni-corrected p-value of 0.05/49 = 0.05/49 = 1.02 × 10⁻³ as well as an FDR threshold of 5%.
Sources of data for expression QTL analyses

Our aim was to discover cis-acting expression quantitative trait loci (eQTL) in multiple tissues for our lead SNPs at loci that were associated with waist-related traits (Tables 1 and 3). We performed look-ups in previously published eQTL data from multiple biologically-relevant tissues.

In the MuTHER study250, expression profiling was performed using the Illumina Human HT-12 V3 BeadChips in lymphoblastoid cell lines (LCLs, \(n = 778\)), subcutaneous adipose tissue (SAT, \(n = 776\)) and skin (\(n = 667\)) biopsies from monozygotic and dizygotic female twins from the United Kingdom. Genotyping was done with a combination of Illumina arrays (HumanHap300, HumanHap610Q, 1M-Duo and 1.2MDuo 1M) followed by imputation into HapMap II. Association tests between genotypes and gene expression within 1 Mb windows were performed with the GenABEL/ProbABEL packages using the polygenic linear model incorporating a kinship matrix.

In the MolOBB study, expression profiling in abdominal and gluteal adipose tissue biopsies from 73 individuals (29 with and 44 without metabolic syndrome) were performed with the Affymetrix hgu133plus2 array, as described previously in detail251. Genotyping was done with the Illumina 317K array, and cis associations between genotypes and expression values were tested using linear regression models assuming additive genetic effects.

Expression data in liver (\(n = 955\)), SAT (\(n = 610\)), and omental fat tissue (\(n = 740\)) from the Massachusetts General Hospital collection252 was obtained using a custom Agilent 44,000 feature microarray in gastric bypass surgery patients. Genotyping was done using Illumina HumanHap650Y and Affymetrix 500K genotyping arrays followed by imputation into HapMap II. Association analyses within 1 Mb windows were performed using linear regression under an additive genetic model.

For whole blood (\(n = 743\)) and SAT biopsies (\(n = 603\)) from deCODE, expression profiling of 23,720 transcripts was done using custom arrays, as previously described in detail253. Cis associations within 1 Mb windows between each SNP (Illumina 317K or 370K chips were used for genotyping followed by imputation to HapMap II) and expression data were tested separately in men and women assuming additive genetic effects using linear regression models accounting for family structure.

Expression data in LCLs from the family asthma study (MRC-A)254 was obtained with Affymetrix HG-U133 Plus 2.0 chip (\(n = 405\) siblings) and Illumina Human6V1 array (\(n = 550\) siblings). Genotyping was done using Illumina arrays (Human1M and HumanHap300K) and cis associations between genotypes and expression values were tested using linear regression models assuming additive genetic effects.
For peripheral blood mononuclear cells (PBMCs), gene expression data was available in the integrated dataset of 1,469 healthy controls and patient samples from the United Kingdom and the Netherlands (Fehrmann-HT12v3 and Fehrmann-H8v2), and 891 individuals from Estonia (EGCUT). In Fehrmann-HT12v3 \((n = 1,240)\) expression profiling was performed with the Illumina HumanHT-12 array and in Fehrmann-H8v2 \((n = 229)\) with the Illumina HumanRef-8 v2 array as described in detail previously\(^{255}\). Genotyping was done using the Illumina HumanHap300, HumanHap370 or 610 Quad platform followed by imputation to HapMap II. In EGCUT, expression profiling was performed using Illumina HumanHT12v3 array while genotyping was performed with Illumina Human370CNV-duo chip followed by imputation to HapMap II as described previously\(^{256}\). Associations between genotype dosages and gene expression values were tested using linear regression models assuming additive genetic effects within 1 Mb windows. All 2,360 peripheral blood samples from three studies were then meta-analyzed using a z-score method, weighted for the sample size of each dataset.
Author contributions

Steering Committee Overseeing the Consortium

Writing Group

Data Cleaning and Preparation

GWAS and Metabochip Meta-analyses

Biological, Enrichment, and Pathway analyses

Conditional Analysis, Transethnic Meta-analysis and Fine-mapping

Damien C. Croteau-Chonka, L. Adrienne Cupples, Teresa Ferreira, Adam E. Locke, Cecilia M. Lindgren, Karen L. Mohlke, Andrew P. Morris, Kari E. North, Peter M. Visscher, Jian Yang

Gene Expression (eQTL) Analyses

(Brain eQTL) Ruth J.F. Loos, Jing Hua Zhao; (PBMC) Tonu Esko, Lude Franke, Andres Metspalu, Eva Reinmaa, Harm-Jan Westra; (eQTL Liver/Omental/Subq eSNPs) Eric E. Schadt; (Lymphocytes) Jinyan Huang, Liming Liang, Baoshan Ma, Miriam F. Moffatt; (MoOBB) Alexander W. Drong, Cecilia M. Lindgren, Mark I. McCarthy, Fredrik Karpe, Josine L. Min, George Nicholson; (MuTHER) Åsa K. Hedman, Sarah Keildson, MuTHER Consortium; (ASAP) Per Eriksson, Lasse Folkersen, Anders Franco-Cereceda, Christian Olsson
Other Analyses and Contributions
(DEPICT analysis) Rudolf Fehrman, Lude Franke, Juha Karjalainen, Tune H. Pers, Joel Hirschhorn;
(ENCOD analysis) Martin L. Buchkovich, Jin Chen, Karen L. Mohlke, Ellen M. Schmidt, Cristen J.
Willer; (Heritability, phenotypic and genetic correlation analysis) Nancy L. Heard-Costa, Cl Song, Erik
Ingelsson, L. Adrienne Cupples, Krista Fischer, Thomas W. Winkler, Iris M. Heid; (Heterogeneity and
interaction analyses) Dmitry Shungin, Thomas W. Winkler, Adam E. Locke, Anne E. Justice, Andrew
R. Wood, Ching-Ti Liu, Kari E North, Iris M. Heid, L. Adrienne Cupples; Paul W. Franks provided
primary supervision for the work conducted by Dmitry Shungin

GWAS Look-ups in Other Consortia
(Adiponectin) Marie-France Hivert, ADIPOGen Consortium; (Blood pressure) ICBP (The International
Consortium for Blood Pressure Genome-Wide Association Studies); (Bone mineral density) Edgar E.
Vallejo, GEFOS Consortium; (Coronary artery disease) CARDIOGRAMplusC4D, Panos Deloukas,
Stavroula Kanoni, Ruth McPherson; (Creatinine traits/kidney disease) Caroline S. Fox, CDKGen
consortium; (Endometriosis) Grant W. Montgomery, Dale R. Nyholt, Krina T. Zondervan, International
Endogene Consortium; (Glucose and insulin traits) Robert A. Scott, MAGIC (Meta-Analyses of
Glucose and Insulin-Related Traits Consortium) investigators; (IgA Nephropathy) Murim Choi, Ali G.
Gharavi, Krzysztof Kiryluk, Richard P. Lifton; (Lipids) Global Lipids Genetics Consortium; (Menarche
and menopause) Joanne M. Murabito, John R.B. Perry, Lisette Stolk, ReproGen Consortium;
(Nephropathy) Niina Sandholm, Eoin P. Brennan, Amy J. McKnight, Rany M. Salem, GENIE
Consortium; (Type 2 diabetes) Andrew P. Morris

Project Design, Management and Coordination of Contributing Studies

METABOCHIP STUDIES

(ADVANCE) Themistocles L Assimes, Thomas Quertermous; (ARIC Metabochip) Kari E North;
(B1958C) Elina Hypponen, Chris Power; (BHS MC) John Beilby, Jennie Hui; (CLHNS) Linda S
Adair, Karen L Mohlke; (DESIR) Stéphane Cauchi, Philippe Froguel; (DIAGEN) Stefan R
Bornstein, Peter EH Schwarz; (DILGOM) Pekka Jousilahti, Antti M Jula, Satu Männistö, Markus
Perola, Veikko Salomaa; (DPS) Matti Uusitupa; (DR's EXTRA) Timo A Lakka, Rainer Rauramaa;
(Dundee – GoDarts) Colin NA Palmer; (EGCUT) Andres Metspalu; (ELY) Nita G Forouhi, Claudia
Langenberg, Ruth JF Loos, Ken K Ong, Robert A Scott, Nicholas J Wareham; (EMIL (SWABIA))
Bernhard O Boehm; (EPIC-Norfolk) Nita G Forouhi, Claudia Langenberg, Ruth JF Loos, Ken K
Ong, Robert A Scott, Nicholas J Wareham; (FBPP) Aravinda Chakravarti, Richard S Cooper,
Steven C Hunt; (FIN-D2D 2007) Sirkka M Keinanen-Kiukaanniemi, Timo E Saaristo;
(FUSION stage 2) Francis S Collins, Jouko Saramies, Jaakko Tuomilehto; (GLACIER) Paul W Franks;
(GxE) Richard S Cooper, Joel N Hirschhorn, Colin A McKenzie; (HNR) Raimund
Erbel, Karl-Heinz Jöckel, Stefan Möhlenkamp; (HUNT 2) Kristian Hveem; (IMPROVE) Ulf de
Faire, Anders Hamsten, Steve E Humphries, Elena Tremoli; (KORA S3 (MetaboChip)) Iris M Heid;
(KORA S4 (MetaboChip)) Annette Peters, Konstantin Strauch, H-Erich Wichmann; (Leipzig adults)
Michael Stumvoll; (LURIC) Winfried März; (METSIM) Johanna Kuusisto, Markku Laakso;
(MORGAM) Philippe Amouyel, Dominique Arveiler, Jean Ferrières, Frank Kee, Kari Kuulasmaa,
Giovanni Veronesi; (NSHD) Diana Kuh; (PIVUS) Erik Ingelsson; (PROMIS) John Danesh, Panos
Deloukas, Danish Saleheen; (SardiNIA) Goncalo R Abecasis, David Schlessinger; (ScarfSheep)
Ulf de Faire, Anders Hamsten; (SPT) Richard S Cooper, Joel N Hirschhorn, Colin A McKenzie;
NEW GWAS

(STR) Erik Ingelsson; (Tandem) Murielle Bochud, Michel Burnier; (THISEAS) George Dedoussis, Panos Deloukas; (Tromsø) Inger Njølstad; (ULSAM) Erik Ingelsson; (WHI Metabochip) Charles Kooperberg, Loic Le Marchand, Ulrike Peters; (Whitehall) Aroon D Hingorani, Mika Kivimaki, Nicholas J Wareham; (WTCCC-T2D) Cecilia M Lindgren, Mark I McCarthy; (DGE DietGeneExpression) Berit Johansen

PREVIOUS GWAS

(AGES) Vilmundur Gudnason, Tamara B Harris; (Amish) Alan R Shuldiner; (ARIC GWAS) Kari E North; (B58C T1D CONTROLS) David P Strachan; (B58C WTCCC) David P Strachan; (BRIGHT) Morris J Brown, Mark Caulfield, Patricia Munroe, Nilesh J Samani; (COLAUS) Peter Vollenweider; (CROATIA-Vis) Igor Rudan; (deCODE) Kari Stefansson, Unnur Thorsteinsdottir; (DGI) Leif C Groop; (EGCUT) Andres Metspalu; (EPIC-Norfolk) Nicholas J Wareham; (FUSION (GWAS)) Richard N Bergman, Michael Boehnke; (H2000) Markku Helioväara; (HPFS) David J. Hunter; (KORA S4 (GWA)) Christian Gieger; (MICS) Andrew A Hicks, Peter P Pramstaller; (NFBC66) Marjo-Riitta Jarvelin; (NTRNESDA) Brenda W Penninx; (ORCADES) James F Wilson; (RI) Oscar H Franco, Albert Hofman, Fernando Rivadeneira, André G Uitterlinden, Cornelia M van Duijn, Jacqueline C Witteman, M Carola Zillikens; (Sorbs) Anke Tönjes; (WGHS) Paul M Ridker; (Young Finns Study (YFS)) Terho Lehtimäki, Olli T Raitakari

Genotyping of Contributing Studies

METABOCHIP STUDIES

(ARIC Metabochip) Kari E North; (ADVANCE) Devin Absher, Themistocles L Assime, Thomas Quertermous; (B1958C) Christopher J Groves, Thorhildur Julíusdóttir, Neil R Robertson; (BHS MC) Gillian M Arscott, Jennie Hui; (CLHNS) Damien C Croteau-Chonka; (DESIR) Elodie Eury, Stéphane Lobbens; (DIAGEN) Narisu Narisu; (Dundee - Go darts) Amanda J Bennett, Colin NA Palmer, Nigel W Rayner; (EGCUT) Tonu Esko, Lili Milani; (ELY) Claudia Langenberg, Ruth JF
Loos, Ken K Ong, Nicholas J Wareham; (EMIL (SWABIA)) Bernhard O Boehm; (EPIC-Norfolk) Claudia Langenberg, Ruth JF Loos, Ken K Ong, Nicholas J Wareham; (FBPP) Aravinda Chakravarti; (Fenland) Claudia Langenberg, Ruth JF Loos, Ken K Ong, Nicholas J Wareham; (FIN-D2D 2007) Peter S Chines; (FUSION stage 2) Leena Kinnunen; (GLACIER) Inès Barroso; (HNR) Thomas W Mühleisen; (HUNT 2) Amy J Swift; (KORA S4 (MetaboChip)) Harald Grallert, Peter Lichtner; (Leipzig adults) Yvonne Böttcher, Peter Kovacs; (LURIC) Claudia Langenberg, Ruth JF Loos, Ken K Ong; (LSHD) Diana Kuh, Ken K Ong, Andrew Wong; (PIVUS) Christian Berne, Erik Ingelsson, Lars Lind, Johan Sundström; (PROMIS) Kathleen Stirrups; (SardiNIA) Ramaiah Nagaraja, Serena Sanna; (ScarfSheep) Bruna Gigante; (STR) Nancy L Pedersen; (Tandem) Georg B Ehret, François Mach; (Tromsø) Michael R Erdos; (ULSAM) Aimar Frenger, Ulf Dahlof, Thomas Nordeide; (WTCCC-T2D) Andrew T Hattersley, Mark I McCarthy; (DGE DietGeneExpression) Berit Johansen

NEW GWAS

(DESIR) Elodie Eury, Stéphane Lobbens, (EGCUT) Tonu Esko, Lili Milani; (ERF) Aaron Isaacs, Ben A Oostra, Cornelia M van Duijn; (FamHs) Ingrid B Borecki, E Warwick Daw, Mary F Feitosa, Aldi T Kraja, Mary K Wojczynski, Quanyuan Zhang; (Health ABC) Yongmei Liu; (HERITAGE Family Study) Tuomo Rankinen; (HYPERGENES) Chiara Troffa; (LifeLines) Morris A Swertz, The LifeLines Cohort Study; (LS) Joris Deelen, Quinta Helmer; (LOLIPOP) John C Chambers, Jaspal S Koone; (PREVEND) Irene Mateo Leach, Pim van der Harst; (PROCARDIS) Martin Farrall, Hugh Watkins; (QFS) Claire Bellis, John Blangero; (RSIII) Karol Estrada, Fernando Rivadeneira, André G Uitterlinden; (SHIP-TREND) Nele Friedrich, Georg Homuth, Uwe Völker; (TRAiLS) Marcel Bruinenberg, Catharina A Hartman; (TWINGENE) Anders Hamsten, Nancy L Pedersen; (TwinsUK) Massimo Mangino, Alireza Moayyeri; (GOOD) Mattias Lorentzon, Claes Ohlsson; (RSII) Karol Estrada, Fernando Rivadeneira, André G Uitterlinden; (WGHS) Daniel I Chasman, Lynda M Rose; (Young Finns Study (YFS)) Terho Lehtimäki, Olli T Raitakari

PREVIOUS GWAS

(AGES) Albert Vernon Smith; (Amish) Jeffrey R O’Connell; (B58C T1D CONTROLS) Wendy L McArdle; (B58C WTCCC) Wendy L McArdle; (CROATIA-Vis) Caroline Hayward; (EGCUT) Mari Nelis; (EPIC-Norfolk) Nicholas J Wareham; (Fenland) Nicholas J Wareham; (Finnish Twin Cohort) Jaakko Kaprio; (KORA S3 (GWA)) Thomas Illig; (KORA S4 (GWA)) Martina Müller-Nurasyid; (MICROS) Andrew A Hicks; (NFBC66) Marjo-Riitta Jarvelin; (ORCADES) Harry Campbell; (RSI) Karol Estrada, Fernando Rivadeneira, André G Uitterlinden; (SHIP) Nele Friedrich, Georg Homuth, Uwe Völker; (WTCCC-T2D) Andrew T Hattersley, Mark I McCarthy

Phenotype Coordination of Contributing Studies

METABOCCHIP STUDIES

(ADVANCE) Alan S Go, Thomas Quertermous; (B1958C) Elina Hyponnen, Chris Power; (BHS MC) Alan L James, Arthur W Musk; (CLHNS) Delia B Carba, Nanette R Lee; (DESIR) Fabrice Bonnet; (DIAGEN) Jürgen Grässler, Gabriele Müller; (DPS) Jaana Lindström; (DR’s EXTRA) Maija Hassinen; (Dundee - Go darts) Alex SF Doney, Andrew D Morris, Colin NA Palmer; (EGCUT) Tonu Esko, Andres Metspalu; (ELY) Nita G Forouhi, Nicholas J Wareham; (EMIL (SWABIA))
NEW GWAS

(DESIR) Fabrice Bonnet; (EGCUT) Tonu Esko, Andres Metspalu; (ERF) Ben A Oostra, Cornelia M van Duijn; (FamHS) Ingrid B Borecki, Mary F Feitosa; (Health ABC) Melissa E Garcia, Tamara B Harris, Michael A Nalls; (HERITAGE Family Study) Claude Bouchard, Tuomo Rankinen; (HYPERGENES) Chiara Troffa; (InCHIANTI) Luigi Ferrucci, Luigi Ferrucci; (LifeLines) Salome Scholtens, Morris A Swertz, Judith M Vonk, The LifeLines Cohort Study; (LLS) Simon P Mooijaart; (LOLIPOP) John C Chambers, Jagvir Grewal, Jaspal S Kooner, Ishminder K Kooner, Rebecca Mills; (PREVEND) Stephan JL Bakker, Ron T Gansevoort, Hans L Hillege; (PROCARDIS) Robert Clarke, Bengt Sennblad; (QFS) Claude Bouchard, Angelo Tremblay; (RSIII) Oscar H Franco, Albert Hofman, Fernando Rivadeneira, André G Uitterlinden, Cornelia M van Duijn, Jacqueline C Witteman; (SHIP-TREND) Marcus Dörr, Wolfgang Hoffmann, Till Ittermann; (TWINGENE) Patrik KE Magnusson, Nancy L Pedersen; (TwinsUK) Massimo Mangin, Cristina Menni; (Busselton Health Study) Alan L James, Arthur W Musk; (GOOD) Mattias Lorentzon, Claes Ohlsson; (HBCS) Johan G Eriksson; (HYPERGENES) Nicola Glorioso, Jan A Staessen; (RSII) Oscar H Franco, Albert Hofman, Fernando Rivadeneira, André G Uitterlinden, Cornelia M van Duijn, Jacqueline C Witteman; (Sorbs) Anke Tönjes; (WGHS) Daniel I Chasman, Lynda M Rose; (Young Finns Study (YFS)) Terho Lehtimäki, Olli T Raitakari

PREVIOUS GWAS

(B58C T1D CONTROLS) David P Strachan; (Amish) Alan R Shuldiner; (B58C WTCCC) David P Strachan; (BRIGHT) Morris J Brown, Niles J Samani; (COLAUS) Peter Vollenweider; (CROATIA-Vis) Igor Rudan; (DGI) Valeriya Lyssenko; (EGCUT) Andres Metspalu; (EPIC-Norfolk) Nicholas J Wareham; (Fenland) Nicholas J Wareham; (Finnish Twin Cohort) Jaakko Kaprio; (FRAM) Caroline S Fox; (NFBC66) Karl-Heinz Herzog, Marjo-Riitta Jarvelin; (NTRNESDA) Eco JC de Geus; (ORCADES) Harry Campbell; (RSI) Oscar H Franco, Albert Hofman, Fernando Rivadeneira, André G Uitterlinden, Cornelia M van Duijn, Jacqueline C Witteman; (SHIP) Marcus Dörr, Wolfgang Hoffmann, Till Ittermann; (WTCCC-T2D) Amy Barrett, Andrew T Hattersley

Data Analysis
METABOCCHIP STUDIES

(ADVANCE) Devin Absher, Themistocles L Assimes, Lindsay L Waite; (ARIC Metabochip) Steven Buyske, Anne E Justice, Kari E North; (B1958C) Teresa Ferreira; (BHS MC) Denise Anderson; (CLHNS) Damien C Croteau-Chonka; (DESIR) Stéphane Cauchi, Loïc Yengo; (DIAGEN) Anne U Jackson, Gabriele Müller; (DILGOM) Kati Kristiansson; (Dundee - Go darts) Teresa Ferreira; (EGCUT) Tonu Esko, Krista Fischer, Evelin Mihailov; (ELY) Jian'an Luan; (EMIL (SWABIA)) Bernhard O Boehm; (EPIC-Norfolk) Jian'an Luan; (FBPP) Aravinda Chakravarti, Georg E Ehret; (Fenland) Jian'an Luan; (GLACIER) Frida Renstrom, Dmitry Shungin; (GxE) Cameron D Palmer; (HNR) Sonali Pechlivanis, André Scherag; (IMPROVE) Lasse Folkersen, Rona J Strawbridge; (KORA S3 (MetaboChip)) Matthias Olden, Janina S Ried, Thomas W Winkler; (KORA S4 (MetaboChip)) Eva Albrecht; (Leipzig adults) Anubha Mahajan, Inga Prokopenko; (LURIC) Graciela Delgado de Moissl, Tanja B Grammer, Marcus E Kleber, Hubert Scharnagl, Andreas Tomaschitz; (METSIM) Alena Stančáková; (NSHD) Jian'an Luan, Andrew Wong; (PROMIS) Stefan Gustafsson, Erik Ingelsson; (PROMIS) Stavroula Kanoni; (SardiNIA) Jennifer L Bragg-Gresham; (Scarfsheep) Lasse Folkersen, Rona J Strawbridge; (SPT) Cameron D Palmer; (STR) Stefan Gustafsson, Erik Ingelsson; (Tandem) Georg B Ehret, François Mach; (ULSAM) Stefan Gustafsson, Erik Ingelsson; (Whitehall) Jian'an Luan; (WHI Metabochip) Ewa Deelman, Marylyn Ritchie; (WTCCC-T2D) Teresa Ferreira, Anubha Mahajan, Andrew P Morris, Reedik Mägi; (DGE DietGeneExpression) Ida H Caspersen

NEW GWAS

(BLSA) Toshiko Tanaka; (DESIR) Stéphane Cauchi, Loïc Yengo; (EGCUT) Tonu Esko, Krista Fischer, Toomas Haller, Reedik Mägi; (ERF) Najaf Amin, Ayse Demirkan; (FamHS) Mary F Feitosa; (Health ABC) Michael A Nalls; (HERITAGE Family Study) Claude Bouchard, Tuomo Rankinen, DC Rao, Treva K Rice, Mark A Sarzynski, Yun Ju Sung; (InCHIANTI) Dorota Pasko, Toshiko Tanaka, Andrew R Wood; (LifeLines) Ilja M Nolte, Jana V Van Vliet-Ostaptchouk; (LLS) Marian Beekman, Stefan Böhringer; (LOLIPOP) Weihua Zhang; (PREVEND) Irene Mateo Leach, Pim van der Harst, Nie Verweij; (PROCARDIS) Anuj Goel; (QFS) John Blangero, Louis Pérusse; (RSIII) Alain Golay, Dorota Pasko, Andrew R Wood; (RSIII) Karol Estrada, Carolina Medina-Gomez, Marjolein J Peters, Fernando Rivadeneira, André G Uitterlinden; (SHIP-TREND) Alexander Teumer, (TRAILS) Harold Snieder; (TWINGENE) Stefan Gustafsson, Erik Ingelsson; (TwinsUK) Massimo Mangino; (GOOD) Mattias Mattossen, Claes Ohlsson; (HBCS) Niina Eklund; (RIII) Karol Estrada, Carolina Medina-Gomez, Marjolein J Peters, Fernando Rivadeneira, André G Uitterlinden; (Sorbs) Reedik Mägi; (WGHS) Daniel I Chasman, Lynda M Rose;

PREVIOUS GWAS

(AGES) Albert Vernon Smith; (Amish) Jeffrey R O'Connell; (ARIC GWAS) Keri L Monda, Kari E North; (B58C T1D CONTROLS) David P Strachan; (B58C WTCCC) David P Strachan; (BRIGHT) Patricia Munroe; (CHS) Barbara McKnight, Colleen M Sillani; (COLAUS) Toby Johnson; (CROATIA-Vis) Caroline Hayward; (deCODE) Valgerdur Steinhorsdottir, Gudmar Thorleifsson; (EGCUT) Mari Nelis; (EPIC-Norfolk) Jing Hua Zhao; (Fenland) Jian'an Luan; (Finnish Twin Cohort) Kauko Heikkilä; (FRAM) L Adrienne Cupples, Nancy L Heard-Costa; (H2000) Niina Eklund; (HPFS) Lu Qi; (KORA S3 (GWA)) Claudia Lamina; (RSI) Karol Estrada, Carolina Medina-Gomez, Marjolein J Peters, Fernando Rivadeneira, André G Uitterlinden; (SHIP) Alexander Teumer; (WTCCC-T2D) Teresa Ferreira, Anubha Mahajan, Andrew P Morris, Reedik Mägi
Detailed acknowledgements

1958BC: Data collection was funded by MRC grant G0000934 and cell-line creation by Wellcome Trust grant 068545/Z/02. Great Ormond Street Hospital/University College London, Institute of Child Health and Oxford Biomedical Research Centre, University of Oxford received a proportion of funding from the Department of Health's National Institute for Health Research (NIHR) (‘Biomedical Research Centres’ funding). This paper presents independent research and the views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health.

ADVANCE: The ADVANCE study was supported by a grant from the Reynold's Foundation and NHLBI grant HL087647.

AGES: The Age, Gene/Environment Susceptibility Reykjavik Study (AGES) has been funded by NIH contract N01-AG-12100, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The study is approved by the Icelandic National Bioethics Committee, (VSN: 00-063) and the Data Protection Authority. The researchers are indebted to the participants for their willingness to participate in the study.

Amish: We gratefully acknowledge our Amish liaisons, field workers and clinic staff and the extraordinary cooperation and support of the Amish community, without which these studies would not have been possible. The Amish studies are supported by grants and contracts from the NIH, including U01 HL072515-06, U01 HL84756, F32AR059469, the University of Maryland General Clinical Research Center, grant M01 RR 16500, and by National Research Initiative Competitive Grant no. 2007-35205-17883 from the USDA National Institute of Food and Agriculture. We thank our Amish research volunteers for their long-standing partnership in research, and the research staff at the Amish Research Clinic for their hard work and dedication.

ARIC: The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C), R01HL087641, R01HL59367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. This research was partially supported by grant R01-DK089256 from the National Institute of Diabetes and Digestive and Kidney Diseases (MPIs: Ingrid B. Borecki, L. Adrienne Cupples, Kari North).
ARIC Metabochip: The Population Architecture Using Genomics and Epidemiology (PAGE) program is funded by the National Human Genome Research Institute (NHGRI), supported by U01HG004803 (CALiCo), U01HG004798 (EAGLE), U01HG004802 (MEC), U01HG004790 (WHI), and U01HG004801 (Coordinating Center), and their respective NHGRI ARRA supplements. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. The complete list of PAGE members can be found at http://www.pagestudy.org. The data and materials included in this report result from collaboration between the following studies: The Multiethnic Cohort study (MEC) characterization of epidemiological architecture is funded through the NHGRI PAGE program (U01HG004802 and its NHGRI ARRA supplement). The MEC study is funded through the National Cancer Institute (R37CA54281, R01 CA63, P01CA33619, U01CA136792, and U01CA98758); Funding support for the “Epidemiology of putative genetic variants: The Women’s Health Initiative” study is provided through the NHGRI PAGE program (U01HG004790 and its NHGRI ARRA supplement). The WHI program is funded by the National Heart, Lung, and Blood Institute; NIH; and U.S. Department of Health and Human Services through contracts N01WH22110, 24152, 32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-26, 42129-32, and 44221. The authors thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A full listing of WHI investigators can be found at: http://www.whiscience.org/publications/WHI_investigators_shortlist.pdf. Funding support for the Genetic Epidemiology of Causal Variants Across the Life Course (CALiCo) program was provided through the NHGRI PAGE program (U01HG004803 and its NHGRI ARRA supplement). The following studies contributed to this manuscript and are funded by the following agencies: The Atherosclerosis Risk in Communities (ARIC) Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts N01-HC-55015, N01-HC-55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, N01-HC-55022. Assistance with phenotype harmonization, SNP selection and annotation, data cleaning, data management, integration and dissemination, and general study coordination was provided by the PAGE Coordinating Center (U01HG004801-01 and its NHGRI ARRA supplement). The National Institutes of Mental Health also contributes to the support for the Coordinating Center. The PAGE consortium thanks the staff and participants of all PAGE studies for their important contributions. Dr. North is also funded by the National Institute of Diabetes and Digestive and Kidney Diseases (MPIs: Ingrid B. Borecki, L. Adrienne Cupples, Kari North) grant R01 – DK089256.

BHS: The Busselton Health Study (BHS) acknowledges the generous support for the 1994/5 follow-up study from Healthway, Western Australia and the numerous Busselton community volunteers who assisted with data collection and the study participants from the Shire of Busselton. The Busselton Health Study is supported by The Great Wine Estates of the Margaret River region of Western Australia.
BLSA: The BLSA was supported by the Intramural Research Program of the NIH, National Institute on Aging. The BLSA was supported by the Intramural Research Program of the NIH, National Institute on Aging.

BRIGHT: This work was supported by the Medical Research Council of Great Britain (grant number G9521010D); and by the British Heart Foundation (grant number PG/02/128). A.F.D. was supported by the British Heart Foundation (grant numbers RG/07/005/23633, SP/08/005/25115); and by the European Union Ingenious HyperCare Consortium: Integrated Genomics, Clinical Research, and Care in Hypertension (grant number LSHM-C7-2006-037093). The BRIGHT study is extremely grateful to all the patients who participated in the study and the BRIGHT nursing team. We would also like to thank the Barts Genome Centre staff for their assistance with this project. This work forms part of the research themes contributing to the translational research portfolio for Barts Cardiovascular Biomedical Research Unit, which is supported and funded by the National Institute for Health Research.

CHS: This CHS research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants HL080295, HL087652, HL105756, HL103612 and HL120393 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG023629 from the National Institute on Aging (NIA). A full list of CHS investigators and institutions can be found at CHS-NHLBI.org. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

CLHNS: We thank the Office of Population Studies Foundation research and data collection teams for the Cebu Longitudinal Health and Nutrition Survey and the Mammalian Genotyping Core at University of North Carolina at Chapel Hill. This work was supported by National Institutes of Health grants DK078150, TW05596, HL085144, TW008288, T32 HL007427 and pilot funds from RR20649, ES10126, and DK56350.

Colaus: The CoLaus study was supported by research grants from the Swiss National Science Foundation (grant no: 33CSC0-122661 and 33CSC0-139468) from GlaxoSmithKline and the Faculty of Biology and Medicine of Lausanne. We would like to thank Gérard Waeber, Vincent Mooser, Dawn Waterworth and research nurses of CoLaus: Yolande Barreau, Anne-Lise Bastian, Binasa Ramic, Martine Moranville, Martine Baumer, Marcy Sagette, Jeanne Ecowey, and Sylvie Mermoud.

COROGENE: The study was supported by grants from Aarne Koskelo Foundation, Helsinki University Central Hospital special government funds (EVO #TYH7215, #TKK2012005, #TYH2012209), and Finnish Foundation for Cardiovascular research.
CROATIA-Vis: The CROATIA-Vis study in the Croatian island of Vis was supported through the grants from the Medical Research Council UK to H.C., A.F.W. and I.R.; and Ministry of Science, Education and Sport of the Republic of Croatia to I.R. (number 108-1080315-0302) and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947). We would like to acknowledge the invaluable contributions of the recruitment team (including those from the Institute of Anthropological Research in Zagreb) in Vis, the administrative teams in Croatia and Edinburgh and the people of Vis.

deCODE: We thank participants in deCODE cardiovascular- and obesity studies and collaborators for their cooperation. The research performed at deCODE Genetics was part funded through the European Community’s Seventh Framework Programme (FP7/2007-2013), ENGAGE project, grant agreement HEALTH-F4-2007- 201413.

DESIR: This study was supported in part by grants from SFD (Société Francophone du Diabète), CPER (Contrat de Projets État-Région), and ANR (Agence Nationale de la Recherche). The DESIR study has been supported by INSERM-CNAMTS (Caisse Nationale de l’Assurance Maladie des Travailleurs Salariés), Lilly, Novartis Pharma, sanofi-aventis, INSERM (Réseaux en Santé Publique, Interactions entre les determinants de la santé), Association Diabète Risque Vasculaire, Fédération Française de Cardiologie, Fondation de France, Onivins, Ardirx Medical, Bayer Diagnostics, Becton Dickinson, Cardionics, Merck Santé, Novo Nordisk, Pierre Fabre, Roche, and Topcon.

DGI: The Botnia (DGI) study have been supported by grants from Folkhälsan Research Foundation, Sigrid Juselius Foundation, Ministry of Education, Nordic Center of Excellence in Disease Genetics, Gyllenberg Foundation, Swedish Cultural Foundation in Finland, Finnish Diabetes Research Foundation, Foundation for Life and Health in Finland, Finnish Medical Society, Paavo Nurmi Foundation, Perklén Foundation, Ollqvist Foundation, Närpes Health Care Foundation, the Municipal Health Care Center and Hospital in Jakobstad, Health Care Centers in Vasa, Närpes and Korsholm. This work was also partially supported by NIH grant R01-DK075787 to JNH.

DIAGEN: The DIAGEN study was supported by the Commission of the European Communities, Directorate C - Public Health and Risk Assessment, Health & Consumer Protection, Grant Agreement number - 2004310 and by the Dresden University of Technology Funding Grant, Med Drive. We are grateful to all of the patients who cooperated in this study and to their referring physicians and diabetologists in Saxony.

DILGOM: The DILGOM project and this work is supported by the Academy of Finland (grant numbers 136895, 263836, 250207, 139635, 118065), the Orion-Farmos Research Foundation, and the Finnish Foundation for Cardiovascular Research. MP is partly financially supported for this work by the Finnish Academy SALVE program “Pubgensense” 129322. We are grateful for the THL DNA laboratory for its skillful work to produce the DNA samples used in this study.
DPS: The DPS has been financially supported by grants from the Academy of Finland (117844 and 40758, 211497, and 118590); The EVO funding of the Kuopio University Hospital from Ministry of Health and Social Affairs (5254), Finnish Funding Agency for Technology and Innovation (40058/07), Nordic Centre of Excellence on Systems biology in controlled dietary interventions and cohort studies, SYSDIET (070014), The Finnish Diabetes Research Foundation, Yrjö Jahnsson Foundation (56358), Sigrid Juselius Foundation, Juho Vainio Foundation and TEKES grants 70103/06 and 40058/07.

DR’S EXTRA: The DR’s EXTRA Study was supported by the Ministry of Education and Culture of Finland (627;2004-2011), Academy of Finland (102318; 104943;123885), Kuopio University Hospital, Finnish Diabetes Association, Finnish Foundations for Cardiovascular Research, Päivikki and Sakari Sohlberg Foundation, by European Commission FP6 Integrated Project (EXGENESIS); LSHM-CT-2004-005272, City of Kuopio and Social Insurance Institution of Finland (4/26/2010).

DUNDEE/GoDARTS: The Wellcome Trust provides support for Wellcome Trust United Kingdom Type 2 Diabetes Case Control Collection (GoDARTS) (Award 099177/Z/12/Z) and the Scottish Health Informatics Programme. Further informatics support is provided by the Chief Scientist Office of Scotland. This work was also supported by the UK Medical Research Council (G0601261).

EGCUT: Estonian Genome Center, University of Tartu (EGCUT) received targeted financing from Estonian Government SF0180142s08, Center of Excellence in Genomics (EXCEGEN) and University of Tartu (SP1GVARENG). We acknowledge EGCUT technical personnel, especially Mr V. Soo and S. Smit. Data analyzes were carried out in part in the High Performance Computing Center of University of Tartu.

Ely: We are grateful to all the volunteers and to the staff of St. Mary's Street Surgery, Ely and the study team. The Ely Study was funded by the MRC (MC_U106179471) and Diabetes UK. Genotyping in the Ely and Fenland studies was supported in part by an MRC-GlaxoSmithKline pilot programme grant (G0701863).

EMIL (SWABIA): EMIL is supported by the Centre of Excellence Baden-Wuerttemberg “Metabolic Disorders” to B.O.B.

EPIC Metabochip: The EPIC Norfolk diabetes case cohort study is nested within the EPIC Norfolk Study, which is supported by program grants from the Medical Research Council, and Cancer Research UK and with additional support from the European Union, Stroke Association, British Heart Foundation, Research into Ageing, Department of Health, The Wellcome Trust and the Food Standards Agency. Genotyping was in part supported by the MRC-GSK pilot program grant. We acknowledge the contribution of the staff and participants of the EPIC-Norfolk Study.

EPIC-Norfolk (GWAS): The EPIC Norfolk study is supported by program grants from the Medical Research Council, and Cancer Research UK. We acknowledge the contribution of the staff and participants of the EPIC-Norfolk Study.
ERF: ERF study as a part of EUROSPAN (European Special Populations Research Network) was supported by European Commission FP6 STRP grant number 018947 (LSHG-CT-2006-01947) and also received funding from the European Community's Seventh Framework Programme (FP7/2007-2013)/grant agreement HEALTH-F4-2007-201413 by the European Commission under the program “Quality of Life and Management of the Living Resources” of 5th Framework Programme (no. QLG2-CT-2002-01254). High-throughput analysis of the ERF data was supported by joint grant from Netherlands Organization for Scientific Research and the Russian Foundation for Basic Research (NWO-RFBR 047.017.043). We are grateful to all study participants and their relatives, general practitioners and neurologists for their contributions and to P. Veraart for her help in genealogy, J. Vergeer for the supervision of the laboratory work and P. Snijders for his help in data collection.

FamHS: The Family Heart Study was supported by the by grants R01-HL-087700, and R01-HL-088215 from the National Heart, Lung, and Blood Institute. This research was partially supported by grant R01-DK089256 from the National Institute of Diabetes and Digestive and Kidney Diseases (MPIs: Ingrid B. Borecki, L. Adrienne Cupples, Kari North).

FBPP: No acknowledgements.

Fenland (Metabochip/GWAS): The Fenland Study is funded by the Wellcome Trust and the Medical Research Council (MC_U106179471). We are grateful to all the volunteers for their time and help and to the General Practitioners and practice staff for assistance with recruitment. We thank the Fenland Study Investigators, Fenland Study Co-ordination team and the Epidemiology Field, Data and Laboratory teams.

FIN-D2D (2007): The FIN-D2D study has been financially supported by the hospital districts of Pirkanmaa, South Ostrobothnia, and Central Finland, the Finnish National Public Health Institute (current National Institute for Health and Welfare), the Finnish Diabetes Association, the Ministry of Social Affairs and Health in Finland, the Academy of Finland (grant number 129293),Commission of the European Communities, Directorate C-Public Health (grant agreement no. 2004310) and Finland’s Slottery Machine Association.

FTC (Finnish Twin Cohort): This study was funded through ENGAGE (European Network for Genetic and Genomic Epidemiology), FP7-HEALTH-F4-2007, grant agreement number 201413; Academy of Finland (265240, 263278).

FRAM: This research was conducted in part using data and resources from the Framingham Heart Study of the National Heart Lung and Blood Institute of the National Institutes of Health and Boston University School of Medicine. The analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHAR-e) project. This work was partially supported by the National Heart, Lung and Blood Institute’s Framingham Heart Study (Contract No. N01-HC-25195) and its contract with Affymetrix, Inc for genotyping services (Contract No. N02-HL-6-4278). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson...
Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. This research was partially supported by grant R01-DK089256 from the National Institute of Diabetes and Digestive and Kidney Diseases (MPIs: Ingrid B. Borecki, L. Adrienne Cupples, Kari North).

FUSION GWAS cases and controls: Support for FUSION was provided by NIH grants R01-DK062370 (to M.B.), R01-DK072193 (to K.L.M.), and intramural project number 1Z01-HG000024 (to F.S.C.). Genome-wide genotyping was conducted by the Johns Hopkins University Genetic Resources Core Facility SNP Center at the Center for Inherited Disease Research (CIDR), with support from CIDR NIH contract no. N01-HG-65403.

FUSION Stage 2 cases and controls: Support for FUSION was provided by NIH grants R01-DK062370 (to M.B.), R01-DK072193 (to K.L.M.), and intramural project number 1Z01-HG000024 (to F.S.C.). Genome-wide genotyping was conducted by the Johns Hopkins University Genetic Resources Core Facility SNP Center at the Center for Inherited Disease Research (CIDR), with support from CIDR NIH contract no. N01-HG-65403.

GEFOS Consortium: The Genetic Factors for Osteoporosis (GEFOS) consortium have been funded by the European Commission (HEALTH-F2-2008-201865-GEFOS)

GENIE Consortium: The GENIE Consortium is supported by NIH NIDDK R01 DK081923, a US Ireland R&D partnership award funded by Science Foundation Ireland under Grant No.SFI/08/US/B1517, the Northern Ireland Research Development office, and the Juvenile Diabetes Research Foundation (JDRF). The Warren 3/UK GoKinD Study Group was jointly funded by Diabetes UK and the JDRF. The FinnDiane Study Group consists of A.Ahola, E. Fagerholm, M. Feodoroff, C. Fogarty, C. Forsblom, D. Gordin, PH. Groop, V. Harjutsalo, O. Heikkilä, E. Hietala, K. Hietala, S. Hägg, J. Kytö, M. Lassenius, S. Lindh, M. Lehto, R. Lithovius, VP. Mäkinen, M. Parkkonen, L. Peräneva, K. Pettersson-Fernholm, J. Pihlman, M. Rahkonen, M. Rosengård-Bärlund, A. Sandelin, A-R Salonen, N. Sandholm, L. Salovaara, M. Saraheiro, R. Simonsen, T. Soppela, A. Soro-506 Paavonen, N. Ström, A. Syreeni, J. Söderlund, L. Thorn, H. Tikkanen, N. Tolonen, J. Tuomikangas, N. Vuori, J. Wadén. The FinnDiane Study was supported by grants from the Folkhälans Research Foundation, the Wilhelm and Else Stockmann Foundation, Liv och Hälsa Foundation, Helsinki University Central Hospital Research Funds (EVO), the Sigrid Juselius Foundation, the Signe and Ane Gyllenberg Foundation, Finska Läkaresällskapet, Academy of Finland (134379), Tekes, and the European Union's Seventh Framework Program (FP7/2007-2013) for the Innovative Medicine Initiative under grant agreement n° IMI/115006 (the SUMMIT consortium). Rany Salem was supported by a JDRF post-doctoral fellowship (#3-2011-70). We acknowledge the physicians, nurses and researchers at each center participating in the collection of participants, and we are grateful to our colleagues at the Renal Unit, Mater Misericordiae University Hospital, Dublin, Ireland.

GenNet: We would like to acknowledge and thank all participants in the GenNet study. Our work was funded by the NHLBI grant U10 HL054512. Georg Ehret is additionally funded by the University of Geneva, the Swiss National Foundation, and the Foundation pour Recherches Medicales, Geneva, Switzerland.
GLACIER: The GLACIER (Gene-Lifestyle interactions And Complex traits Involved in Elevated disease Risk Study) Study was funded by grants from the Swedish Diabetes Association, Swedish Heart-Lung Foundation, Swedish Research Council, Medical Research Foundation of Umeå University, and Novo Nordisk (all to PWF). We thank the participants for their outstanding contributions to the GLACIER Study. We also thank the staff of the Umeå Medical Biobank, especially Åsa Agren, John Hutilainen, and Ann-Marie Ahren for data retrieval and organisation and Kerstin Enqusit and Tore Johansson for expert assistance with DNA extraction and plating. The GLACIER Study is nested within the Västerbottens Intervention Project (VIP); we thank the staff of the VIP Study for phenotype data collection, particularly Lars Wennehall who leads the VIP Study. Inês Barroso acknowledges funding from the Wellcome Trust grant 07 WT098051, United Kingdom NIHR Cambridge Biomedical Research Centre and the MRC Centre for Obesity and Related Metabolic Diseases. We would like to thank Emma Gray, Douglas Simpkin, Sarah Hunt and staff of the WTSI Sample Logistics, Genotyping and Variation Informatics Facilities. The authors would like to thank Sarah Edkins, Douglas Simpkin and staff of the WTSI genotyping facility.

GOOD: Financial support was received from the Swedish Research Council, the Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Torsten and Ragnar Söderberg’s Foundation, the Novo Nordisk Foundation, and the European Commission grant HEALTH-F2-2008-201865-GEFOS.

GxE: Our chief acknowledgement is to the participants in these studies for their willingness to contribute. We also thank Nurses Orgen Brown and Diedre Thomas for assistance with recruitment as well as past and present Laboratory technologists and drivers at TMRU for their invaluable technical assistance. This work was supported by NIH Grants R01HL53353 and R01DK075787.

H2000 GENMETS Sub Sample (Health 2000: Health and Functional Capacity of Finns) - a national health survey) - We would like to thank all H2000 cohort participants. The Health 2000 Study was funded by the National Institute for Health and Welfare (THL), the Finnish Centre for Pensions (ETK), the Social Insurance Institution of Finland (KELA), the Local Government Pensions Institution (KEVA) and other organizations listed on the website of the survey (http://www.terveys2000.fi). We also want to thank the Sanger Institute for genotyping the GenMets subcohort.

HBCS (Helsinki Birth Cohort Study): We thank all study participants as well as everybody involved in the Helsinki Birth Cohort Study. Helsinki Birth Cohort Study has been supported by grants from the Academy of Finland, the Finnish Diabetes Research Society, Folkhälans Research Foundation, Novo Nordisk Foundation, Finska Läkaresällskapet, Signe and Ane Gyllenberg Foundation, Ahokas Foundation, Emil Aaltonen Foundation, Juho Vainio Foundation, and Wellcome Trust (grant number WT089062).

Health ABC: The Health ABC Study was supported by NIA contracts N01AG62101, N01AG62103, and N01AG62106 and, in part, by the NIA Intramural Research Program. The genome-wide association study was
funded by NIA grant 1R01AG032098-01A1 to Wake Forest University Health Sciences and genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. This study utilized the high-performance computational capabilities of the Biowulf Linux cluster at the National Institutes of Health, Bethesda, Md. (http://biowulf.nih.gov).

HERITAGE Family Study: The HERITAGE Family Study has been funded by National Heart, Lung, and Blood Institute grants HL-45670, HL-47323, HL-47317, HL-47327, and HL-47321 (to C. Bouchard, T. Rankinen, D.C. Rao, Arthur Leon, James Skinner, and Jack Wilmore). Thanks are expressed to Drs. Arthur Leon, James Skinner, and Jack Wilmore for their contributions to the data collection. C. Bouchard is partially funded by the John W. Barton, Sr. Chair in Genetics and Nutrition. We thank Ms. Jessica Watkins and Ms. Kathryn Cooper for their expert contributions to GWAS and replication genotyping and DNA bank maintenance.

Heinz Nixdorf Recall (HNR) Study: We thank the Heinz Nixdorf Foundation, Germany, for their generous funding of this study. We acknowledge the support of the Sarstedt AG & Co. (Nümbrecht, Germany) concerning laboratory equipment. We thank Prof. Susanne Moebus (Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, Germany) and Prof. Dirk Schadendorf (Clinic Department of Dermatology, University Hospital Essen, Essen, Germany). We are also thankful to Prof. Markus M Nöthen (Institute of Human Genetics, University of Bonn, Bonn, Germany and Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany) for his support in carrying out the genotyping.

HUNT2: The Nord-Trøndelag Health Study (The HUNT Study) is a collaboration between HUNT Research Centre (Faculty of Medicine, Norwegian University of Science and Technology NTNU), Nord-Trøndelag County Council, Central Norway Health Authority, and the Norwegian Institute of Public Health.

HyperGEN: The Hypertension Genetic Epidemiology Network is funded by cooperative agreements (U10) with NHLBI: HL54471, HL54472, HL54473, HL54495, HL54496, HL54497, HL54509, HL54515 and by R01 HL55673.
HYPERGENES: The HYPERGENES study was funded under HYPERGENES (FP7 - HEALTH-F4-2007-201550) and INTEROMICS (MIUR - CNR Italian Flagship Project).

The HYPERGENES consortium members that took part include, 1) University of Milano and Fondazione Filarete with Daniele Cusi, Project Coordinator, Cristina Barlassina, Erika Salvi, Sara Lupoli, Maurizio Marconi, Gianna Petrini, Vincenzo Toschi; 2) Katholieke Universiteit Leuven, with Jan A. Staessen, Yumei Gu, Lotte Jacobs, Yu Jin, Tatiana Kuznetsova, Yanping Liu, Lutgarde Thijs, Zhenyu Zhang; 3) Jagiellonian University Medical College, Krakow, with Kalina Kawecka-Jaszcz, Katarzyna Stolarz, Agnieszka Olszanecka, Wiktoria Wojciechowska; 4) IBM Israel – Science and Technology LTD, with Amnon Shabo, Ariel Frakash, Simona Cohen, Boaz Carmeli, Dan Pelleg, Michal Rosen-Zvi, Hani Neuvrith-Telem; 5) I.M.S. – Istituto di Management Sanitario S.r.l., Milan, with Pietro Conti, Costanza Conti, Mariella D’Alessio; 6) Institute of Internal Medicine, Siberian Branch of Russian Academy of Medical Sciences, Novosibirsk, with Yuri Nikitin, Sofia Malyutina, M. Voevoda, Andrew Ryabikov, E. Pello, Maxim Ryabikov; 7) Imperial College of Science, Technology and Medicine, with Paolo Vineis and Clive J Hoggart; 8) INSERM – Institut National de la Santé et de la Recherche Médicale U772, with Xavier Jeunemaitre, Pierre-François Plouin, Anne-Paule Gimenez-Roqueplo, Rosa Vargas-Poussou, Geneviève Beaurain; 9) University of Warwick. Cardiovascular Medicine & Epidemiology Group, Clinical Sciences Research Institute, with Francesco P Cappuccio, Michelle A Miller, Chen Ji; 10) Hypertension and Related Diseases Centre-AOU, University of Sassari Medical School, with Nicola Glorioso, Chiara Maria Troffa, Giuseppe Argiolas, Francesca Fau, Silvia Pitzoi, Roberta Zaninello and Maria Francesca Ortu; 11) STMICROELECTRONICS SRL, with Enrico Rosario Alessi; 12) Universite de Lausanne. Department of Medical Genetics, with Carlo Rivolta, Jacques S. Beckmann, Zoltan Kutilak, Paola Benaglio; 13) Pharmext S.A.S., Paris, with Daniel Cohen and Ilya Chumakov; 14) Softeco Sismat Spa, Genova, with Stefano Bianchi; 15) Shanghai Institute of Hypertension, with Jiguang Wang and Li Yan; 16) Charles University in Prague. Department of Internal Medicine II, Pilsen, with Jan Filipovsky, Otto Mayer, Milan Hromadka, Jitka Seidlerova, Milena Dolejsova, Lukas Handl; 17) Università degli Studi di Padova. Department of Clinical and Experimental Medicine, with Edoardo Casiglia, Valerie Tikhonoff, Laura Schiavon, Anna Bascelli, Elisa Pagnin; 18) Medical University of Gdansk. Hypertension Unit, Department of Hypertension and Diabetology, with Krzysztof Narkiewicz, Marzena Chrostowska, Radoslaw Szczech, Michal Hoffmann; and 19) University Vita-Salute San Raffaele, with Paolo Manunta, Chiara Lanzani, Maria Teresa Sciarone, Lorena Citterio, Laura Zagato.

Improve: This study was supported by the European Commission (LSHM-CT- 2007- 037273), the Swedish Heart-Lung Foundation, the Swedish Research Council (8691), the Knut and Alice Wallenberg Foundation, the Foundation for Strategic Research, the Torsten and Ragnar Söderberg Foundation, the Strategic Cardiovascular Programme of Karolinska Institutet and the Stockholm County Council and the Stockholm County Council (560183). S. E. Humphries is funded by The British Heart Foundation (PG008/08),
and is supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre.

InCHIANTI: The InCHIANTI study baseline (1998-2000) was supported as a "targeted project" (ICS110.1/RF97.71) by the Italian Ministry of Health and in part by the U.S. National Institute on Aging (Contracts: 263 MD 9164 and 263 MD 821336); the InCHIANTI Follow-up 1 (2001-2003) was funded by the U.S. National Institute on Aging (Contracts: N.1-AG-1-1 and N.1-AG-1-2111)

KORA Studies (Cooperative Health Research in the Region of Augsburg, Kooperative Gesundheitsforschung in der Region Augsburg) - The KORA research platform was initiated and financed by the Helmholtz Zentrum München - German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Furthermore, KORA research was supported within the Munich Center of Health Sciences (MC Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ. Part of this project was supported by BMBF grant number 01GS0823 and grant number 01GS0834 (German National Genome Research Network, NGFNPlus)

Leipzig adults: This work was supported by grants from the German Research Council (SFB- 1052 “Obesity mechanisms”), from the German Diabetes Association and from the DHFD (Diabetes Hilfs- und Forschungsfonds Deutschland). Peter Kovacs is funded by the Boehringer Ingelheim Foundation. IFB AdiposityDiseases is supported by the Federal Ministry of Education and Research (BMBF), Germany, FKZ: 01EO1001. This work was further supported by the Kompetenznetz Adipositas (Competence network for Obesity) funded by the Federal Ministry of Education and Research (German Obesity Biomaterial Bank; FKZ 01GI1128). Inga Prokopenko was funded in part through the European Community's Seventh Framework Programme (FP7/2007-2013), ENGAGE project, and grant agreement HEALTH-F4-2007-201413.

LifeLines: The LifeLines Cohort Study, and generation and management of GWAS genotype data for the LifeLines Cohort Study is supported by the Netherlands Organization of Scientific Research NWO (grant 175.010.2007.006), the Economic Structure Enhancing Fund (FES) of the Dutch government, the Ministry of Economic Affairs, the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the Northern Netherlands Collaboration of Provinces (SNN), the Province of Groningen, University Medical Center Groningen, the University of Groningen, Dutch Kidney Foundation and Dutch Diabetes Research Foundation. We thank Behrooz Alizadeh, Annemieke Boesjes, Marcel Bruinenberg, Noortje Festen, Pim van der Harst, Ilja Nolte, Lude Franke, Mitra Valimohammadi for their help in creating the GWAS database, and Rob Bieringa, Joost Keers, René Oostergo, Rosalie Visser, Judith Vonk for their work related to data-collection and validation. The authors are grateful to the study participants, the staff from the LifeLines Cohort Study and Medical Biobank Northern Netherlands, and the participating general practitioners and pharmacists.
LLS: The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2011) under grant agreement number 259679. This study was financially supported by the Innovation-Oriented Research Program on Genomics (SenterNovem IGE05007), the Centre for Medical Systems Biology and the Netherlands Consortium for Healthy Ageing (grant 050-060-810), all in the framework of the Netherlands Genomics Initiative, Netherlands Organization for Scientific Research (NWO), by Unilever Colworth and by BBMRI-NL, a Research Infrastructure financed by the Dutch government (NWO 184.021.007).

LOLIPOP: The LOLIPOP study is supported by the National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre Imperial College Healthcare NHS Trust, the NIHR Cardiovascular Biomedical Research Unit of Royal Brompton and Harefield NHS Foundation Trust, the British Heart Foundation (SP/04/002), the Medical Research Council (G0601966, G0700931), the Wellcome Trust (084723/Z/08/Z) the NIHR (RP-PG-0407-10371), European Union FP7 (EpiMigrant, 279143) and Action on Hearing Loss (G51). We thank the participants and research staff who made the study possible. LOLIPOP_EW610 study was supported by the Wellcome Trust. We thank the participants and research teams involved in LOLIPOP. LOLIPOP_EWA thanks GSK for supporting and genotyping of the data. LOLIPOP_EWP study was supported by the British Heart Foundation Grant (SP/04/002). LOLIPOP_IA610 study was supported by the Wellcome Trust. We thank the participants and research teams involved in LOLIPOP. LOLIPOP_IA317 and LOLIPOP_IAP studies were supported by the British Heart Foundation Grant (SP/04/002).

LURIC: We extend our appreciation to the participants of the LURIC study; without their collaboration, this article would not have been written. We thank the LURIC study team who were either temporarily or permanently involved in patient recruitment as well as sample and data handling, in addition to the laboratory staff at the Ludwigshafen General Hospital and the Universities of Freiburg and Ulm, Germany. LURIC has received funding from the 6th Framework Program (integrated project Bloodomics, grant LSHM-CT-2004-503485) and from the 7th Framework Program (Atheroremo, grant agreement number 201668 and RiskyCAD, grant agreement number 305739) of the European Union.

METSIM: The METSIM study was funded by the Academy of Finland (grants no. 77299 and 124243).

MICROS: In South Tyrol, the study was supported by the Ministry of Health and Department of Educational Assistance, University and Research of the Autonomous Province of Bolzano, and the South Tyrolean Sparkasse Foundation. For the MICROS study, we thank the primary care practitioners Raffaela Stocker, Stefan Waldner, Toni Pizzecco, Josef Plangger, Ugo Marcadent, and the personnel of the Hospital of Silandro (Department of Laboratory Medicine) for their participation and collaboration in the research project.
MORGAM: The MORGAM study was partly funded through the European Community’s Sixth Framework Programme Cardiogenics project, grant agreement LSHM-CT-2006-037593 and Seventh Framework Programme ENGAGE project, grant agreement HEALTH-F4-2007-201413. We would like to acknowledge the staff from the Genotyping Facilities at the Wellcome Trust Sanger Institute for genotyping the data.

PRIME: The PRIME Study was supported by grants from Inserm, Merck Sharp and Dohme-Chibret Laboratory, the French Research Agency and the Foundation Heart and Arteries. We thank the following organizations that allowed the recruitment of participants for the PRIME: the health screening centers organized by the Social Security of Lille (Institut Pasteur), Strasbourg, Toulouse, and Tourcoing; the occupational medicine services of Haute-Garonne and of the Urban Community of Strasbourg; the Association Inter-entreprises des Services Médicaux du Travail de Lille et environs; the Comité pour le Développement de la Médecine du Travail; the Mutuelle Générale des Postes, Télégraphes et Téléphones du Bas-Rhin; the Laboratoire d’Analyses de l’Institut de Chimie Biologique de la Faculté de Médecine de Strasbourg; We also gratefully acknowledge the teams of the Lille, Strasbourg and Toulouse centres for their dedicate work and relentness energy in following up their cohorts; the contribution of the members of the event validation committees: L Guize; C Morrison; M-T Guillaume; and M Giroud and the Alliance Partnership Programme for its financial support. Sites and key personnel of contributing MORGAM Centers included- **Finland:** FINRISK, National Institute for Health and Welfare, Helsinki: V. Salomaa (principal investigator), A. Juolevi, E. Vartiainen, P. Jousilahti; ATBC, National Institute for Health and Welfare, Helsinki: J. Virtamo (principal investigator), H. Kilpeläinen; MORGAM Data Centre, National Institute for Health and Welfare, Helsinki: K. Kuulasmaa (responsible person), Z. Cepaitis, A. Haukijärvi, B. Joseph, J. Karvanen, S. Kulathinal, M. Niemelä, O. Saarela; MORGAM Central Laboratory, National Institute for Health and Welfare, Helsinki: M. Perola (responsible person), P. Laiho, M. Sauramo. The ATBC Study was supported by US Public Health Service contracts N01-CN-45165, N01-RC-45035 and N01-RC-37004 from the National Cancer Institute. **France:** National Coordinating Centre, National Institute of Health and Medical Research (U258), Paris: P. Ducimetière (national coordinator), A. Bingham; PRIME/Strasbourg, Department of Epidemiology and Public Health, EA 3430, University of Strasbourg, Faculty of Medicine, Strasbourg: D. Arveiler (principal investigator), B. Haas, A. Wagner; PRIME/Toulouse, UMR INSERM 1027; and Department of Epidemiology, Toulouse University School of Medicine, Universite Paul Sabatier, Toulouse: J. Ferrières (principal investigator), J-B. Ruidavets, V. Bongard, D. Deckers, C. Saulet, S. Barrere; PRIME/Lille, Department of Epidemiology and Public Health, INSERM U744-Université Lille Nord de France – Institut Pasteur de Lille: P. Amouyel (principal investigator), M. Montaye, B. Lemaire, S. Beauchant, D. Cottel, C. Graux, N. Marecaux, C. Steclecbout, S. Szeremeta; MORGAM Laboratory, INSERM U937, Paris: F. Cambien (responsible person), L. Tiret, V. Nicaud. INSERM and InVS are acknowledged for their support. **Italy:** EPIMED Research Center Department of Clinical and Experimental Medicine. University of Insubria, Varese: M. Ferrario (principal investigator), G. Veronesi.
Research Centre on Public Health, University of Milano-Bicocca, Monza, Italy, Giancarlo Cesana. This study was supported by the Health Administration of Regione Lombardia [grant numbers 9783/1986, 41795/1993, 31737/1997, 17155/2004 and 10800/2009], for the baseline examinations and the follow-up. Paolo Brambilla and Stefano Signorini, Laboratory Medicine, Hospital of Desio are thanked for their support. United Kingdom: PRIME/Belfast, Queen's University Belfast, Belfast, Northern Ireland: F. Kee (principal investigator) A. Evans (former principal investigator), J. Yarnell, E. Gardner; MORGAM Coordinating Centre, Queen's University Belfast, Belfast, Northern Ireland: A. Evans (MORGAM coordinator), S. Cashman, F. Kee. UKCRC are acknowledged for their support. MORGAM Management Group: A. Evans (chair, Belfast, UK), S. Blankenberg (Hamburg, Germany), F. Cambien (Paris, France), M. Ferrario (Varese, Italy), K. Kuulasmaa (Helsinki, Finland), A. Palotie (Cambridge, UK), M. Perola (Helsinki, Finland), A. Peters (Neuherberg, Germany), V. Salomaa (Helsinki, Finland), H. Tunstall-Pedoe (Dundee, Scotland), P.G. Wiklund (Umeå, Sweden); Previous members: K. Asplund (Stockholm, Sweden), L. Peltonen (Helsinki, Finland), D. Shields (Dublin, Ireland), B. Stegmayr (Umeå, Sweden).

MuTHER consortium (TwinsUK): The study was funded by the Wellcome Trust; European Community’s Seventh Framework Programme (FP7/2007-2013). The study also receives support from the National Institute for Health Research (NIHR) BioResource Clinical Research Facility and Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King's College London. Tim Spector is holder of an ERC Advanced Principal Investigator award. SNP Genotyping was performed by The Wellcome Trust Sanger Institute and National Eye Institute via NIH/CIDR.

NESDA: Netherlands Study of Depression and Anxiety (NESDA) funding was obtained through the Geestkracht program of the Netherlands Organization for Health Research and Development (Zon-MW, grant number 10-000-1002), Center for Medical Systems Biology (CSMB, NWO Genomics), NBIC/BioAssist/RK(2008.024), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI–NL), the VU University’s Institute for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam (NCA), the European Community’s Seventh Framework Program ENGAGE (HEALTH-F4-2007-201413), and the National Institutes of Health (Grand Opportunity grants 1RC2MH089951-01 and 1RC2 MH089995-01). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health.

NFBC66: NFBC1966 received financial support from the Academy of Finland (project grants 104781, 120315, 129269, 129418, 1114194, 24300796, Center of Excellence in Complex Disease Genetics and SALVE), University Hospital Oulu, Biocenter, University of Oulu, Finland (75617), NHLBI grant 5R01HL087679-02 through the STAMPEED program (1RL1MH083268-01), NIH/NIMH (5R01MH63706:02), ENGAGE project and grant agreement HEALTH-F4-2007-201413, and the Medical Research Council, UK (G0500539, G0600705, G1002319, PrevMetSyn/SALVE). The DNA extractions, sample quality controls,
biobank up-keeping and aliquotting was performed in the National Public Health Institute, Biomedicum Helsinki, Finland and supported financially by the Academy of Finland and Biocentrum Helsinki. We thank the late Professor Paula Rantakallio (launch of NFBC1966), and Ms Outi Tornwall and Ms Minttu Jussila (DNA biobanking). The authors would like to acknowledge the contribution of the late Academian of Science Leena Peltonen.

NHS & HPFS: These studies were funded by NIH U01CA-098233, R01HL71981, DK091718, DK046200.

NSHD: The MRC National Survey of Health and Development (NSHD) was funded by the Medical Research Council (MC_UU_12019/1). We are very grateful to the members of this birth cohort for their continuing interest and participation in the study. We would also like to acknowledge the Swallow Group, UCL, who performed the DNA extractions (PMID 16759176, Rousseau et al., 2006).

NTR (Netherlands Twin Registry): Funding was obtained from the Netherlands Organization for Scientific Research (NWO: MagW/ZonMW grants 904-61-090, 985-10-002, 904-61-193,480-04-004, 400-05-717, Addiction-31160008, Middelgroot-911-09-032, Spinozapremie 56-464-14192), Center for Medical Systems Biology (CSMB, NWO Genomics), NBIC/BioAssist/RK(2008.024), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI –NL, 184.021.007), the VU University’s Institute for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam (NCA), the European Science Foundation (ESF, EU/QLRT-2001-01254), the European Community’s Seventh Framework Program (FP7/2007-2013), ENGAGE (HEALTH-F4-2007-201413); the European Science Council (ERC Advanced, 230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA), and the National Institutes of Health (NIH, R01D0042157-01A, Grand Opportunity grants 1RC2MH089951-01 and 1RC2 MH089995-01). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health.

ORCADES: ORCADES was supported by the Chief Scientist Office of the Scottish Government, the Royal Society, the MRC Human Genetics Unit, Arthritis Research UK and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947). DNA extractions were performed at the Wellcome Trust Clinical Research Facility in Edinburgh. We would like to acknowledge the invaluable contributions of Lorraine Anderson and the research nurses in Orkney, the administrative team in Edinburgh and the people of Orkney.

PIVUS: Genotyping was performed by the SNP&SEQ Technology Platform in Uppsala (www.genotyping.se). We thank Tomas Axelsson, Ann-Christine Wiman and Caisa Pöntinen for their excellent assistance with genotyping. The SNP Technology Platform is supported by Uppsala University, Uppsala University Hospital and the Swedish Research Council for Infrastructures. E.I. is supported by grants from the Swedish Research Council, the Swedish Heart-Lung Foundation, the Swedish Foundation for Strategic Research, and the Royal Swedish Academy of Science.
PREVEND: PREVEND genetics is supported by the Dutch Kidney Foundation (Grant E033), the National Institutes of Health (grant LM010098), The Netherlands Organization for Scientific Research (NWO-Groot 175.010.2007.006, NWO VENI grant 916.761.70 and 916.10.117, ZonMW 90.700.441), and the Dutch Inter University Cardiology Institute Netherlands. N. Verweij is supported by the Netherlands Heart Foundation (grant NHS2010B280).

PROCARDIS (Precocious Coronary Artery Disease Consortium): PROCARDIS was supported by the European Community Sixth Framework Program (LSHM-CT-2007-037273), AstraZeneca, the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the Swedish Heart-Lung Foundation, the Torsten and Ragnar Söderberg Foundation, the Strategic Cardiovascular Program of Karolinska Institutet and Stockholm County Council, the Foundation for Strategic Research and the Stockholm County Council (560283). M.F. and H.W. acknowledge support from the Oxford British Heart Foundation Centre of Research Excellence and a Wellcome Trust core award (090532/Z/09/Z).

PROMIS: This work was funded by the Wellcome Trust (core grant 098051). We would like to thank the members of the Wellcome Trust Sanger Institute Genotyping Facility.

QFS: The Quebec Family Study (QFS) was funded by multiple grants from the Medical Research Council of Canada and the Canadian Institutes for Health Research. This work was supported by a team grant from the Canadian Institutes for Health Research (FRCN-CCT-83028).

RISC: The RISC Study is partly supported by EU grant QLG1-CT-2001-01252. Additional support for the RISC Study has been provided by AstraZeneca (Sweden).

RSI/RSII/RSIII: The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. The generation and management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012). This study is funded by the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) project nr. 050-060-810. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein Peters for their help in creating the GWAS database, and Karol Estrada and Maksim V. Struchalin for their support in creation and analysis of imputed data. We would like to thank Karol Estrada, Dr. Fernando Rivadeneira, Dr. Tobias A. Knoch, Anis Aboueiris, Luc V. de Zeeuw, and Rob de Graaf (Erasmus MC Rotterdam, The Netherlands), for their help in creating GRIMP, and BigGRID, MediGRID, and Services@MediGRID/D-Grid, (funded by the German Bundesministerium fuer Forschung und Technology;
grants 01 AK 803 A-H, 01 IG 07015 G) for access to their grid computing resources. O.H. Franco works in ErasmusAGE, a center for aging research across the life course funded by Nestlé Nutrition (Nestec Ltd.); Metagenics Inc.; and AXA. Nestlé Nutrition (Nestec Ltd.); Metagenics Inc.; and AXA had no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review or approval of the manuscript.

SardiNIA: We thank all the volunteers who generously participated in this study, Monsignore Piseddu, Bishop of Ogliastra and the mayors and citizens of the Sardinian towns (Lanusei, Ilbono, Arzana, and Elini). This research was supported in part by the Intramural Research Program of the National Institute on Aging (NIA), National Institutes of Health (NIH). The SardiNIA (“Progenia”) team was supported by Contract NO1-AG-1–2109 from the NIA; the efforts of GRA were supported in part by contract 263-MA-410953 from the NIA to the University of Michigan and by research grant HG002651 and HL084729 from the NIH (to GRA).

SCARFSHEEP: The Swedish Heart-Lung Foundation, the Swedish Research Council, the Strategic Cardiovascular Programme of Karolinska Institutet and the Stockholm County Council, the Strategic support for epidemiological research at Karolinska Institutet and the Stockholm County Council

SHIP/SHIP-TREND: SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania, and the network ‘Greifswald Approach to Individualized Medicine (GANI_MED)’ funded by the Federal Ministry of Education and Research (grant 03IS2061A). Genome-wide data have been supported by the Federal Ministry of Education and Research (grant no. 03ZIK012) and a joint grant from Siemens Healthcare, Erlangen, Germany and the Federal State of Mecklenburg-West Pomerania. The University of Greifswald is a member of the ‘Center of Knowledge Interchange’ program of the Siemens AG and the Caché Campus program of the InterSystems GmbH.

Sorbs: This work was supported by grants from the German Research Council (SFB- 1052 “Obesity mechanisms”), from the German Diabetes Association and from the DHFD (Diabetes Hilfs- und Forschungsfonds Deutschland). IFB AdiposityDiseases is supported by the Federal Ministry of Education and Research (BMBF), Germany, FKZ: 01EO1001. We would like to thank Knut Krohn (Microarray Core Facility of the Interdisciplinary Centre for Clinical Research, University of Leipzig) for the genotyping/analytical support and Joachim Thiery (Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig) for clinical chemistry services. We thank Nigel W. Rayner (WTCHG, University of Oxford, UK) for the excellent bioinformatics support. Reedik Mägi is funded by European Commission under the Marie Curie Intra-European Fellowship and by Estonian Government (grant #SF0180142s08).
SPT: Our chief acknowledgement is to the participants in these studies for their willingness to contribute. We also thank Nurses Orgen Brown and Diedre Thomas for assistance with recruitment as well as past and present Laboratory technologists and drivers at TMRU for their invaluable technical assistance. This work was supported by NIH Grants R01HL53353 and R01DK075787.

STR: This work was supported by grants from the US National Institutes of Health (AG028555, AG08724, AG04563, AG10175, AG08861), the Swedish Research Council, the Swedish Heart-Lung Foundation, the Swedish Foundation for Strategic Research, the Royal Swedish Academy of Science, and ENGAGE (within the European Union Seventh Framework Programme, HEALTH-F4-2007-201413). Genotyping was performed by the SNP&SEQ Technology Platform in Uppsala (www.genotyping.se). We thank Tomas Axelsson, Ann-Christine Wiman and Caisa Pöntinen for their excellent assistance with genotyping. The SNP Technology Platform is supported by Uppsala University, Uppsala University Hospital and the Swedish Research Council for Infrastructures.

Tandem: We thank the Ministry of Health of the Republic of Seychelles for continued support of this epidemiologic research and Air Seychelles and SkyChef for their logistic support in transporting equipment and samples. The study benefited from grants from the Swiss National Science Foundation (TANDEM No 31-51115.97, PROSPER 3200BO-111362/1, and 3233BO-111361/1); Murielle Bochud was supported by the Swiss School of Public Health Plus. The division of Nephrology and the Institute of Social and Preventive Medicine of Lausanne University Hospital (Lausanne, Switzerland) provided additional logistic support. Georg Ehret is additionally funded by the University of Geneva, the Swiss National Foundation, and the Foundation pour Recherches Medicales, Geneva, Switzerland.

THISEAS: Recruitment for THISEAS was partially funded by a research grant (PENED 2003) from the Greek General Secretary of Research and Technology; we thank all the dieticians and clinicians for their contribution to the project.
TRAILS: This research is part of the TRacking Adolescents' Individual Lives Survey (TRAILS). Participating centers of TRAILS include various departments of the University Medical Center and University of Groningen, the Erasmus University Medical Center Rotterdam, the University of Utrecht, the Radboud Medical Center Nijmegen, and the Parnassia Bavo group, all in the Netherlands. TRAILS has been financially supported by various grants from the Netherlands Organization for Scientific Research NWO (Medical Research Council program grant GB-MW 940-38-011; ZonMW Brainpower grant 100-001-004; ZonMw Risk Behavior and Dependence grants 60-60600-97-118; ZonMw Culture and Health grant 261-98-710; Social Sciences Council medium-sized investment grants GB-MaGW 480-01-006 and GB-MaGW 480-07-001; Social Sciences Council project grants GB-MaGW 452-04-314 and GB-MaGW 452-06-004; NWO large-sized investment grant 175.010.2003.005; NWO Longitudinal Survey and Panel Funding 481-08-013), the Dutch Ministry of Justice (WODC), the European Science Foundation (EuroSTRESS project FP-006), Biobanking and Biomolecular Resources Research Infrastructure BBMRI-NL (CP 32), and the participating universities. We are grateful to all adolescents, their parents and teachers who participated in this research and to everyone who worked on this project and made it possible. Statistical analyses were carried out on the Genetic Cluster Computer (http://www.geneticcluster.org), which is financially supported by the Netherlands Scientific Organization (NWO 480-05-003) along with a supplement from the Dutch Brain Foundation.

Tromsø: This study was supported under the University of Tromsø, Norwegian Research Council (project number 185764).

TWINGENE: This work was supported by grants from the Ministry for Higher Education, the Swedish Research Council (M-2005-1112 and 2009-2298), GenomEUtwin (EU/QLRT-2001-01254; QLG2-CT-2002-01254), NIH grant DK U01-066134, The Swedish Foundation for Strategic Research (SSF; ICA08-0047).

ULSAM: Genotyping was performed by the SNP&SEQ Technology Platform in Uppsala (www.genotyping.se). We thank Tomas Axelsson, Ann-Christine Wiman and Caisa Pöntinen for their excellent assistance with genotyping. The SNP Technology Platform is supported by Uppsala University, Uppsala University Hospital and the Swedish Research Council for Infrastructures. E.I. is supported by grants from the Swedish Research Council, the Swedish Heart-Lung Foundation, the Swedish Foundation for Strategic Research, and the Royal Swedish Academy of Science.

WGHS: The WGHS is supported by HL043851 and HL080467 from the National Heart, Lung, and Blood Institute and CA047988 from the National Cancer Institute with collaborative scientific support and funding for genotyping provided by Amgen.
WHI Metabochip: The Population Architecture Using Genomics and Epidemiology (PAGE) program is funded by the National Human Genome Research Institute (NHGRI), supported by U01HG004803 (CALiCo), U01HG004798 (EAGLE), U01HG004802 (MEC), U01HG004790 (WHI), and U01HG004801 (Coordinating Center), and their respective NHGRI ARRA supplements. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. The complete list of PAGE members can be found at http://www.pagestudy.org. The data and materials included in this report result from collaboration between the following studies: The Multiethnic Cohort study (MEC) characterization of epidemiological architecture is funded through the NHGRI PAGE program (U01HG004802 and its NHGRI ARRA supplement). The MEC study is funded through the National Cancer Institute (R37CA54281, R01 CA63, P01CA33619, U01CA136792, and U01CA98758); Funding support for the “Epidemiology of putative genetic variants: The Women’s Health Initiative” study is provided through the NHGRI PAGE program (U01HG004790 and its NHGRI ARRA supplement). The WHI program is funded by the National Heart, Lung, and Blood Institute; NIH; and U.S. Department of Health and Human Services through contracts N01WH22110, 24152, 32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-26, 42129-32, and 44221. The authors thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A full listing of WHI investigators can be found at: http://www.whiscience.org/publications/WHI_investigators_shortlist.pdf; Funding support for the Genetic Epidemiology of Causal Variants Across the Life Course (CALiCo) program was provided through the NHGRI PAGE program (U01HG004803 and its NHGRI ARRA supplement). The following studies contributed to this manuscript and are funded by the following agencies: The Atherosclerosis Risk in Communities (ARIC) Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts N01-HC-55015, N01-HC-55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, N01-HC-55022. Assistance with phenotype harmonization, SNP selection and annotation, data cleaning, data management, integration and dissemination, and general study coordination was provided by the PAGE Coordinating Center (U01HG004801-01 and its NHGRI ARRA supplement). The National Institutes of Mental Health also contributes to the support for the Coordinating Center. The PAGE consortium thanks the staff and participants of all PAGE studies for their important contributions.

Whitehall: The Whitehall-II study was supported by the Medical Research Council, the BHF, and the National Institutes of Health (R01HL36310). Whitehall-II genotyping was, in part, supported by a Medical Research Council-GlaxoSmithKline pilot program grant (ID 85374) and the BHF (PG/07/133/24260, RG/08/008, SP/07/007/23671) and a senior fellowship (FS/2005/125). S.E. Humphries is a British Heart Foundation Chair holder.
WTCCC-T2D: Genotyping and analysis was funded in part through Andrew Morris funding from the Wellcome Trust (grant numbers 081682, 098017 and 090532); Mark McCarthy funding from the Wellcome Trust (grant numbers 090532, 085301, 081917, 098381, 090367 and 083270), European Commission (HEALTH-F4-2007-201413) and MRC G0601261. C.M. Lindgren is a Wellcome Trust Research Career Development Fellow (086596/Z/08/Z). M. McCarthy is an NIHR Senior Investigator and a Wellcome Trust Senior Investigator. R. Mägi is funded by European Commission under the Marie Curie Intra-European Fellowship and by Estonian Government (grant #SF0180142s08).

YFS (Young Finns Study): The Young Finns Study has been financially supported by the Academy of Finland: grants 134309 (Eye), 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi), and 41071 (Skidi), the Social Insurance Institution of Finland, Kuopio, Tampere and Turku University Hospital Medical Funds (grant 9M048 for 9N035 for TeLeht), Juho Vainio Foundation, Paavo Nurmi Foundation, Finnish Foundation of Cardiovascular Research and Finnish Cultural Foundation, Tampere Tuberculosis Foundation and Emil Aaltonen Foundation.

Miscellaneous: R.J. Strawbridge is supported by Swedish Heart-Lung Foundation (20120600), the Tore Nilsson, Gamla Tjänarinnor and Fredrik and Ingrid Thurings foundations. T.H. Pers is supported by The Danish Council for Independent Research Medical Sciences (FSS) and the The Alfred Benzon Foundation. A.E. Justice is supported by NIH grant T32 HL007055 and an American Heart Association (AHA) Postdoctoral Fellowship. M.L. Buchkovich was supported by NIH grants R01 DA027040 and T32 GM067553 and AHA fellowship 13PRE16930025. T.S. Roman was supported by NIH T32 GM007092 and T32 HL069768. B. Kahali and E.K. Speliotes were supported by NIH K23 DK080145, the Doris Duke Foundation, Central Society for Clinical Research, Department of Internal Medicine and BBSP program, University of Michigan. E.M. Schmidt holds a National Science Foundation Open Data fellowship (NSF 0903629). A. Scherag and the CSCC were supported by the Federal Ministry of Education and Research (BMBF) Germany, FKZ: 01EO1002. B. Sennblad acknowledges funding from the Magnus Bergvall and Gamla Tjänarinnor Foundations. C.J. Willer is supported by NIH grants HL094535 and HL109946.
Contributing consortia

The ADIPOGen Consortium

Affiliations

1. Department of Epidemiology, Biostatistics and Occupational Health. Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada.
2. Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada.
3. General Medicine Division, Massachusetts General Hospital, Boston, MA, USA.
4. MRC CAiTE Centre & School of Social and Community Medicine, University of Bristol, Bristol, UK, Oakfield House, Oakfield Grove, Bristol, BS8 2BN.
5. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
6. Genetics of Complex Traits, Peninsula Medical School, University of Exeter, UK.
7. Genetics, GlaxoSmithKline, King of Prussia, PA, USA.
8. MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
10. Department of Epidemiology and Preventive Medicine, Regensburg University Medical Center, 93053 Regensburg, Germany.
55. Population Studies Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland.
56. Intramural Research Program, Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, NIH.
57. Division of General Internal Medicine, Women's Health Clinical Research Center, University of California, San Francisco, California, USA.
58. Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Germany.
59. Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany.
60. Klinikum Großhadern, Munich, Germany.
61. Harokopio University, Athens, Greece.
62. Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
63. School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
64. Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
65. Department of Rheumatology and Department of Clinical Epidemiology, Leiden, 2300 RC, The Netherlands.
66. Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA.
68. Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA.
69. Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39213, USA.
70. Medical Genetics Institute, Los Angeles, CA, USA.
71. University Institute of Social and Preventative Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland.
72. Swiss Institute of Bioinformatics, Lausanne, Switzerland.
73. Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom.
74. Department of Family and Preventive Medicine, La Jolla, CA, USA.
75. Brigham and Women's Hospital, Boston, MA 02115, USA.
76. Jackson Heart Study Coordinating Center, Jackson State University, Jackson, MS 39213, USA.
77. Section of Molecular Epidemiology, Leiden University Medical Center & The Netherlands Genomics Initiative-Sponsored by the Netherlands Consortium for Healthy Aging, Leiden, 2333 ZC, The Netherlands.
78. Baylor College of Medicine and Methodist DeBakey Heart and Vascular Center, Houston, TX, USA.
79. Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and the Department of Clinical Physiology, Turku University Hospital, Turku 20521, Finland.
80. Chronic Disease Epidemiology and Prevention Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland.
81. Diabetes Prevention Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland, Unit of General Practice, Helsinki University Central Hospital, Helsinki, Finland, Folkhalsan Research Centre, Helsinki, Finland, Vaasa Central Hospital, Vasa, Finland, Department of General Practice and Primary Health Care, University of Helsinki, Finland.
82. University of Washington, Seattle, WA, USA.
83. Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
84. Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.
85. Diabetes Research Center, Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA.
86. National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA.
87. Departments of Medicine, Human Genetics, Epidemiology and Biostatistics. Lady Davis Institute, Jewish General Hospital, McGill University Montreal, Quebec H3T 1E2, Canada.
The CARDIoGRAMplusC4D Consortium

Panos Deloukas¹, Stavroula Kanoni¹, Christina Willenborg², Martin Farrall³,4, Themistocles L Assimes⁵, John R Thompson⁶, Erik Ingelsson⁷, Danish Saleheen⁸-¹⁰, Jeanette Erdmann², Benjamin A Goldstein⁵, Kathleen Stirrups¹, Inke R König¹¹, Jean-Baptiste Cazier⁴, Åsa Johansson¹², Alistair S Hall¹³, Jong-Young Lee¹⁴, Cristen J Willer¹⁵,¹⁶, John C Chambers¹⁷, Tönu Esko¹⁸,¹⁹, Lasse Folkesen²⁰,²¹, Anuj Goel³,⁴, Elin Grundberg²², Aki S Havulinna²³, Weang K Ho¹⁰, Jemma C Hopewell²⁴,²⁵, Niclas Eriksson¹², Marcus E Kleber²⁶,²⁷, Kati Kristiansson²³, Per Lundmark²⁸, Leo-Pekka Lyytikäinen²⁹,³⁰, Suzanne Rafelt³¹, Dmitry Shunin³²-³⁴, Rona J Strawbridge²⁰,²¹, Gödelmar Thorleifsson³⁵, Emmi Tikkanen³⁶,³⁷, Natalie Van Zuydam³⁸, Benjamin F Voight³⁹, Lindsay L Waite⁴⁰, Weihua Zhang¹⁷, Andreas Ziegler¹¹, Devin Absher⁴⁰, David Altshuler⁴¹-⁴⁴, Anthony J Balmforth⁴⁵, Inês Barroso¹,⁴,⁶, Peter S Braun⁴¹,⁴⁷, Christof Burgdorf⁴⁸, Simone Claudi-Boehm⁴⁹, David Cox⁵⁰, Maria Dimitriou⁵¹, Ron Do⁴¹,⁴³, CARDIOGENICS Consortium⁵², DIAGRAM Consortium⁵², Alex S F Doney³⁸, NourEddine El Mokhtari⁵³, Per Eriksson²⁰,²¹, Kristen Fischer¹⁸, Pierre Fontanillas⁴¹, Anders Franco-Cereceda⁵⁴, Bruna Gigante⁵⁵, Leif Groop⁵⁶, Stefan Gustafsson⁷, Jörg Hager⁵⁷, Göran Hallmans⁶⁸, Bok-Ghee Han¹⁴, Sarah E Hunt¹, Hyun M Kang⁵⁹, Thomas Illig⁶⁰, Thorsten Kessler⁴⁸, Joshua W Knowles⁵, Genovefa Kolovou⁶¹, Johanna Kuusisto⁶², Claudia Langenberg⁶³, Cordelia Langford¹, Karin Leander⁵⁵, Marja-Liisa Lokki⁶⁴, Anders Lundmark²⁸, Mark I McCarthy³,⁶,⁵,⁶⁶, Christa Meisinger⁶⁷, Olle Melander⁵⁶, Evelin Mihailovⁱ⁹, Seraya Maouche⁶⁸, Andrew D Morris³⁸, Martina Müllner-Nurasyid⁶⁹-⁷², MuTHER Consortium⁵², Kjell Nikus⁷³, John F Pedersen³, N William Rayner³, Asif Rasheed⁹, Silke Rosinger⁷⁴, Diana Rubin⁵³, Moritz P Rump⁴⁸, Arne Schäfer⁷⁵, Mohan Sivananthan⁷⁶,⁷⁷, Ci Song⁷, Alexandre F R Stewart⁷⁸,⁷⁹, Sian-Tsung Tan⁸⁰, Göndumurd Thorgeirsson⁸¹,⁸², C Ellen van der Schoot⁸³, Peter J Wagner³⁶,³⁷, Wellcome Trust Case Control Consortium⁵², George A Wells⁷⁸,⁷⁹, Philipp S Wild⁸⁴,⁸⁵, Tsun-Po Yang¹, Philippe Amouyel⁸⁶, Dominique Arveiller⁶⁷, Hanneke Basart⁸⁸, Michael Boehnke⁵⁹, Eric Boerwinkle⁹⁹, Paolo Brambilla⁹⁰, Francois Cambien⁶⁸, Adrienne L Cupples⁹¹,⁹², Ulf de Faire⁵⁶, Abbas Dehghan⁹³, Patrick Diemert⁹⁴, Stephen E Epstein⁹⁵, Alun Evans⁹⁶, Marco M Ferrario⁹⁷, Jean Ferrières⁹⁸, Dominique Gauguier³,⁹⁹, Alan S Go¹⁰⁰, Alison H Goodall³¹,⁴⁷, Villi Gudnason⁸¹,¹⁰¹, Stanley L Hazen¹⁰², Hilma Holm³⁵, Carlo Iribarren¹⁰⁰, Yangsoo Jang¹⁰³, Mika Kähönen¹⁰⁴, Frank Kee¹⁰⁵, Hyo-Soo Kim¹⁰⁶, Norman Klopp⁶⁰, Wolfgang Koenig¹⁰⁷, Wolfgang Kratzer¹⁰⁸, Kari Kuuласmaа³,³⁵, Markku Laakso⁶², Reijo Laaksonen¹⁰⁸, Ji-Young Lee¹⁴, Lars Lind²⁸, Willem H Ouwehand¹,¹⁰⁹,¹¹⁰, Sarah Parish²⁴,²⁵, Jeong E Park¹¹¹, Nancy L Pedersen⁷, Annette Peters⁶⁷,¹¹², Thomas Quertermous⁵, Daniel J Rader¹¹³, Veikko Salomaa²³, Eric Schadt¹¹⁴, Svati H Shah¹¹⁵,¹¹⁶, Juha Sinisalo¹¹⁷, Klaus Stark¹¹⁸, Kari Stefansson³⁵,³⁶, David-Alexandre Trégouët⁶⁸, Jarmo Virtamo²³, Lars Wallentin¹², Nicholas Wareham⁶³, Martina E Zimmerman¹¹⁸, Markku S Nieminen¹¹⁷, Christian Hengstenberg¹¹⁸, Manjinder S Sandhu¹,⁶³, Tomi Pastinen¹¹⁹, Ann-Christine Syvänen²⁸, G Kees Hovingh⁸⁸, George Dedoussis⁵¹, Paul W Franks³,³²-³⁴,¹²⁰, Terho Lehtimäki²⁹,³⁰, Andres Metspalu¹⁸,¹⁹, Pierre A Zalloua¹²¹, Agneta Siegbahn¹², Stefan Schreiber⁹⁴, Samuli Ripatti¹,³⁷, Stefan S Blankenberg⁷⁴, Markus

Affiliations
1. Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
2. Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany.
3. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
4. Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
5. Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.
6. Department of Health Sciences, University of Leicester, Leicester, UK.
7. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
8. Center for Non-Communicable Diseases, Karachi, Pakistan.
9. Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
10. Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
11. Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Lübeck, Germany.
12. Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden.
13. Division of Cardiovascular and Neuronal Remodelling, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, UK.
14. Center for Genome Science, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Yeonje-ri, Chungwon-gun, Chungcheongbuk-do, Korea.
15. Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
16. Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA.
17. Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
18. Estonian Genome Center, University of Tartu, Tartu, Estonia.
19. Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
20. Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
21. Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
22. Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
23. Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland.
24. Clinical Trial Service Unit, University of Oxford, Oxford, UK.
25. Epidemiological Studies Unit, University of Oxford, Oxford, UK.
26. Mannheim Institute of Public Health, Social and Preventive Medicine, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany.
27. Ludwigshafen Risk and Cardiovascular Health (LURIC) Study, Freiburg, Germany.
28. Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
29. Department of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland.
30. Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere, Finland.
31. Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK.
32. Genetic & Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University Diabetes Center, Skåne University Hospital, Malmö, Sweden.
33. Department of Public Health & Clinical Medicine, Genetic Epidemiology & Clinical Research Group, Section for Medicine, Umeå University, Umeå, Sweden.
34. Department of Odontology, Umeå University, Umeå, Sweden.
35. deCODE Genetics, Reykjavik, Iceland.
36. Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland.
38. Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
39. Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
40. HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA.
41. Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
42. Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.
43. Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA.
44. Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
45. Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, UK.
46. University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK.
47. National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK.
48. Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.
49. Practice of Gynecology, Ulm University Medical Centre, Ulm, Germany.
50. Biotherapeutics and Bioinnovation Center, Pfizer, South San Francisco, California, USA.
51. Department of Dietetics–Nutrition, Harokopio University, Athens, Greece.
52. A list of members and affiliations appears in the Supplementary Note.
53. Klinik für Innere Medizin, Kreiskrankenhaus Rendsburg, Rendsburg, Germany.
54. Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
55. Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
56. Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, University Hospital Malmö, Malmö, Sweden.
57. CEA–Genomics Institute, National Genotyping Centre, Paris, France. Commissariat à l’énergie atomique et aux energies alternatives.
58. Department of Public Health & Clinical Medicine, Section for Nutritional Research, Umeå University, Umeå, Sweden.
59. Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan USA.
60. Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.
61. First Cardiology Department, Onassis Cardiac Surgery Center 356, Athens, Greece.
62. Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland.
63. Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK.
64. Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.
66. Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
67. Institute of Epidemiology II, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany.
68. Institut National de la Santé et la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) S937, Institute for Cardiometabolism and Nutrition (ICAN), Pierre and Marie Curie (Paris 6) University, Paris, France.
69. Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany.
70. Chair of Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany.
71. Chair of Genetic Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany.
72. Institute of Genetic Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany.
73. Heart Centre, Department of Cardiology, Tampere University Hospital, Tampere, Finland.
74. Division of Endocrinology and Diabetes, Department of Internal Medicine, Ulm University Medical Centre, Ulm, Germany.
75. Institut für Klinische Molekularbiologie, Christian-Albrechts Universität, Kiel, Germany.
76. Division of Epidemiology, Multidisciplinary Cardiovascular Research Centre (MCRC) University of Leeds, Leeds, UK.
77. Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, UK.
78. University of Ottawa Heart Institute, Cardiovascular Research Methods Centre Ontario, Ottawa, Ontario, Canada.
79. Ruddy Canadian Cardiovascular Genetics Centre, Ottawa, Ontario, Canada.
80. National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Hospital, London, UK.
81. Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
82. Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland.
83. Department of Experimental Immunohematology, Sanquin, Amsterdam, The Netherlands.
84. Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany.
85. Department of Medicine 2, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany.
86. Institut Pasteur de Lille, INSERM U744, Université Lille Nord de France, Lille, France.
87. Department of Epidemiology and Public Health, EAP30, University of Strasbourg, Strasbourg, France.
88. Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
89. Human Genetics Center, University of Texas Health Science Center, Houston, Texas, USA.
90. Department of Experimental Medicine, University of Milano–Bicocca, Monza, Italy.
91. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA.
92. National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA.
93. Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.
94. Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany.
95. Cardiovascular Research Institute, Washington Hospital Center, Washington, DC, USA.
96. Centre for Public Health, The Queen’s University of Belfast, Belfast, UK.
97. Research Centre for Epidemiology and Preventive Medicine (EPI-MED), Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy.
98. Department of Cardiology, Toulouse University School of Medicine, Rangueil Hospital, Toulouse, France.
99. INSERM UMR S872, Cordeliers Research Centre, Paris, France.
100. Division of Research, Kaiser Permanente Northern California, Oakland, California, USA.
101. Icelandic Heart Association, Kopavogur, Iceland.
102. Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
103. Cardiology Division, Department of Internal Medicine, Cardiovascular Genome Center, Yonsei University, Seoul, Korea.
104. Department of Clinical Physiology, Tampere University Hospital and University of Tampere, Tampere, Finland.
105. UK Clinical Research Collaboration (UKCRC) Centre of Excellence for Public Health (Northern Ireland), Queen’s University of Belfast, Belfast, UK.
106. Department of Internal Medicine, Cardiovascular Center, Seoul National University Hospital, Seoul, Korea.
107. Department of Internal Medicine II–Cardiology, Ulm University Medical Center, Ulm, Germany.
108. Science Center, Tampere University Hospital, Tampere, Finland.
111. Division of Cardiology, Samsung Medical Center, Seoul, Korea.
112. Munich Heart Alliance, Munich, Germany.
113. Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
114. Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA.
115. Center for Human Genetics, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
116. Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
117. Division of Cardiology, Department of Medicine, Helsinki University Central Hospital (HUCH), Helsinki, Finland.
118. Klinik und Poliklinik für Innere Medizin II, Regensburg, Germany.
119. Department of Human Genetics, McGill University, Montréal, Québec, Canada.
120. Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA.
121. Lebanese American University, Chouran, Beirut, Lebanon.
122. Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
123. Synlab Academy, Mannheim, Germany.
The CKDGen Consortium (glomerular filtration rate of creatinine and chronic kidney disase data)

Parsa, Murielle Bochud, Iris M. Heid, Wolfram Goessling, Daniel I. Chasman, W. H. Linda Kao, and Caroline S. Fox

Affiliations

1. Institute of Genetic Medicine, European Academy of Bozen/Bolzano (EURAC) and Affiliated Institute of the University of Lübeck, Bolzano, Italy
2. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
3. Renal Division, Freiburg University Clinic, Freiburg, Germany
4. Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
5. Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
6. Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
7. Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
8. Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
9. Department of Epidemiology and Preventive Medicine, Regensburg University Medical Center, Regensburg, Germany
10. Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
11. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
12. Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
13. Department of Epidemiology and Preventive Medicine, University Hospital Regensburg, Regensburg, Germany
14. Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
15. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
16. Renal Division, Freiburg University Clinic, Freiburg, Germany
17. National Heart, Lung, and Blood Institute's Framingham Heart Study and the Center for Population Studies, Framingham, Massachusetts, USA
18. Division of Nephrology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
19. Section of Preventive Medicine and Epidemiology, University Hospital Regensburg, Regensburg, Germany
20. Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
21. Centre for Medical Systems Biology, Leiden, The Netherlands
22. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
23. Icelandic Heart Association, Research Institute, Kopavogur, Iceland
24. University of Iceland, Reykjavik, Iceland
25. Department of Medicine, University of Maryland Medical School, Baltimore, Maryland, USA
26. Department of Epidemiology and Biostatistics and Department of Forensic Molecular Biology, Erasmus University Medical Centre, Rotterdam, The Netherlands
27. Clinical Research Branch, National Institute of Aging, Baltimore, Maryland, USA
28. University of Washington, Seattle, Washington, USA
29. Department of Developmental Biology, Stanford University, Stanford, California, USA
30. Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
31. Department of Epidemiology and Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
32. Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
33. Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
34. Department of Medicine, University of Leipzig, Leipzig, Germany
35. IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
36. Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
37. Inserm UMR744, Institut Pasteur, Lille, France
38. Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
39. Centre for Information-based Medicine, Hunter Medical Research Institute, Newcastle, Australia
40. Institute of Genetics and Biophysics “Adriano-Buzzati Traverso”–CNR, Napoli, Italy
<table>
<thead>
<tr>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>41. Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>42. Swiss Institute of Bioinformatics, Lausanne, Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>43. Department of Clinical Chemistry, University of Tampere and Tampere University Hospital, Centre for Laboratory Medicine Tampere Finn-Medi 2, Tampere, Finland</td>
<td>Finland</td>
</tr>
<tr>
<td>44. Estonian Genome Center of University of Tartu (EGCUT), Tartu, Estonia</td>
<td>Estonia</td>
</tr>
<tr>
<td>45. Estonian Biocenter and Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia</td>
<td>Estonia</td>
</tr>
<tr>
<td>46. Wellcome Trust Centre for Molecular Medicine, Clinical Research Centre, Ninewells Hospital, University of Dundee, Dundee, United Kingdom</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>47. Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>48. Brigham and Women's Hospital, Boston, Massachusetts, USA</td>
<td>USA</td>
</tr>
<tr>
<td>49. Institute of Population Genetics – CNR, Sassari, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>50. Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>51. Unit of Chronic Disease Epidemiology, Swiss Tropical and Public Health Institute, Basel, Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>52. Division of Genetic Epidemiology, Innsbruck Medical University, Innsbruck, Austria</td>
<td>Austria</td>
</tr>
<tr>
<td>53. Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>54. Laboratory of Epidemiology, Demography, and Biometry, NIA, Bethesda, Maryland, USA</td>
<td>USA</td>
</tr>
<tr>
<td>55. Human Genetics Center, University of Texas Health Science Center, Houston, Texas, USA</td>
<td>USA</td>
</tr>
<tr>
<td>56. Austrian Stroke Prevention Study, Institute of Molecular Biology and Biochemistry and Department of Neurology, Medical University Graz, Graz, Austria</td>
<td>Austria</td>
</tr>
<tr>
<td>57. Austrian Stroke Prevention Study, University Clinic of Neurology, Department of Special Neurology, Medical University Graz, Graz, Austria</td>
<td>Austria</td>
</tr>
<tr>
<td>58. Division of Nephrology/Tufts Evidence Practice Center, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA</td>
<td>USA</td>
</tr>
<tr>
<td>59. Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA</td>
<td>USA</td>
</tr>
<tr>
<td>60. Department of Internal Medicine/Geriiatrics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA</td>
<td>USA</td>
</tr>
<tr>
<td>61. Department of Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA</td>
<td>USA</td>
</tr>
<tr>
<td>62. Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA</td>
<td>USA</td>
</tr>
<tr>
<td>63. Abteilung Innere II, Universitätsklinikum Ulm, Ulm, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>64. Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>65. Institute of Medical Informatics, Biometry, and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>66. Klinikum Großhadern, Neuherberg, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>67. Croatian Centre for Global Health, University of Split Medical School, Split, Croatia</td>
<td>Croatia</td>
</tr>
<tr>
<td>68. Department of Genetics, Stanford University, Stanford, California, USA</td>
<td>USA</td>
</tr>
<tr>
<td>69. Department of Medicine, University of Chicago, Chicago, Illinois, USA</td>
<td>USA</td>
</tr>
<tr>
<td>70. Center for Population Health Sciences, University of Edinburgh Medical School, Edinburgh, United Kingdom</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>71. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>72. Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>73. Popgen Biobank, University Hospital Schleswig-Holstein, Kiel, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>74. Clinic for Prosthodontic Dentistry, Gerostomatology, and Material Science, University of Greifswald, Greifswald, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>75. Institute of Anatomy and Cell Biology, University of Greifswald, Greifswald, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>76. Institute of Pharmacology, University of Greifswald, Greifswald, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>77. Institute of Clinical Chemistry and Laboratory Medicine, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>78. Clinic for Internal Medicine A, University of Greifswald, Greifswald, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>79. Institute for Community Medicine, University of Greifswald, Greifswald, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>80. Department of Medicine, University of Leipzig, Leipzig, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>81. Wellcome Trust Centre for Human Genetics and Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>82. Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>83. Croatian Centre for Global Health, Faculty of Medicine, University of Split, Split, Croatia</td>
<td>Croatia</td>
</tr>
<tr>
<td>84. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom</td>
<td>United Kingdom</td>
</tr>
</tbody>
</table>
The CKDGen Consortium (urine albumin-to-creatinine ratio data)

Affiliations

1. Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany;
2. Department of Neurology, Boston University School of Medicine, Boston, Massachusetts;
3. Department of Epidemiology and the Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland;
4. Department of Epidemiology and Preventive Medicine, Regensburg University Medical Center, Regensburg, Germany;
5. Renal Division, University Hospital of Freiburg, Freiburg, Germany;
6. Division of Nephrology, University of Washington, Seattle, Washington;
7. Institute of Genetic Medicine, European Academy of Bolzano/Bozen (EURAC), Italy and Affiliated Institute of the University of Lübeck, Lübeck, Germany;
8. Division of Nephrology, Brigham and Women's Hospital and Harvard Medical School, Boston Massachusetts;
9. Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany;
10. Department of Biostatistics, Boston University School of Public Health and NHLBI’s Framingham Heart Study, Boston Massachusetts;
11. Cardiovascular Health Research Unit and Department of Biostatistics, University of Washington, Seattle, Washington;
12. University of Maryland School of Medicine, Baltimore, Maryland;
13. Medstar Research Institute, Baltimore, Maryland;
14. Clinical Research Branch, National Institute on Aging, Baltimore, Maryland;
15. Division of Nephrology, University of California, San Francisco Medical School and San Francisco VA Medical Center, San Francisco, California;
16. Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland;
17. Swiss Institute of Bioinformatics, Lausanne, Switzerland;
18. MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom;
19. NHLBI’s Framingham Heart Study and the Center for Population Studies, Framingham, Massachusetts;
20. Jackson State University, Jackson, Mississippi;
21. Loyola University, Maywood, Illinois;
22. Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
23. University of Iceland, Reykjavik, Iceland;
24. Icelandic Heart Association, Hjartavernd, Holtasmar, Kopavogur, Iceland;
25. Department of Biostatistical Sciences, Wake Forest University, Division of Public Health Sciences, Winston-Salem, North Carolina;
26. Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota;
27. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, Scotland;
28. Innsbruck Medical University, Division of Genetic Epidemiology, Innsbruck, Austria;
29. Department of Medicine, University of Leipzig, Leipzig, Germany;
30. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden;
31. Laboratory of Epidemiology, Demography, and Biometry, NIA, Bethesda, Maryland;
32. University of Maryland School of Medicine, Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland;
33. University of Maryland School of Medicine, Baltimore, Maryland;
34. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland;
35. University of North Carolina at Chapel Hill, Chapel Hill, North Carolina;
36. Human Genetics Center, University of Texas Health Science Center, Houston, Texas;
37. Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland;
38. Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland;
39. University of Pennsylvania Division of Cardiology, Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania;
40. University of Pennsylvania Renal Electrolyte and Hypertension Division, Philadelphia, Pennsylvania;
41. Departments of Epidemiology and Medicine, University of Washington, Seattle, Washington;
42. Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services and Group Health Research Institute, Group Health Cooperative, Seattle, Washington;
43. Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California;
44. Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland;
45. Genetics Division, GlaxoSmithKline, King of Prussia, Pennsylvania;
46. Center for Human Genetic Research and Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, Massachusetts, Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, and Department of Medicine, Harvard Medical School, Boston, Massachusetts;
47. Department of General Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts;
48. Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota;
49. Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania;
50. St Olav University Hospital, Trondheim, Norway;
51. Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway;
52. Molecular Medicine, Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden;
53. Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany;
54. Zentrum für Innere Medizin, Klinik für Innere Medizin II - Kardiologie, Universitätsklinikum Ulm, Ulm, Germany;
55. University Medical Centre Mannheim, 5th Department of Medicine, Mannheim, Germany;
56. NEFR Unit Université Catholique de Louvain Medical School, Brussels, Belgium;
57. Center for Public Health Genomics, Charlottesville, Virginia;
58. Department of Internal Medicine, University Medical Center, Groningen, University of Groningen, Groningen, The Netherlands;
59. First Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria;
60. Institute of Anatomy and Cell Biology, University of Greifswald, Greifswald, Germany;
61. Institute of Pharmacology, University of Greifswald, Greifswald, Germany;
62. Clinic for Prosthodontic Dentistry, Gerostomatology and Material Science, University of Greifswald, Greifswald, Germany;
63. Nephrology Clinic for Internal Medicine A, University of Greifswald, Greifswald, Germany;
64. Institute for Community Medicine, University of Greifswald, Greifswald, Germany;
65. Wellcome Trust Centre for Human Genetics, and Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, United Kingdom;
66. Centre for Population Health Sciences, University of Edinburgh, Edinburgh, Scotland;
67. University of Michigan School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, Michigan;
68. Gen-Info Ltd., Zagreb, Croatia;
69. Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts;
70. Center for Population Health Sciences, University of Edinburgh Medical School, Edinburgh, Scotland;
71. Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden;
72. University of Maryland School of Medicine, Baltimore, Maryland;
73. Welch Center for Prevention, Epidemiology & Clinical Research, Johns Hopkins University, Baltimore, Maryland;
74. General Internal Medicine, University of California, San Francisco, San Francisco, California;
75. Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Prosserman Centre for Health Research, Toronto, Ontario, Canada;
76. The Hospital for Sick Children, Toronto, Ontario, Canada;
77. Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany;
78. Klinikum Grosshadern, Munich, Germany;
79. Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland;
80. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts;
81. Institute of Physiology, University of Greifswald, Greifswald, Germany;
82. University of Mississippi Division of Nephrology, University of Mississippi, Jackson, Mississippi;
83. University Institute of Social and Preventive Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, IUMSP, Lausanne, Switzerland; and
84. Division of Endocrinology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
The GEFOS Consortium

Affiliations

1. Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
2. Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.
4. deCODE Genetics, Reykjavik, Iceland.
5. Department of Hygiene and Epidemiology, University of Ioannina, Ioannina, Greece.
6. Institute for Aging Research, Hebrew SeniorLife, Boston, USA.
7. Department of Medicine, Harvard Medical School, Boston, USA.
8. Human Genetics Group, University of Queensland Diamantina Institute, Brisbane, Australia.
9. Department of Endocrinology, Royal Brisbane and Women’s Hospital, Brisbane, Australia.
10. Rheumatic Diseases Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
11. Medical Research Council (MRC) Centre for Causal Analyses in Translational Epidemiology, University of Bristol, Bristol, UK.
12. Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA.
13. Cardiovascular Health Research Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
14. Department of Biostatistics, Boston University School of Public Health, Boston, USA.
15. Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
16. Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
17. Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK.
18. Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
19. Australian Centre for Ecogenomics, University of Queensland, Brisbane, Australia.
20. Department of Medicine, The University of Hong Kong, Hong Kong, China.
21. Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China.
22. Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA.
23. Department of Human Genetics, Lady Davis Institute, McGill University, Montreal, Canada.
24. School of Medicine and Pharmacology, University of Western Australia, Perth, Australia.
25. Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Perth, Australia.
26. Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK.
27. MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK.
28. Department of Clinical Physiology, Turku University Hospital, Turku, Finland.
29. Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.
30. Department of Medical Rehabilitation, Oulu University Hospital and Institute of Health Sciences, Oulu, Finland.
31. Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, USA.
32. Icelandic Heart Association, Kopavogur, Iceland.
33. Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
34. Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, Sydney, Australia.
35. Department of Medicine, University of New South Wales, Sydney, Australia.
36. Department of Endocrinology, St Vincents Hospital, Sydney, Australia.
37. Department of Orthopaedic Surgery, Medical School University of Thessalia, Larissa, Greece.
38. Translational Genomics Research Institute, Phoenix, USA.
39. Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, MD, USA.
40. Department of Internal Medicine, Hospital del Mar, Instituto Municipal de Investigación Médica (IMIM), Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
41. Unité de recherche en génétique humaine et moléculaire, Centre de recherche du Centre hospitalier universitaire de Québec - Hôpital St-François-d’Assise (CHUQ/HSFA), Québec City, Canada.
42. Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
43. Musculoskeletal Research Programme, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK.
44. Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark.
45. MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
46. Ufa Scientific Centre of Russian Academy of Sciences, Institute of Biochemistry and Genetics, Ufa, Russia.
47. Biological Department, Bashkir State University, Ufa, Russia.
48. Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
49. Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Athens, Greece.
50. Department of Biochemistry and Experimental Medicine, The Children’s Memorial Health Institute, Warsaw, Poland.
51. Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.
52. Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong SAR, China.
53. Department of Internal Medicine, University of Florence, Florence, Italy.
54. Department of Clinical Biochemistry, University of Ljubljana, Ljubljana, Slovenia.
55. Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
56. Department of Endocrinology, University Medical Center, Ljubljana, Slovenia.
57. Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, USA.
58. Department of Medicine, University of Cambridge, Cambridge, UK.
59. Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden.
60. Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
61. Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands.
62. Department of Internal Medicine, Division of Endocrinology and Metabolism, Medical University Graz, Graz, Austria.
63. Department of Epidemiology and Biostatistics, Extramural Geneeskundig Onderzoek (EMGO) Institute for Health and Care Research, Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands.
64. Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China.
65. Department of Genetics, University of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.
66. Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.
67. Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
68. Department of Orthopaedics and Traumatology, Kuopio University Hospital, Kuopio, Finland.
69. Center for Clinical and Basic Research (CCBR)-Synarc, Ballerup, Denmark.
70. Department of Nutrition and Dietetics, Harokopio University, Athens, Greece.
71. Robertson Center for Biostatistics, University of Glasgow, Glasgow, United Kingdom.
72. Department of Endocrinology, Odense University Hospital, Odense, Denmark.
73. Clinical Institute, University of Southern Denmark, Odense, Denmark.
74. Department of Medicine, McGill University, Montreal, Canada.
75. Department of Medicine, University of Cantabria, Santander, Spain.
76. Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla and Instituto de Formación e Investigación Marqués de Valdecilla (IFIMAV), Santander, Spain.
77. Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland.
78. Department of Clinical Physiology, University of Tampere School of Medicine, Tampere, Finland.
79. Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences and Department of Orthopaedics, Lund University, Malmö, Sweden.
80. Department of Internal Medicine, University of Manitoba, Winnipeg, Canada.
81. Department of Endocrinology, Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands.
82. Extramuraal Geneeskundig Onderzoek (EMGO) Institute for Health and Care Research, Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands.
83. Department of Medical Sciences, University of Uppsala, Uppsala, Sweden.
84. Department of Pharmacology and Neuroscience, Umeå University, Umeå, Sweden.
85. Harvard Medical School, Boston, USA.
86. Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Canada.
87. The APOGEE-Net/CanGèneTest Network on Genetic Health Services and Policy, Université Laval, Québec City, Canada.
88. Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.
89. Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.
90. Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
91. Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
92. Department of Medicine, Turku University Hospital, Turku, Finland.
93. Department of Medicine, University of Turku, Turku, Finland.
94. Department of Legal Medicine, University of Cantabria, Santander, Spain.
95. Department of Human Genetics, McGill University, Montreal, Canada.
96. McGill University and Genome Québec Innovation Centre, Montreal, Canada.
97. Welcome Trust Sanger Institute, Hinxton, UK.
98. Department of Orthopedic Surgery, Akureyri Hospital, Akureyri, Iceland.
99. Institution of Health Science, University Of Akureyri, Akureyri, Iceland.
100. Department of Epidemiology and Biostatistics, Lady Davis Institute, McGill University, Montreal, Canada.
101. Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.
102. Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, USA.
103. Department of Endocrinology and Metabolism, University Hospital, Reykjavik, Iceland.
105. Department of Clinical Biochemistry, Lovisenberg Deacon Hospital, Oslo, Norway.
106. Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
107. Department of Medical Genetics, McGill University Health Centre, Montreal, Canada.
108. Division of Genetics and Rheumatology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States.
109. Program in Medical and Population Genetics, Broad Institute, Cambridge, United States.
110. Department of Epidemiology, University of Pittsburgh, Pittsburgh, USA.
111. California Pacific Medical Center, San Francisco, CA, USA.
112. National Institute for Health and Research (NIHR) Musculoskeletal Biomedical Research Unit, University of Sheffield, Sheffield, UK.
113. Department of Internal Medicine, The Ohio State University, Columbus, USA.
114. Center for Clinical and Translational Science, The Ohio State University, Columbus, USA.
115. Menzies Research Institute, University of Tasmania, Hobart, Australia.
117. Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands.
118. Department of Clinical Chemistry, Tampere University Hospital, Tampere, Finland.
119. Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere, Finland.
120. Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
121. Academic Unit of Bone Metabolism, Metabolic Bone Centre, University of Sheffield, Sheffield, UK.
122. Rural Clinical School, The University of Queensland, Toowoomba, Australia.
123. Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
124. Department of Medicine, Indiana University School of Medicine, Indianapolis, USA.
125. Department of Medicine, University of Auckland, Auckland, New Zealand.
126. Department of Medicine, University of Davis, Sacramento, CA, USA.
127. Kolling Institute, Royal North Shore Hospital, University of Sydney, Sydney, Australia.
128. Department of Psychiatry, The University of Hong Kong, Hong Kong, China.
129. Centre for Reproduction, Development and Growth, The University of Hong Kong, Hong Kong, China.
130. Geriatric Research and Education Clinical Center (GRECC), Veterans Administration Medical Center, Baltimore, MD, USA.
131. Department of Preventive Medicine, University of Tennessee College of Medicine, Memphis, TN, USA.
132. MRC Epidemiology Unit Box 285, Medical Research Council, Cambridge, UK.
133. Framingham Heart Study, Framingham, USA.
134. Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, USA.
135. Group Health Research Institute, Group Health Cooperative, Seattle, USA.
136. Medicine box 157, University of Cambridge, Cambridge, UK.
137. Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, Lady Davis Institute, McGill University, Montreal, Canada.
138. Stanford Prevention Research Center, Stanford University, Stanford, USA.
The GENIE Consortium

Affiliations

1. Folkhålsan Institute of Genetics, Folkhålsan Research Center, Biomedicum Helsinki, Helsinki, Finland.
2. Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland.
3. Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland.
4. Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
5. Endocrine Research Unit, Department of Endocrinology, Children’s Hospital, Boston, MA, USA.
6. Department of Medicine, Harvard Medical School, Boston, MA, USA.
7. Nephrology Research, Centre for Public Health, Queen’s University of Belfast, Belfast, UK.
8. Diabetes Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland.
9. Mater Misericordiae Hospital, Dublin, Ireland.
10. Division of Nephrology and Hypertension, University of Miami, Miami, FL, USA.
11. Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.
12. Institute of Clinical Medicine, Department of Internal Medicine, Biocenter Oulu and Clinical Research Center, University of Oulu, Oulu, Finland.
13. Department of Medicine, University of Toronto, Toronto, Canada.
14. Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden.
15. Wellcome Trust Centre for Molecular Medicine, University of Dundee, Dundee, Scotland, UK.
16. Computer Science, Eastern Michigan University, Ypsilanti, MI, USA.
17. Division of Nephrology, Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
19. Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
20. Department of Ophthalmology, Helsinki University Central Hospital, Helsinki, Finland.
21. Institute for Molecular Medicine Finland, Helsinki, Finland.
22. Hjelt Institute, Department of Public Health, University of Helsinki, Helsinki, Finland.
23. Unit for Sports and Exercise Medicine, Institute of Clinical Medicine, University of Helsinki, Finland.
24. South Ostrobothnia Central Hospital, 60220 Seinäjoki, Finland.
26. Centre for Vascular Prevention, Danube-University Krems, 3500 Krems, Austria.
27. Diabetes Endocrine Unit, University of Liverpool, Clinical Sciences Centre, Aintree University Hospital, Liverpool, UK.
28. Institute of Life Sciences, Swansea University, Swansea, UK.
29. Institute of Medical Sciences, University of Toronto, Toronto, Canada.
30. Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada.
31. NIDDK, National Institutes of Health, Bethesda, MD, USA.
32. Biostatistics Division, The George Washington University, Washington, DC, USA.
33. Department of Medical Endocrinology, University Hospital of Copenhagen, Copenhagen, Denmark.
34. Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark.
35. Steno Diabetes Center, Gentofte, Denmark.
36. INSERM U872, Paris-Descartes University, Pierre and Marie Curie University, Paris, France.
37. CHU Sart Tilman, Liège, Belgium.
38. CHU Bordeaux, Bordeaux, France.
40. INSERM U 695, Université Denis Diderot Paris 7, Paris, France.
41. INSERM UMR_S 937, ICAN Institute for Cardiometabolism and Nutrition, Pierre & Marie Curie University, 75013 Paris, France.
42. Complications of Diabetes Unit, Division of Metabolic and Cardiovascular Sciences, San Raffaele Scientific Institute, 20132 Milano, Italy.
43. Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
44. Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden.
45. Department of Clinical Sciences, Paediatrics, Umeå University, Umeå, Sweden.
46. Genetics Department of Bucharest University, Bucharest, Romania.
47. University of Medicine and Pharmacy of Craiova, Craiova, Romania.
48. “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania.
49. Diabetes Epidemiology and Clinical Research Section, NIDDK, Phoenix, AZ, USA.
50. Internal Medicine, Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
51. CHU Poitiers - Endocrinology, University of Poitiers, Poitiers, France.
52. INSERM CIC0802, CHU Poitiers, Poitiers, France.
53. Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Toronto, Canada.
54. Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.
55. Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
56. Regional Nephrology Unit, Level 11, Tower Block, Belfast City Hospital, Belfast, UK.
The GLGC Consortium

Affiliations

1. Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
2. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
3. Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
4. Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
5. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA
6. Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
7. Broad Institute, Program in Medical and Population Genetics, Cambridge, Massachusetts 02142, USA
8. Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
9. Science for Life Laboratory, Uppsala University, Uppsala, Sweden
10. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, United Kingdom
11. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
12. Department of Genetics, University of North Carolina, Chapel Hill, NC 27599 USA
13. Division of Preventive Medicine, Brigham and Women’s Hospital, 900 Commonwealth Ave., Boston MA 02215, USA
14. Harvard Medical School, Boston MA 02115, USA
15. Service of Medical Genetics, Lausanne University Hospital, Lausanne, Switzerland
16. Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
17. Division of Preventive Medicine and Health Services Research, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
18. Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
61. Dipartimento di Scienze Biomediche, Università di Sassari, 07100 SS, Italy
62. Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
63. Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
64. Clinical Research Branch, National Institute Health, Baltimore, MD, USA
65. deCODE Genetics/Amgen, 101 Reykjavik, Iceland
66. Department of Genetics, University of Pennsylvania - School of Medicine, Philadelphia PA, 19104, USA
67. Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania - School of Medicine, Philadelphia PA, 19104, USA
68. Human Genetics Center, University of Texas Health Science Center - School of Public Health, Houston, TX 77030, USA
69. HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
70. MRC Unit for Lifelong Health and Ageing, 33 Bedford Place, London, WC1B 5JU, United Kingdom
71. Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
72. Ealing Hospital, Southall, Middlesex UB1 3HW, United Kingdom
73. MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
74. University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Level 4, Institute of Metabolic Science, Box 289 Addenbrooke’s Hospital Cambridge CB2 0QQ, UK
75. Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
76. Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
77. Department of Experimental Medicine, University of Milano Bicocca, Italy
78. MedStar Health Research Institute, 6525 Belcrest Road, Suite 700, Hyattsville, MD 20782, USA
79. Research Centre on Public Health, University of Milano Bicocca, Italy
80. Department of Dietetics-Nutrition, Harokopio University, 70 El. Venizelou Str, Athens, Greece
81. Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg 85764, Germany
82. Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg 85764, Germany
83. Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, UK
84. The Laboratory in Mjódd, 108 Reykjavik, Iceland
85. Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
86. Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
87. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg 85764, Germany
88. Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX3 7LJ, United Kingdom
89. Department of Public Health and Clinical Medicine, Nutritional research, Umeå University, Umeå, Sweden
90. Department of Clinical Sciences/Obstetrics and Gynecology, Oulu University Hospital, Oulu, Finland
91. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, Scotland, United Kingdom
92. Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
93. Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
94. Division of Endocrinology & Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
95. Hannover Unified Biobank, Hannover Medical School, Hannover 30625, Germany
96. Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
97. Clinical Gerontology Unit, University of Cambridge, Cambridge, United Kingdom
98. Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
99. Division of Endocrine and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, School of Medicine, National Yang-Ming University, Taipei, Taiwan
100. Diabetes Prevention Unit, National Institute for Health and Welfare, 00271 Helsinki, Finland
101. The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, USA
102. The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, USA
194. Red RECAVA Grupo RD06/0014/0015, Hospital Universitario La Paz, 28046
195. Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
196. Research Unit, Kuopio University Hospital, Kuopio, Finland
197. Department of Medicine, Lausanne University Hospital, Switzerland
198. Department of Endocrinology, University of Groningen, University Medical Center Groningen, The Netherlands
199. Department of Cardiovascular Epidemiology and Population Genetics, National Center for Cardiovascular Investigation, Madrid, Spain
200. IMDEA-Alimentacion, Madrid, Spain
201. Nutrition and Genomics Laboratory, Jean Mayer-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
202. Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
203. Framingham Heart Study, Framingham, MA, USA
204. Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
205. Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
206. Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
The ICBP Consortium

Steering Committee

Gonçalo Abecasis, Murielle Bochud, Mark Caulfield (co-chair), Aravinda Chakravarti, Dan Chasman, Georg Ehret (co-chair), Paul Elliott, Andrew Johnson, Louise Johnson, Martin Larson, Daniel Levy (co-chair), Patricia Munroe (co-chair), Christopher Newton-Cheh (co-chair), Paul O’Reilly, Walter Palmas, Bruce Psaty, Kenneth Rice, Albert Smith, Harold Snider, Martin Tobin, Cornelia Van Duijn, Germaine Verwoert.

Authors

Sijbrands13,14, David Altshuler221,115, Ruth J.F. Loos23, Alan R. Shuldiner26,222, Christian Gieger157, Pierre Meneton223, Andre G. Uitterlinden13,14,15, Nicholas J. Wareham23, Vilmundur Gudnason10,11, Jerome I. Rotter161, Rainer Rettig224, Manuela Uda175, David P. Strachan50, Jacqueline C.M. Witteman13,15, Anna-Liisa Hartikainen225, Jacques S. Beckmann105,226, Eric Boerwinkle227, Ramachandran S. Vasan6,228, Michael Boehnke31, Martin G. Larson6,229, Marjo-Riitta Järvelin18,230,231,232,233, Bruce M. Psaty21,135*, Gonçalo R Abecasis19, Aravinda Chakravarti1, Paul Elliott18,233*, Cornelia M. van Duijn13,234*, Christopher Newton-Chen27,115, Daniel Levy6,16,7, Mark J. Caulfield4, Toby Johnson4

Affiliations

1. Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
2. Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Bugnon 17, 1005 Lausanne, Switzerland
3. Cardiology, Department of Specialties of Internal Medicine, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
4. Clinical Pharmacology and The Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
5. Department of Biostatistics, University of Washington, Seattle, WA, USA
6. Framingham Heart Study, Framingham, MA, USA
7. National Heart, Lung, and Blood Institute, Bethesda, MD, USA
8. Division of Preventive Medicine, Brigham and Women's Hospital, 900 Commonwealth Avenue East, Boston MA 02215, USA
9. Harvard Medical School, Boston, MA, USA
10. Icelandic Heart Association, Kopavogur, Iceland
11. University of Iceland, Reykjavik, Iceland
12. Department of Health Sciences, University of Leicester, University Rd, Leicester LE1 7RH, UK
13. Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
14. Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
15. Netherlands Consortium for Healthy Aging (NCHA), Netherlands Genome Initiative (NGI), The Netherlands
16. Center for Population Studies, National Heart Lung, and Blood Institute, Bethesda, MD, USA
17. Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
18. Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
19. Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48103, USA
20. Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
21. Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
22. Laboratory of Epidemiology, Demography, Biometry, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA
23. MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge CB2 0QQ, UK
24. Centre National de Génotypage, Commissariat à L'Energie Atomique, Institut de Génomique, Evry, France
25. Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
26. University of Maryland School of Medicine, Baltimore, MD, USA, 21201, USA
27. Center for Human Genetic Research, Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
28. Department of Twin Research & Genetic Epidemiology, King's College London, UK
29. Cardiovascular Epidemiology and Genetics, Institut Municipal d'Investigacio Medica, Barcelona Biomedical Research Park, 88 Doctor Aiguader, 08003 Barcelona, Spain
30. Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Viale Druso 1, 39100 Bolzano, Italy - Affiliated Institute of the University of Lübeck, Germany
31. Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, 48109, USA
32. Department of Cardiovascular Medicine, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
33. Clinical Research Branch, National Institute on Aging, Baltimore MD 21250, USA
34. Centre for Population Health Sciences, University of Edinburgh, EH89AG, UK
35. Centre for Population Health Sciences and Institute of Genetics and Molecular Medicine, College of Medicine and Vet Medicine, University of Edinburgh, EH8 9AG, UK
36. Croatian Centre for Global Health, University of Split, Croatia
37. Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
38. Amgen, 1 Kendall Square, Building 100, Cambridge, MA 02139, USA
39. Department of Clinical Sciences, Lund University, Malmö, Sweden
40. Department of Medicine, University of Verona, Italy
41. Ealing Hospital, London, UB1 3HJ, UK
42. Department of Medicine, University of Mississippi Medical Center, USA
43. Genetic Epidemiology Group, Epidemiology and Public Health, UCL, London, WC1E 6BT, UK
44. Center for Genome Science, National Institute of Health, Seoul, Korea
45. Department of Cardiology, University Medical Center Groningen, University of Groningen, The Netherlands
46. Departments of Epidemiology and Medicine, Johns Hopkins University, Baltimore MD, USA
47. Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad 500 007, India
48. Department of Public Health and Primary Care, University of Cambridge, CB1 8RN, UK
49. Department of Basic Medical Research and Education, and Department of Geriatric Medicine, Ehime University Graduate School of Medicine, Toon, 791-0295, Japan
50. Division of Community Health Sciences, St George's University of London, London, SW17 ORE, UK
51. Epidemiology & Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
52. Division of Biostatistics and Department of Genetics, School of Medicine, Washington University in St. Louis, Saint Louis, Missouri 63110, USA
53. Department of Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
54. Department of Preventive Medicine and Epidemiology, Loyola University Medical School, Maywood, IL, USA
55. Department of Laboratory Medicine & Institute of Human Genetics, University of California San Francisco, 513 Parnassus Ave, San Francisco CA 94143, USA
56. Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
57. Centre for Molecular Epidemiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
58. Department of Clinical Chemistry, University of Tampere and Tampere University Hospital, Tampere, 33521, Finland
59. Department of Genetics, Biology and Biochemistry, University of Turin, Via Santena 19, 10126, Turin, Italy
60. Human Genetics Foundation (HUGEF), Via Nizza 52, 10126, Turin, Italy
61. Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
62. MRC Centre for Causal Analyses in Translational Epidemiology, School of Social & Community Medicine, University of Bristol, Bristol BS8 2BN, UK
63. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
64. Complex Genetics Section, Department of Medical Genetics - DBG, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
65. Centre for Genetic Epidemiology and Biostatistics, University of Western Australia, Crawley, WA, Australia
66. HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, 7600 Levanger, Norway
67. MRC Unit for Lifelong Health & Ageing, London, WC1B 5JU, UK
68. Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
69. Centre for Cardiovascular Genetics, University College London, London WC1E 6JF, UK
70. MRC Human Genetics Unit and Institute of Genetics and Molecular Medicine, Edinburgh, EH2, UK
71. Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, UK
72. Leicester NIHR Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, LE3 9QP, UK
73. Studies Coordinating Centre, Division of Hypertension and Cardiac Rehabilitation, Department of Cardiovascular Diseases, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Block D, Box 7001, 3000 Leuven, Belgium
74. Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD 20892, USA
75. Columbia University, NY, USA
76. Department of Medicine III, Medical Faculty Carl Gustav Carus at the Technical University of Dresden, 01307 Dresden, Germany
77. Epidemiology and Biostatistics, School of Public Health, Imperial College, London, W2 1PG, UK
78. Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
79. Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
80. A list of consortium members is supplied in the Supplementary Materials
81. Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
82. Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas at Houston Health Science Center, 12 Herman Pressler, Suite 453E, Houston, TX 77030, USA
83. Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
84. Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland, USA
85. Washington Hospital Center, Division of Cardiology, Washington DC, USA
86. ALSPAC Laboratory, University of Bristol, Bristol, BS8 2BN, UK
87. Pediatric Epidemiology Center, University of South Florida, Tampa, FL, USA
88. Clinical Pharmacology Unit, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, UK
89. University of Dundee, Ninewells Hospital &Medical School, Dundee, DD1 9SY, UK
90. Genetic Epidemiology Group, Department of Epidemiology and Public Health, UCL, London WC1E 6BT, UK
91. Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia
92. Molecular Genetics, PathWest Laboratory Medicine, Nedlands, WA, Australia
93. Clinical Trial Service Unit and Epidemiological Studies Unit, University of Oxford, Oxford, OX3 7LF, UK
94. Department of Epidemiology and Biostatistics, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
95. Department of Medicine, Johns Hopkins University, Baltimore, USA
96. Department of Clinical Physiology, University of Tampere and Tampere University Hospital, Tampere, 33521, Finland
97. Department of Medicine, University of Turku and Turku University Hospital, Turku, 20521, Finland
98. Department of Nutrition, University of North Carolina, Chapel Hill, NC, 27599, USA
99. Office of Population Studies Foundation, University of San Carlos, Talamban, Cebu City 6000, Philippines
100. Department of Neurology and Framingham Heart Study, Boston University School of Medicine, Boston, MA, 02118, USA
101. Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany
102. Department of Epidemiology and Preventive Medicine, University Medical Center Regensburg, 93053 Regensburg, Germany
103. Department of Epidemiology, Johns Hopkins University, Baltimore MD, USA
104. Renal Division, University Hospital Freiburg, Germany
105. Département de Génétique Médicale, Université de Lausanne, 1015 Lausanne, Switzerland
106. Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
107. Division of Genetics, GlaxoSmithKline, Philadelphia, Pennsylvania 19101, USA
108. International Centre for Circulatory Health, National Heart & Lung Institute, Imperial College, London, UK
109. Genetics of Complex Traits, Peninsula Medical School, University of Exeter, UK
110. Department of Community Health Sciences & Department of Medicine, Aga Khan University, Karachi, Pakistan
111. Medizinische Klinik II, Universität zu Lübeck, Lübeck, Germany
112. Diabetes Unit, KEM Hospital and Research Centre, Rasta Peth, Pune-411011, Maharashtra, India
113. Department of Clinical Sciences, Diabetes and Endocrinology Research Unit, University Hospital, Malmö, Sweden
114. Lund University, Malmö 20502, Sweden
115. Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02139, USA
116. Department of Chronic Disease Prevention, National Institute for Health and Welfare, FIN-00251 Helsinki, Finland
<table>
<thead>
<tr>
<th>ID</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
<td>William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK</td>
</tr>
<tr>
<td>118</td>
<td>Merck Research Laboratory, 126 East Lincoln Avenue, Rahway, NJ 07065, USA</td>
</tr>
<tr>
<td>119</td>
<td>Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK</td>
</tr>
<tr>
<td>120</td>
<td>University of Cambridge Metabolic Research Labs, Institute of Metabolic Science Addenbrooke's Hospital, CB2 OQQ, Cambridge, UK</td>
</tr>
<tr>
<td>121</td>
<td>Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA</td>
</tr>
<tr>
<td>122</td>
<td>Cardiovascular Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA</td>
</tr>
<tr>
<td>123</td>
<td>Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA</td>
</tr>
<tr>
<td>124</td>
<td>National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA</td>
</tr>
<tr>
<td>125</td>
<td>National Institute for Health and Welfare, 00271 Helsinki, Finland</td>
</tr>
<tr>
<td>126</td>
<td>FlMM, Institute for Molecular Medicine, Finland, Biomedical, P.O. Box 104, 00251 Helsinki, Finland</td>
</tr>
<tr>
<td>127</td>
<td>Broad Institute, Cambridge, Massachusetts 02142, USA</td>
</tr>
<tr>
<td>128</td>
<td>Leibniz-Institute for Arteriosclerosis Research, Department of Molecular Genetics of Cardiovascular Disease, University of Münster, Münster, Germany</td>
</tr>
<tr>
<td>129</td>
<td>Medical Faculty of the Westfalian Wilhelms University Muenster, Department of Molecular Genetics of Cardiovascular Disease, University of Muenster, Muenster, Germany</td>
</tr>
<tr>
<td>130</td>
<td>Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA</td>
</tr>
<tr>
<td>131</td>
<td>Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta, GA, USA</td>
</tr>
<tr>
<td>132</td>
<td>Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands</td>
</tr>
<tr>
<td>133</td>
<td>Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA</td>
</tr>
<tr>
<td>134</td>
<td>Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA</td>
</tr>
<tr>
<td>135</td>
<td>Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA</td>
</tr>
<tr>
<td>136</td>
<td>Seattle Epidemiologic Research and Information Center, Veterans Health Administration Office of Research & Development, Seattle, WA 98108, USA</td>
</tr>
<tr>
<td>137</td>
<td>Department of Medicine, University of Washington, 98195, USA</td>
</tr>
<tr>
<td>138</td>
<td>Department of Cardiology, University of Tartu, L. Puusepa 8, 51014 Tartu, Estonia</td>
</tr>
<tr>
<td>139</td>
<td>Tallinn University of Technology, Institute of Biomedical Engineering, Ehitajate tee 5, 19086 Tallinn, Estonia</td>
</tr>
<tr>
<td>140</td>
<td>Centre of Cardiology, North Estonia Medical Centre, Süüste tee 19, 13419 Tallinn, Estonia</td>
</tr>
<tr>
<td>141</td>
<td>Division of Non-communicable disease Epidemiology, The London School of Hygiene and Tropical Medicine London, Keppel Street, London WC1E 7HT, UK</td>
</tr>
<tr>
<td>142</td>
<td>South Asia Network for Chronic Disease, Public Health Foundation of India, C-1/52, SDA, New Delhi 100016, India</td>
</tr>
<tr>
<td>143</td>
<td>Department of Emergency and Cardiovascular Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden</td>
</tr>
<tr>
<td>144</td>
<td>Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway</td>
</tr>
<tr>
<td>145</td>
<td>Tuscany Regional Health Agency, Florence, Italy</td>
</tr>
<tr>
<td>146</td>
<td>Tropical Medicine Research Institute, University of the West Indies, Mona, Kingston, Jamaica</td>
</tr>
<tr>
<td>147</td>
<td>University of Ibadan, Ibadan, Nigeria</td>
</tr>
<tr>
<td>148</td>
<td>Department of Genomic Medicine, and Department of Preventive Cardiology, National Cerebral and Cardiovascular Research Center, Suita, 565-8565, Japan</td>
</tr>
<tr>
<td>149</td>
<td>Department of Health Science, Shiga University of Medical Science, Otsu, 520-2192, Japan</td>
</tr>
<tr>
<td>150</td>
<td>Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan</td>
</tr>
<tr>
<td>151</td>
<td>Tohoku University Graduate School of Pharmaceutical Sciences and Medicine, Sendai, 980-8578, Japan</td>
</tr>
<tr>
<td>152</td>
<td>Lifestyle-related Disease Prevention Center, Shiga University of Medical Science, Otsu, 520-2192, Japan</td>
</tr>
<tr>
<td>153</td>
<td>Department of Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, 236-0004, Japan</td>
</tr>
<tr>
<td>154</td>
<td>Department of Statistics, Pontificia Universidad Catolica de Chile, Vicuña Mackena 4860, Santiago, Chile</td>
</tr>
</tbody>
</table>
155. Institute of Human Genetics, Helmholtz Zentrum Munich, German Research Centre for Environmental Health, 85764 Neuherberg, Germany
156. Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
157. Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Centre for Environmental Health, 85764 Neuherberg, Germany
158. Chair of Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
159. Klinikum Grosshadern, 81377 Munich, Germany
160. National Heart and Lung Institute, Imperial College London, London, UK, W12 0HS, UK
161. Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
162. Medical Population Genetics, Broad Institute of Harvard and MIT, 5 Cambridge Center, Cambridge MA 02142, USA
163. National Heart, Lung and Blood Institute and its Framingham Heart Study, 73 Mount Wayte Ave., Suite #2, Framingham, MA 01702, USA
164. Department of Neurology and Medicine, University of Washington, Seattle, USA
165. Department of Medicine (Geriatrics), University of Mississippi Medical Center, Jackson, MS, USA
166. Department of Neurology, Boston University School of Medicine, USA
167. Finnish Institute of Occupational Health, Finnish Institute of Occupational Health, Aapistie 1, 90220 Oulu, Finland
168. Wellcome Trust Centre for Human Genetics, University of Oxford, UK
169. Lapland Central Hospital, Department of Physiatrics, Box 8041, 96101 Rovaniemi, Finland
170. Center for Non-Communicable Diseases Karachi, Pakistan
171. Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
172. Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
173. Department of Medical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
174. Gerontology Research Center, National Institute on Aging, Baltimore, MD 21224, USA
175. Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
176. Unità Operativa Semplice Cardiologia, Divisione di Medicina, Presidio Ospedaliero Santa Barbara, Iglesias, Italy
177. Computational Medicine Research Group, Institute of Clinical Medicine, University of Oulu and Biocenter Oulu, 90014 University of Oulu, Oulu, Finland
178. NMR Metabonomics Laboratory, Department of Biosciences, University of Eastern Finland, 70211 Kuopio, Finland
179. Department of Internal Medicine and Biocenter Oulu, Clinical Research Center, 90014 University of Oulu, Oulu, Finland
180. Institute for Molecular Medicine Finland FIMM, 00014 University of Helsinki, Helsinki, Finland
181. Department of Biomedical Engineering and Computational Science, School of Science and Technology, Aalto University, 00076 Aalto, Espoo, Finland
182. NUS Graduate School for Integrative Sciences & Engineering (NGS) Centre for Life Sciences (CeLS), Singapore, 117456, Singapore
183. Department of Internal Medicine B, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
184. Institute of Pharmacology, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
185. Institute for Community Medicine, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
186. U557 Institut National de la Santé et de la Recherche Médicale, U1125 Institut National de la Recherche Agronomique, Université Paris 13, Bobigny, France
187. Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
188. Imperial College Cerebrovascular Unit (ICCRU), Imperial College, London, W6 8RF, UK
189. Faculty of Medicine, University of Split, Croatia
190. Department of Internal Medicine, Diabetology, and Nephrology, Medical University of Silesia, 41-800, Zabrze, Poland
191. Public Health Sciences section, Division of Community Health Sciences, University of Edinburgh, Medical School, Teviot Place, Edinburgh, EH8 9AG, UK
192. School of Science and Engineering, University of Ballarat, 3353 Ballarat, Australia
193. Prevention and Care of Diabetes, Department of Medicine III, Medical Faculty Carl Gustav Carus at the Technical University of Dresden, 01307 Dresden, Germany
194. University Hospital Münster, Internal Medicine D, Münster, Germany
195. Department of Medical Statistics, Epidemiology and Medical Informatics, Andrija Stampar School of Public Health, University of Zagreb, Croatia
196. AstraZeneca R&D, 431 83 Mölndal, Sweden
The International ENDOGENE Consortium

Carl A Anderson¹,², Scott D Gordon³, Qun Guo⁴, Anjali K Henders³, Ann Lambert⁵, Sang Hong Lee⁶, Peter Kraft⁷, Stephen H Kennedy⁵, Stuart Macgregor³, Nicholas G Martin³, Stacey A Missmer⁴, Grant W Montgomery³, Andrew P Morris¹, Dale R Nyholt³, Jodie N Painter³, Fenella Roseman⁵, Susan A Treloar⁸, Peter M Visscher⁹, Leanne Wallace³, Krina T Zondervan¹,⁵.

Affiliations

1. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
2. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
3. Queensland Institute of Medical Research, Herston, Queensland, Australia.
4. Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
6. Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
7. Harvard School of Public Health, Boston, Massachusetts, USA.
8. Centre for Military and Veterans' Health, The University of Queensland, Mayne Medical School, Queensland, Australia.
9. The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia.
The LifeLines Cohort Study

Behrooz Z Alizadeh 1, Rudolf A de Boer 2, H Marike Boezen 1, Marcel Bruinenberg 3, Lude Franke 4, Pim van der Harst 2, Hans L Hillege 1,2, Melanie M van der Klauw 5, Gerjan Navis 6, Johan Ormel 7, Dirkje S Postma 8, Judith GM Rosmalen 7, Joris P Slaets 9, Harold Snieder 1, Ronald P Stolk 1, Bruce HR Wolffenbuttel 5, Cisca Wijmenga 4

Affiliations

1. Department of Epidemiology, University of Groningen, University Medical Center Groningen, The Netherlands
2. Department of Cardiology, University of Groningen, University Medical Center Groningen, The Netherlands
3. LifeLines Cohort Study, University of Groningen, University Medical Center Groningen, The Netherlands
4. Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
5. Department of Endocrinology, University of Groningen, University Medical Center Groningen, The Netherlands
6. Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, The Netherlands
7. Interdisciplinary Center of Psychopathology and Emotion Regulation ICPE . , Department of Psychiatry, University of Groningen, University Medical Center Groningen, The Netherlands
8. Department of Pulmonology, University of Groningen, University Medical Center Groningen, The Netherlands
9. University Center for Geriatric Medicine, University of Groningen, University Medical Center Groningen, The Netherlands

Affiliations

1. Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK.
2. Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, UK.
4. Bioinformatics Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, USA.
5. Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA.
6. Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.
7. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
8. Division of Endocrinology, Diabetes and Nutrition, University of Maryland, School of Medicine, Baltimore, Maryland, USA.
9. Estonian Genome Center, University of Tartu, Tartu, Estonia.
10. Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
11. Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
12. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
13. Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
14. Université Lille Nord de France, Lille, France.
15. Le Centre national de la recherche scientifique (CNRS) UMR8199, Institut Pasteur de Lille, France.
16. Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.
17. Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden.
18. Department of Odontontology, Umeå University, Umeå, Sweden.
19. Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato, Italy.
20. Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy.
21. Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK.
22. Interuniversity Cardiology Institute of the Netherlands (ICIN), Durrer Center for Cardiogenetic Research, Utrecht, The Netherlands.
23. Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
24. Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK.
25. The Genome Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK.
26. Department of Cardiology, University of Groningen, University Medical Center Groningen, The Netherlands.
27. deCODE genetics, Reykjavik, Iceland.
28. Department of Biological Psychology, VU University & EMGO+ Institute, Amsterdam, The Netherlands.
30. Icelandic Heart Association, Kopavogur, Iceland.
31. Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
32. Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
33. Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland.
34. University of Helsinki, Institute of Molecular Medicine, Finland (FIMM), Helsinki, Finland.
35. MRC Council Centre for Causal Analyses in Translational Epidemiology (CAiTE) Centre, School of Social and Community Medicine, University of Bristol, UK.
36. School of Social and Community Medicine, University of Bristol, UK.
37. Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA.
38. Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
39. Busselton Population Medical Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.
40. School of Population Health, The University of Western Australia, Nedlands, Western Australia, Australia.
41. School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, Western Australia, Australia.
42. PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia.
43. Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA.
44. MRC Human Genetics Unit at the Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK.
45. Centre for Medical Systems Biology (CMSB), Leiden, The Netherlands.
46. Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
47. Institute of Moleculaer and Cell Biology, University of Tartu, Tartu, Estonia.
48. Centre for Population Health Sciences, University of Edinburgh, Teviot Place, Edinburgh, UK.
49. The Broad Institute of Harvard and MIT, Boston, Massachusetts, USA.
50. Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
51. Divisions of Genetics & Rheumatology, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
52. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA.
53. Boston University Data Coordinating Center, Boston, Massachusetts, USA.
54. Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.
55. The Service of Medical Genetics, CHUV, University Hospital, Lausanne Switzerland.
56. Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA.
57. Genetics, GlaxoSmithKline, Upper Merion, Pennsylvania, USA.
58. Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, USA.
60. Department of Cardiovascular Medicine, University of Oxford, Oxford, UK.
61. Centre for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany.
62. Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA.
63. Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany.
64. Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany.
65. Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
66. Department of Evolutionary Biology, Genetic Section, University of Ferrara, Ferrara, Italy.
67. Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
68. Interdisciplinary Center for Pathology of Emotions, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
69. University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
70. Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA.
71. Carolina Center for Genome Sciences, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.
72. Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.
73. Department of Public Health and Clinical Medicine, Section for Nutritional Research, Umeå University Hospital, Umeå, Sweden.
74. Pirkanmaa Hospital District, Tampere, Finland.
75. Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, Maryland, USA.
76. Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
77. Department of Epidemiology and Public Health, University College London, London UK.
78. Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
79. Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
80. Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK.
81. Department of Epidemiology, Center for Aging and Population Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
82. Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
83. Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
84. University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany.
85. Pediatric Research Center, Department of Women’s & Child Health, University of Leipzig, Leipzig, Germany.
86. School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia.
87. Pulmonary Physiology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.
88. Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
89. Netherlands Consortium for Healthy Ageing of the Netherlands (NCHAH) of the Genomics Initiative (NGI), Leiden, The Netherlands.
90. Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
91. Medical Research Institute, University of Dundee, Dundee, UK.
92. Department of Psychiatry, VU University Medical Centre, Amsterdam, The Netherlands.
93. Faculty of Medicine, University of Split, Split, Croatia.
94. U557 Institut National de la Santé et de la Recherche Médicale, U1125 Institut National de la Recherche Agronomique, Université Paris 13, Bobigny, France.
95. Department of Dietetics-Nutrition, Harokopio University, Athens, Greece.
96. Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK.
97. University of Leipzig, Interdisciplinary Center for Clinical Research, Leipzig, Germany.
99. Geriatric Department Azienda Sanitaria Firenze, Florence Italy.
100. Department Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
101. Institute of Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
102. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
103. The members of this consortium are listed in the Supplementary Note.
104. Synlab Academy, Mannheim, Germany.
105. Mannheim Institute of Public Health, Social and Preventive Medicine, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany.
106. Ludwigshafen Risk and Cardiovascular Health (LURIC) Study nonprofit LLC, Freiburg, Germany.
107. Division of Endocrinology and Diabetes, Department of Medicine, University Hospital, Ulm, Germany.
108. Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
109. Department of Neurology, General Central Hospital, Bolzano, Italy.
110. Department of Neurology, University of Lübeck, Lübeck, Germany.
111. Department of Medicine, University of Leipzig, Leipzig, Germany.
112. Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
113. Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland.
114. South Ostrobothnia Central Hospital, Seinäjoki, Finland.
115. Red RECAVA Grupo RD06/0014/0015, Hospital Universitario La Paz, Madrid, Spain.
116. Centre for Vascular Prevention, Danube-University Krems, Krems, Austria.
117. Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, California, USA.
118. Department of Physiology & Biophysics, Keck School of Medicine of USC, Los Angeles, California, USA.
119. Cardiovascular Health Research Unit, Departments of Medicine, University of Washington, Seattle, Washington, USA.
120. Group Health Research Institute, Group Health Cooperative, Seattle, Washington, USA.
121. Department of Epidemiology, University of Washington, Seattle, Washington, USA.
122. Department of Health Services, University of Washington, Seattle, Washington, USA.
123. Department of Internal Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland.
124. Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
125. Research Unit, Kuopio University Hospital, Kuopio, Finland.
126. Odense Patient data Explorative Network (OPEN), Odense, Denmark.
127. Institute of Regional Health Services Research, Odense, Denmark.
128. Hjelt Institute, Department of Public Health, University of Helsinki, Helsinki, Finland.
129. National Institute for Health and Welfare, Department of Mental Health and Substance Abuse Services, Helsinki, Finland.
130. U872 Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Paris, France.
131. Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
132. Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland, USA.
133. Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland.
134. Department of Medicine III, University of Dresden, Medical Faculty Carl Gustav Carus, Dresden, Germany.
135. Kuopio Research Institute of Exercise Medicine, Kuopio, Finland.
136. Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland.
137. Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA.
138. Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.
139. Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden.
140. Faculty of Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland.
141. Unit of General Practice, Oulu University Hospital, Oulu, Finland.
142. Finnish Diabetes Association, Tampere, Finland.
143. National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA.
144. British Heart Foundation (BHF) Building, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
145. Laboratory of Epidemiology, Demography, and Biometry, National Institute on Ageing, Bethesda, Maryland, USA.
146. Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland.
147. Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland.
148. Wellcome Trust Sanger Institute, Hinxton, UK.
149. Unit of Chronic Disease Epidemiology and Prevention, National Institute for Health and Welfare, Helsinki, Finland.
150. Inserm, Centre de recherche en Épidémiologie et Santé des Populations (CESP) Center for Research in Epidemiology and Public Health, U1018, Epidemiology of diabetes, obesity and chronic kidney disease over the lifecourse, Villejuif, France.
151. University Paris Sud 11, UMR 1018, Villejuif, France.
152. Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK.
153. Department of Clinical Sciences/Obstetrics and Gynecology, University of Oulu, Oulu, Finland.
154. Department of Lifecourse and Services, National Institute for Health and Welfare, Oulu, Finland.
155. Biocenter Oulu, University of Oulu, Oulu, Finland.
156. Department of Epidemiology and Biostatistics, School of Public Health, MRC-HPA Centre for Environment and Health, Faculty of Medicine, Imperial College London, London, UK.
157. Institute of Health Sciences, University of Oulu, Oulu, Finland.
158. Inserm U970, Paris Cardiovascular Research Center PARCC, Paris, France.
159. Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Churchill Hospital, Oxford, UK.
160. Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA.
161. General Medicine Division, Massachusetts General Hospital, Boston, Massachusetts, USA.
162. Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
163. Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA.
164. Diabetes Research Center, Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.
165. Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.
166. NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK.
167. University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK.
The MutHER Consortium

Kourosh R. Ahmadi1, Chrysanthi Ainali2, Amy Barrett3, Veronique Bataille1, Jordana T. Bell1,4, Alfonso Buil5, Panos Deloukas6, Emmanouil T. Dermitzakis5, Antigone S. Dimas4,8, Richard Durbin6, Daniel Glass1, Elin Grundberg1,6,13, Neelam Hassanali3, Åsa K. Hedman4, Catherine Ingle6, Sarah Keildson4, David Knowles7, Maria Krestyaninova8, Cecilia M. Lindgren4, Christopher E. Lowe9,10, Mark I. McCarthy3,4,11, Eshwar Meduri1,6, Paola di Meglio12, Josine L. Min4, Stephen B. Montgomery5, Frank O. Nestle12, Alexandra C. Nica5, James Nisbet6, Stephen O’Rahilly9,10, Leopold Parts6, Simon Potter6, Magdalena Sekowska6, So-Youn Shin6, Kerrin S. Small1,6, Nicole Soranzo1,6, Tim D. Spector1, Gabriela Surdulescu1, Mary E. Travers3, Loukia Tsaprouni6, Sophia Tsoka2, Alicja Wilk6, Tsun-Po Yang6, Krina T. Zondervan4

Affiliations

1. Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
2. Department of Informatics, School of Natural and Mathematical Sciences, King’s College London, Strand, London, UK
3. Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
4. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
5. Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
6. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
7. University of Cambridge, Cambridge, UK
8. European Bioinformatics Institute, Hinxton, UK
9. University of Cambridge Metabolic Research Labs, Institute of Metabolic Science Addenbrooke’s Hospital Cambridge, UK
10. Cambridge NIHR Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge, UK
11. Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
12. St. John’s Institute of Dermatology, King’s College London, London, UK
13. Department of Human Genetics, McGill University, McGill University and Genome Quebec Innovation Centre, H3A1A5 Montreal, Canada
The PAGE Consortium

Active PAGE investigators at the time of this analysis included:

Coordinating Center: Rutgers University, Piscataway, NJ: Tara Matise, Steve Buyske, Julia Higashio, Rasheeda Williams, Andrew Nato; University of Southern California, Los Angeles, CA: Jose Luis Ambite, Ewa Deelman.

NHGRI: Division of Genomic Medicine, NHGRI, NIH, Bethesda, MD: Teri Manolio, Lucia Hindorff.

CALiCo: University of North Carolina, Chapel Hill, NC: Kari E. North, Gerardo Heiss, Kira Taylor, Nora Franceschini, Christy Avery, Misa Graff, Danyu Lin, Miguel Quibrera; Baylor College of Medicine, Houston, TX: Barbara Cochran; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD: Linda Kao; Penn Medical Lab, Washington DC: Jason Umans; SW Foundation for BioMedical Research, San Antonio, TX: Shelley Cole, Jean MacCluer; University of Alabama at Birmingham, Birmingham, AB: Sharina Person; University of Minnesota, Minneapolis, MN: James Pankow, Myron Gross; University of Texas Health Science Center, Houston: Eric Boerwinkle, Myriam Fornage; University of Vermont, Burlington, VT: Peter Durda, Nancy Jenny; University of Washington, Seattle, WA: Bruce Patsy, Alice Arnold, Petra Buzkova.

MEC: University of Hawaii, Honolulu, HI: Loïc Le Marchand, Lynne Wilkens, Lani Park, Maarit Tiirikainen, Laurence Kolonel, Unhee Lim, Iona Cheng, Hansong Wang, Ralph Shohet; Keck School of Medicine, University of Southern California, Los Angeles, CA: Christopher Haiman, Daniel Stram, Brian Henderson, Kristine Monroe, Fredrick Schumacher.

WHI: Fred Hutchinson Cancer Research Institute (FHCRC), Seattle, WA: Charles Kooperberg, Ulrike Peters, Garnet Anderson, Chris Carlson, Ross Prentice, Andrea LaCroix, Chunyuan Wu, Cara Carty, Jian Gong, Stephanie Rosse, Alicia Young, Jeff Haessler, Jonathan Kocarnik, Yi Lin; Ohio State Medical Center, Columbus, OH: Rebecca Jackson; Translational Genomic Science Institute (TGen): David Duggan; University of Pittsburgh, Pittsburgh, PA: Lew Kuller.
The ReproGen Consortium (age at menopause data)

Thorsteinsdóttir,1,26 Manuela Uda,23 André G Uitterlinden,1,2,12 Cornelia M van Duijn,2 Henry Völzke,115 Anna Murray,3 Joanne M Murabito,41,42 Jenny A Visser,1 and Kathryn L Lunetta28,42

\textit{Affiliations}

1. Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
2. Netherlands Consortium of Healthy Aging, Rotterdam, the Netherlands
3. Peninsula Medical School, University of Exeter, UK
4. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
5. Division of Preventive Medicine, Brigham and Women’s Hospital, Boston USA
6. Harvard Medical School, Boston, USA
7. Department of Public Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
8. Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA
9. Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
10. deCODE Genetics, Reykjavik, Iceland
11. Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, USA
12. Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
13. Queensland Institute of Medical Research, Brisbane, Australia
14. Interfakultäres Institut für Genomforschung, Universität Greifswald, Germany
15. Estonian Genome Center, University of Tartu, Tartu, Estonia
16. Estonian Biocenter, Tartu, Estonia
17. Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
18. Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
19. Dept Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
20. Department of Public Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
21. Broad Institute of Harvard and MIT, USA
22. Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
23. Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
24. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
25. Icelandic Heart Association, Kopavogur, Iceland
26. Faculty of Medicine, University of Iceland, Reykjavik, Iceland
27. Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
28. Department of Biostatistics, Boston University School of Public Health, Boston Massachusetts, USA
29. Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
30. Department of Epidemiology, University Medical Center Groningen, University of Groningen, the Netherlands
31. Geriatric Unit, Azienda Sanitaria di Firenze, Florence, Italy
32. Croatian Science Foundation, Zagreb, Croatia
33. Department of Medical Genetics, University of Lausanne, Switzerland
34. Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois (CHUV), University Hospital, Lausanne, Switzerland
35. Faculty of Medicine, University of Split, Split, Croatia
36. Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, Utrecht, the Netherlands
37. Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
38. Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
39. Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
40. Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
41. Sections of General Internal Medicine, Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston MA, USA
42. NHLBI Framingham Heart Study, Framingham, MA, USA
43. Institute for Maternal and Child Health, IRCCS “Burlo Garofolo” Trieste, Italy
44. University of Trieste, Trieste, Italy
45. Department of Psychology, The University of Edinburgh, Edinburgh, UK
46. Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
47. EMGO+ Institute, VU Medical Centre, Amsterdam, The Netherlands
48. Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
49. Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
50. Department of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, UK
51. National Institute for Health and Welfare, Finland
52. Department of General Practice and Primary Health Care, University of Helsinki, Finland
53. Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
54. Folkhalsan Research Centre, Helsinki, Finland
55. Vasa Central Hospital, Vasa, Finland
56. Longitudinal Studies Section, Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, USA
57. Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
58. Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, NIH, Bethesda, MD, USA
59. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
60. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
61. Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Boston, Massachusetts, USA
62. MRC Human Genetics Unit at the Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
63. Washington University St.Louis, St. Louis, MO, USA
64. Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts, USA
65. Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
66. Diagnostic GP laboratory Eindhoven, Eindhoven, the Netherlands
67. Swiss Institute of Bioinformatics, Switzerland
68. Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
69. Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
70. Division of Reproductive Medicine, Department of Obstetrics & Gynaecology, Erasmus MC, Rotterdam, the Netherlands
71. MRC Centre for Causal Analysis in Translational Epidemiology, School of Social & Community Medicine, University of Bristol, UK
72. Human genetic, Genome Institute of Singapore, Singapore
73. Institute for Migration and Ethnic Studies, Zagreb, Croatia
74. Department of Biostatistics, University of Washington, Seattle, WA, USA
75. Genetics Division, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
76. Departments of Epidemiology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
77. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
78. Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, Finland
79. Genetic and Molecular Epidemiology Laboratory, McMaster University, Hamilton, ON Canada
80. Amgen, Cambridge, MA USA
81. Foundation Medicine, Inc., Cambridge MA USA
82. Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
83. Cardiovascular Disease, Merck Research Laboratory, Rahway, NJ, USA
84. Department of Clinical Health Psychology, University of Tilburg, Tilburg, the Netherlands
85. Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA USA
86. Group Health Research Institute, Group Health Cooperative, Seattle, WA USA
87. Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
88. Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
89. Lab Cardiovascular Sciences - NIA - NIH, Baltimore, USA
90. Laboratory of Neurogenetics, National Institute of Ageing, Bethesda, MD, USA
91. LifeLines Cohort Study & Biobank, University Medical Center Groningen, University of Groningen, the Netherlands
92. Geriatric Medicine Unit, University of Edinburgh, Edinburgh, UK
93. Cardiovascular Genetics Research Unit, EA4373, Université Henri Poincaré - Nancy 1, Nancy, France
94. Department of Epidemiology, Emory University, Atlanta, GA, USA
95. The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
96. Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
97. Institute of Molecular Genetics-CNR, Pavia, Italy
98. Icelandic Cancer Registry, Reykjavik, Iceland
99. Saw Swee Hock School of Public Health and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
100. Municipal Health Service Brabant-Zuidoost, Helmond, the Netherlands
101. Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia
102. Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University Hospital, Lausanne, Switzerland
103. Institute for Clinical Chemistry and Laboratory Medicine, University of Greifswald
104. Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
105. Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
106. Klinikum Grosshadern, Munich, Germany
107. POZOB Veldhoven, Veldhoven, the Netherlands
108. Department of Endocrinology, University Medical Center Groningen, University of Groningen, the Netherlands
109. Andrija Stampar School of Public Health, Medical School, University of Zagreb, Zagreb, Croatia
110. Klinik für Gynäkologie und Geburtshilfe, Universität Greifswald, Germany
111. Harvard School of Public Health, Boston, MA USA
112. Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
113. Division of Cardiology, Brigham and Women's Hospital, Boston, MA USA
114. National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
115. Institut für Community Medicine, Universität Greifswald, Germany
The ReproGen Consortium (age at menarche data)

doi:10.1038/nature14132

SUPPLEMENTARY INFORMATION

WWW.NATURE.COM/NATURE | 166

WWW.NATURE.COM/NATURE | 166

RESEARCH

doi:10.1038/nature14132

SUPPLEMENTARY INFORMATION
Affiliations

1. Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
2. Genetics of Complex Traits, Peninsula Medical School, University of Exeter, UK
3. deCODE Genetics, Reykjavik, Iceland
4. Division of Preventive Medicine, Brigham and Women's Hospital, 900 Commonwealth Avenue East, Boston MA 02215, USA
5. Harvard Medical School, Boston, Massachusetts, USA
6. Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
7. Department of Public Health, Indiana University School of Medicine, Indiana, USA
8. Melvin and Bren Simon Cancer Center, Indiana University, Indiana, USA
9. The National Heart Lung and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
10. Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
11. Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
12. Queensland Statistical Genetics, Queensland Institute of Medical Research, Brisbane, Australia
13. The University of Queensland, Brisbane, Australia
14. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
15. Estonian Genome Center, University of Tartu, Tartu, Estonia
16. Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
17. Genotyping Core Facility, Estonian Biocenter, Tartu, Estonia
18. Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
19. Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
20. Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indiana, USA
21. Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
22. Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
23. Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
24. Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
25. Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cagliari, Italy
26. Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
27. Icelandic Heart Association, Kopavogur, Iceland
28. University of Iceland, Reykjavik, Iceland
29. Netherlands Consortium of Healthy Aging, Rotterdam, the Netherlands
30. Genetic-Epidemiology Unit, Department of Epidemiology and Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
31. Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
32. Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
33. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
34. MRC Human Genetics Unit; Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
35. Scripps Genomic Medicine, The Scripps Translational Science Institute, and The Scripps Research Institute, La Jolla, CA, USA
36. Medical Genetics, Department of Reproductive Sciences and Development, University of Trieste, Trieste, Italy
37. Centre for Genetic Epidemiology and Biostatistics University of Western Australia, Australia
38. Centre for Population Health Sciences, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
39. Geriatric Unit, Azienda Sanitaria di Firenze, Florence, Italy
40. Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
41. Tulane University, New Orleans, LA, USA
42. Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, USA
43. Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
44. Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
45. Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
46. Collaborative Studies Coordinating Center, Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
47. Sections of General Internal Medicine, Preventive Medicine and Endocrinology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
48. Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
49. MRC Centre for Causal Analyses in Translational Epidemiology, Department of Social Medicine, University of Bristol, BS8 2BN, UK
50. Centre for Cancer Genetic Epidemiology, Departments of Oncology and Public Health and Primary Care, University of Cambridge, Cambridge, UK
51. MPRI, Merck & Co., Inc, 126 Lincoln Ave, Rahway, NJ 07065, USA
52. National Institute for Health and Welfare, Finland
53. Department of General Practice and Primary health Care, University of Helsinki, Finland
54. Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
55. Folkhalsan Research Centre, Helsinki, Finland
56. Longitudinal Studies Section, Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, USA
57. Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
58. Laboratory of Epidemiology, Demography, and Biometry, Intramural Research Program, National Institute on Aging, Bethesda, Maryland, USA
59. A full list of members is provided in the Supplementary Note
60. Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, USA
61. Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
62. Laboratory of Neurogenetics, National Institute of Ageing, Bethesda, MD, USA
63. Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
64. Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
65. NHLBI Center for Population Studies, Bethesda, MD, USA
66. Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA, USA
67. Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, CB2 0QQ, UK
68. Medical School; University of Zagreb; Zagreb, 10000; Croatia
69. Department of Obstetrics and Gynaecology, Erasmus MC, Rotterdam, the Netherlands
70. Human Genetics, Genome Institute of Singapore, Singapore
71. Division of Cardiology, Boston University School of Medicine, USA
72. Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia
73. Avon Longitudinal Study of Parents and Children (ALSPAC), Department of Social Medicine, University of Bristol, BS8 2BN, UK
74. Genetics Division, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
75. Department of Pediatrics, University of Iowa, Iowa City, IA, USA
76. Laboratory of Neurogenetics, Intramural Research Program, National Institute on Aging, Bethesda, Maryland, USA
77. Department of Oral and Dental Science, University of Bristol, BS1 2LY, UK
78. Department of Medicine, Indiana University School of Medicine, Indiana, USA
79. Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
80. Genetic and Molecular Epidemiology Laboratory, McMaster University, 1200 Main St. W MDCL Rm. 3206, Hamilton, ON, L8N3Z5, Canada
81. Amgen, 1 Kendall Square, Building 100, Cambridge, MA 02139, USA
82. Deceased
83. School of Women’s and Infants’ Health, The University of Western Australia, Australia
84. Gen Info Ltd; Zagreb, 10000; Croatia
85. Cardiovascular Disease, Merck Research Laboratory, Rahway, NJ 07065, USA
86. Croatian Centre for Global Health; University of Split Medical School; Split, 21000; Croatia
87. Gerontology Research Center, National Institute on Aging, Baltimore, Maryland, USA
88. UOC Geriatria - Istituto Nazionale Rico pero Cura per Anziani IRCCS – Rome, Italy
89. Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
90. Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland, USA
91. Division of Community Health Sciences, St. George’s, University of London, London, UK
92. Icelandic Cancer Registry, Reykjavik, Iceland
93. Departments of Epidemiology and Public Health and Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
94. Department of Internal Medicine, BH-10 Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
95. Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
96. Klinikum Grosshadern, Munich, Germany
97. Molecular Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia
98. Division of Cardiology, Brigham and Women’s Hospital
99. Faculty of Medicine, University of Iceland, Reykjavik, Iceland
100. Department of Paediatrics, University of Cambridge, Cambridge, UK
Supplementary references

244. Huang, S. et al. ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. *Cancer Cell* 15, 328-340 (2009).

