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New genetic loci link adipose and insulin
biology to body fat distribution
A list of authors and their affiliations appears at the end of the paper

Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of
overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to
cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip cir-
cumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for
body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures
(P , 5 3 1028). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which
display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative
regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and
insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.

Depot-specific accumulation of fat, particularly in the central abdomen,
confers an increased risk of metabolic and cardiovascular diseases and
mortality1. An easily accessible measure of body fat distribution is waist-
to-hip ratio (WHR), a comparison of waist and hip circumferences. A
larger WHR indicates more intra-abdominal fat deposition and is asso-
ciated with higher risk for type 2 diabetes (T2D) and cardiovascular
disease2,3. Conversely, a smaller WHR indicates greater gluteal fat accu-
mulation and is associated with lower risk for T2D, hypertension, dys-
lipidemia and mortality4–6. Our previous genome-wide association study
(GWAS) meta-analyses have identified loci for WHR after adjusting for
body mass index (WHRadjBMI)7,8. These loci are enriched for asso-
ciation with other metabolic traits7,8 and show that different fat distri-
bution patterns can have distinct genetic components9,10.

To determine further the genetic architecture of fat distribution and
to increase our understanding of molecular connections with cardio-
metabolic traits, we performed a meta-analysis of WHRadjBMI associ-
ations in 142,762 individuals with GWAS data and 81,697 individuals
genotyped with the Metabochip11, all from the Genetic Investigation of
ANthropometric Traits (GIANT) consortium. Given the marked sex-
ual dimorphism previously observed among established WHRadjBMI
loci7,8, we performed analyses in men and women separately, the results
of which were subsequently combined. To characterize the genetic deter-
minants of specific aspects of body fat distribution more fully, we
performed secondary GWAS meta-analyses for five additional traits:
unadjusted WHR, unadjusted waist circumference, BMI-adjusted waist
circumference (WCadjBMI), unadjusted hip circumference and BMI-
adjusted hip circumference (HIPadjBMI). We evaluated the associated
loci to understand their contributions to variation in fat distribution
and adipose tissue biology, and their molecular links to cardiometa-
bolic traits.

New loci associated with WHRadjBMI
We performed meta-analyses of GWAS of WHRadjBMI in up to
142,762 individuals of European ancestry from 57 new or previously
described GWAS7, and separately in up to an additional 67,326 Euro-
pean ancestry individuals from 44 Metabochip studies (Extended Data
Fig. 1 and Supplementary Tables 1–3). The combination of these two
meta-analyses included up to 2,542,447 autosomal single nucleotide
polymorphisms (SNPs) in up to 210,088 European ancestry individuals.
We defined new loci based on genome-wide significant association

(P , 5 3 1028 after genomic control correction at both the study-specific
and meta-analytic levels) and distance (.500 kilobases (kb) from pre-
viously established loci)7,8.

We identified 49 loci for WHRadjBMI, 33 of which were new and
16 previously described7,8. Of these, a European ancestry sex-combined
analysis identified 39 loci, 24 of which were new7,8 (Table 1, Supplemen-
tary Table 4 and Supplementary Figs 1–3). European ancestry sex-
specific analyses identified nine additional loci, eight of which were
new and significant in women but not in men (all Pmen . 0.05; Table 1
and Supplementary Fig. 4). The addition of 14,371 individuals of non-
European ancestry genotyped on the Metabochip identified one addi-
tional locus in women (rs1534696, near SNX10, Pwomen 5 2.1 3 1028,
Pmen 5 0.26, Table 1 and Supplementary Tables 1–3), with no evidence
of heterogeneity across ancestries (Phet 5 0.86; Supplementary Note).

Genetic architecture of WHRadjBMI
To evaluate sexual dimorphism, we compared sex-specific effect size
estimates of the 49 WHRadjBMI lead SNPs. The effect estimates were
significantly different (Pdifference , 0.05/49 5 0.001) at 20 SNPs, 19 of
which showed larger effects in women (Table 1 and Extended Data
Fig. 2a), similar to previous findings7,8. The only SNP that showed a
larger effect in men mapped near GDF5 (rs224333, bmen 5 0.036 and
P 5 9.0 3 10212, bwomen 5 0.009 and P 5 0.074, Pdifference 5 6.43 1025),
a locus previously associated with height (rs6060369, r2 5 0.96 and
rs143384, r2 5 0.96, 1000 Genomes Project CEU), although without
significant differences between sexes12,13. Consistent with the larger
number of loci identified in women, variance component analyses dem-
onstrated a significantly larger heritability (h2) of WHRadjBMI in
women than men in the Framingham Heart Study (h2

women 5 0.46,
h2

men 5 0.19, Pdifference 5 0.0037) and TwinGene study (h2
women 5 0.56,

h2
men 5 0.32, Pdifference 5 0.001; Supplementary Table 5 and Extended

Data Fig. 2b).
To identify multiple association signals within observed loci, we per-

formed approximate conditional analyses of the sex-combined and
sex-specific summary statistics using GCTA14 (Supplementary Note).
Several signals (P , 5 3 1028) were identified at nine loci (Extended
Data Table 1). Fitting SNPs jointly identified different lead SNPs in the
sex-specific and sex-combined analyses. For example, the MAP3K1-
ANKRD55 locus showed near-independent (linkage disequilibrium
(LD) r2 , 0.01) SNPs 54 kb apart that were significant only in women
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(rs3936510) or only in men (rs459193; Extended Data Table 1, Sup-
plementary Table 4). Other signals are more complex. The TBX15-
WARS2 locus showed different but correlated lead SNPs in men and
women near WARS2 (r2 5 0.43), an independent signal near TBX15,
and a distant independent signal near SPAG17 (Fig. 1). At the HOXC
gene cluster, conditional analyses identified independent (r2 , 0.01)
SNPs ,80 kb apart near HOXC12-HOXC13-HOTAIR and near HOXC4-
HOXC6 (Fig. 1). These results suggest that association signals mapping

to the same locus might act on different underlying genes and may not
be relevant to the same sex.

We assessed the aggregate effects of the primary association signals
at the 49 WHRadjBMI loci by calculating sex-combined and sex-specific
risk based on genotypes of the lead SNPs. In a linear regression model,
the risk scores were associated with WHRadjBMI, with a stronger effect
in women than in men (overall effect per allele b 5 0.001, P 5 6.73 1024,
women b 5 0.002, P 5 1.0 3 10211, men b 5 7.0 3 1024, P 5 0.02;

Table 1 | WHRadjBMI loci in sex-combined and sex-specific meta-analyses
Sex-combined Women Men Sex diff.

SNP Chr Locus EA* EAF b P N b P N b P N P{

Novel loci achieving genome-wide significance in European-ancestry meta-analyses
rs905938 1 DCST2 T 0.74 0.025 7.3310210 207,867 0.034 4.9310210 115,536 0.015 1.131022 92,461 1.631022

rs10919388 1 GORAB C 0.72 0.024 3.231029 181,049 0.033 4.8310210 102,446 0.013 3.031022 78,738 9.831023

rs1385167 2 MEIS1 G 0.15 0.029 1.931029 206,619 0.023 4.031024 114,668 0.036 2.331027 92,085 1.631021

rs1569135 2 CALCRL A 0.53 0.021 5.6310210 209,906 0.023 6.931027 116,642 0.019 1.531024 93,398 5.831021

rs10804591 3 PLXND1 A 0.79 0.025 6.631029 209,921 0.040 6.1310213 116,667 0.004 5.331021 93,387 5.731026

rs17451107 3 LEKR1 T 0.61 0.026 1.1310212 207,795 0.023 1.031026 115,735 0.030 1.431028 92,194 3.531021

rs3805389 4 NMU A 0.28 0.012 1.531023 209,218 0.027 4.631028 116,226 20.007 2.131021 93,125 1.631026

rs9991328 4 FAM13A T 0.49 0.019 4.531028 209,925 0.028 3.4310210 116,652 0.007 1.731021 93,407 8.531024

rs303084 4 SPATA5-
FGF2

A 0.80 0.023 3.931028 209,941 0.029 3.431027 116,662 0.016 9.931023 93,412 1.131021

rs9687846 5 MAP3K1 A 0.19 0.024 7.131028 208,181 0.041 3.8310212 115,897 0.000 9.731021 92,417 1.331026

rs6556301 5 FGFR4 T 0.36 0.022 2.631028 178,874 0.018 7.131024 101,638 0.029 1.031026 77,370 1.431021

rs7759742 6 BTNL2 A 0.51 0.023 4.4310211 208,263 0.024 1.731027 115,648 0.023 5.531026 92,749 8.631021

rs1776897 6 HMGA1 G 0.08 0.030 1.131025 177,879 0.052 6.831029 100,516 0.003 7.431021 77,497 1.831024

rs7801581 7 HOXA11 T 0.24 0.027 3.7310210 195,215 0.025 7.731026 108,866 0.029 2.431026 86,483 6.931021

rs7830933 8 NKX2-6 A 0.77 0.022 7.431028 209,766 0.037 1.2310212 116,567 0.001 8.431021 93,333 1.431026

rs12679556 8 MSC G 0.25 0.027 2.1310211 203,826 0.033 2.1310210 114,369 0.017 4.231023 89,591 2.831022

rs10991437 9 ABCA1 A 0.11 0.031 1.031028 209,941 0.040 2.831028 116,644 0.022 6.131023 93,430 7.231022

rs7917772 10 SFXN2 A 0.62 0.014 5.631025 209,642 0.027 5.531029 116,514 20.001 8.631021 93,263 2.331025

rs11231693 11 MACROD1-
VEGFB

A 0.06 0.041 4.531028 198,072 0.068 2.7310211 110,164 0.009 4.231021 88,043 2.531025

rs4765219 12 CCDC92 C 0.67 0.028 1.6310215 209,807 0.037 1.0310214 116,592 0.018 5.331024 93,350 5.731023

rs8042543 15 KLF13 C 0.78 0.026 1.231029 208,255 0.023 6.731025 115,760 0.030 1.031026 92,629 3.631021

rs8030605 15 RFX7 A 0.14 0.030 8.831029 208,374 0.031 1.031025 115,864 0.031 5.931025 92,644 9.931021

rs1440372 15 SMAD6 C 0.71 0.024 1.1310210 207,447 0.022 1.131025 115,201 0.027 1.431026 92,380 5.231021

rs2925979 16 CMIP T 0.31 0.018 1.231026 207,828 0.032 3.4310211 115,431 20.002 7.931021 92,531 1.231026

rs4646404 17 PEMT G 0.67 0.027 1.4310211 198,196 0.034 5.3310211 115,337 0.017 2.531023 87,857 2.631022

rs8066985 17 KCNJ2 A 0.50 0.018 1.431027 209,977 0.026 4.031029 116,683 0.007 1.931021 93,428 1.831023

rs12454712 18 BCL2 T 0.61 0.016 1.031024 169,793 0.035 1.131029 96,182 20.007 2.531021 73,576 1.631027

rs12608504 19 JUND A 0.36 0.022 8.8310210 209,990 0.017 2.631024 116,689 0.028 1.131027 93,435 1.231021

rs4081724 19 CEBPA G 0.85 0.035 7.4310212 207,418 0.033 9.231027 115,322 0.039 1.431027 92,230 5.031021

rs979012 20 BMP2 T 0.34 0.027 3.3310214 209,941 0.026 1.031027 116,668 0.028 6.631028 93,407 6.731021

rs224333 20 GDF5 G 0.62 0.020 2.631028 208,025 0.009 7.431022 115,803 0.036 9.0310212 92,356 6.431025

rs6090583 20 EYA2 A 0.48 0.022 6.2310211 209,435 0.029 2.8310210 116,382 0.015 2.431023 93,187 3.231022

Novel loci achieving genome-wide significance in all-ancestry meta-analyses
rs1534696 7 SNX10 C 0.43 0.011 1.331023 212,501 0.027 2.131028 118,187 20.006 2.631021 92,243 2.131026

Previously reported loci achieving genome-wide significance in European-ancestry meta-analyses
rs2645294 1 TBX15-

WARS2
T 0.58 0.031 1.7310219 209,808 0.035 1.5310214 116,596 0.027 1.531027 93,346 2.031021

rs714515 1 DNM3-
PIGC

G 0.43 0.027 4.4310215 203,401 0.029 1.8310210 113,939 0.025 8.531027 89,596 5.131021

rs2820443 1 LYPLAL1 T 0.72 0.035 5.3310221 209,975 0.062 5.7310235 116,672 0.002 6.931021 93,437 2.6310217

rs10195252 2 GRB14-
COBLL1

T 0.59 0.027 5.9310215 209,395 0.052 4.7310230 116,329 20.003 5.331021 93,199 2.4310217

rs17819328 3 PPARG G 0.43 0.021 2.431029 208,809 0.035 4.6310214 116,072 0.005 3.331021 92,871 5.131026

rs2276824 3 PBRM1{ C 0.43 0.024 3.2310211 208,901 0.028 3.731029 116,128 0.020 1.431024 92,907 2.031021

rs2371767 3 ADAMTS9 G 0.72 0.036 1.6310220 194,506 0.056 1.2310226 108,624 0.012 3.531022 86,016 3.631029

rs1045241 5 TNFAIP8-
HSD17B4

C 0.71 0.019 4.431027 209,710 0.035 6.6310212 116,560 20.001 9.331021 93,284 8.331027

rs7705502 5 CPEB4 A 0.33 0.027 4.7310214 209,827 0.027 1.931028 116,609 0.027 2.331027 93,352 .0.99
rs1294410 6 LY86 C 0.63 0.031 2.0310218 209,830 0.037 1.6310215 116,624 0.025 1.431026 93,340 6.331022

rs1358980 6 VEGFA T 0.47 0.039 3.1310227 206,862 0.060 3.7310234 115,047 0.015 4.031023 91,949 3.7310211

rs1936805 6 RSPO3 T 0.51 0.043 3.6310235 209,859 0.052 3.7310230 116,602 0.031 3.1310210 93,392 1.031023

rs10245353 7 NFE2L3 A 0.20 0.035 8.4310216 210,008 0.041 7.9310213 116,704 0.027 1.431025 93,438 7.231022

rs10842707 12 ITPR2-
SSPN

T 0.23 0.032 4.4310216 210,023 0.041 6.1310215 116,704 0.022 1.431024 93,453 1.131022

rs1443512 12 HOXC13 A 0.24 0.028 6.9310213 209,980 0.040 1.1310214 116,688 0.013 2.831022 93,425 1.631024

rs2294239 22 ZNRF3 A 0.59 0.025 7.2310213 209,454 0.028 6.9310210 116,414 0.024 2.331026 93,173 5.031021

Loci achieving genome-wide significance (P , 5 3 1028) in sex-combined and/or sex-specific meta-analyses. P values and b coefficients for the association with WHRadjBMI in the meta-analyses of combined
GWAS and Metabochip studies. The smallest P value for each SNP is shown in bold. Chr, chromosome; EAF, effect allele frequency.
*The effect allele (EA) is the WHRadjBMI-increasing allele in the sex-combined analysis.
{Test for sex difference; values significant at the table-wise Bonferroni threshold of 0.05/49 5 1.02 3 1023 are marked in bold.
{Locus previously named NISCH-STAB1. Additional analyses that showed no significant evidence of heterogeneity between studies or due to ascertainment are provided in Supplementary Tables 27 and 28
(Supplementary Note).
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Extended Data Fig. 3 and Supplementary Note). The 49 SNPs explained
1.4% of the variance in WHRadjBMI overall, and more in women (2.4%)
than in men (0.8%) (Supplementary Table 6). Compared to the 16
previously reported loci7,8, the new loci almost doubled the explained
variance in women and tripled that in men. We further estimated that
the sex-combined variance explained by all HapMap SNPs15 (h2

G) is
12.1% (s.e.m. 5 2.9%).

At 17 loci with high-density coverage on the Metabochip11, we used
association summary statistics to define credible sets of SNPs with a high
probability of containing a likely functional variant. The 99% credible
sets at seven loci spanned ,20 kb, and at HOXC13 included only a single
noncoding SNP (Supplementary Table 7 and Supplementary Fig. 5).
Imputation up to higher density reference panels will provide greater
coverage and may have more potential to localize functional variants.

WHRadjBMI variants and other traits
Given the epidemiological correlations between central obesity and
other anthropometric and cardiometabolic measures and diseases, we
evaluated lead WHRadjBMI variants in association data from GWAS
consortia for 22 traits. In total, 17 of the 49 variants were associated
(P , 5 3 1028) with at least one of the traits: high-density lipoprotein
cholesterol (HDL; n 5 7 SNPs), triglycerides (n 5 5), low-density lipo-
protein cholesterol (LDL; n 5 2), adiponectin adjusted for BMI (n 5 3),

fasting insulin adjusted for BMI (n 5 2), T2D (n 5 1), and height (n 5 7)
(Supplementary Tables 8 and 9). WHRadjBMI SNPs also showed
enrichment for directional consistency among nominally significant
(P , 0.05) associations with these traits and also with fasting and 2-h
glucose, diastolic and systolic blood pressure, BMI and coronary artery
disease (CAD) (Pbinomial , 0.05/23 5 0.0022; Extended Data Table 2);
these results were generally supported by meta-regression analysis of
the regression coefficient estimates (Supplementary Table 10). Further-
more, our WHRadjBMI loci overlap with associations reported in the
National Human Genome Research Institute (NHGRI) GWAS cata-
logue (Table 2 and Supplementary Table 11)16, the strongest of which is
the locus near LEKR1, which is associated (P 5 2.0 3 10235) with birth
weight17. Unsupervised hierarchical clustering of the corresponding
matrix of association Z-scores showed three major clusters character-
ized by patterns of anthropometric and metabolic traits (Extended
Data Fig. 4). These data extend knowledge about genetic links between
WHRadjBMI and insulin-resistance-related traits; whether this reflects
underlying causal relations between WHRadjBMI and these traits, or
pleiotropic loci, cannot be inferred from our data.

Potential functional WHRadjBMI variants
We next examined variants in LD with the WHRadjBMI lead SNPs
(r2 . 0.7) for predicted effects on protein sequence, copy number, and
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Figure 1 | Regional SNP association plots
illustrating the complex genetic architecture at
two WHRadjBMI loci. a, b, Sex-combined
meta-analysis SNP associations in European
individuals were plotted with –log10 P values
(left y axis) and estimated local recombination rate
in blue (right y axis). Three index SNPs near
HOXC6-HOXC13 (denoted A–C) (a) and four near
TBX15-WARS2-SPAG17 (D–G) (b) were identified
through approximate conditional analyses of
sex-combined or sex-specific associations (values
shown as Pconditional , 5 3 1028, see Methods).
The signals are distinguished by both colour and
shape, and linkage disequilibrium (r2) of nearby
SNPs is shown by colour intensity gradient. Sample
sizes for the index SNP associations are listed in
Extended Data Table 1.

ARTICLE RESEARCH

1 2 F E B R U A R Y 2 0 1 5 | V O L 5 1 8 | N A T U R E | 1 8 9

Macmillan Publishers Limited. All rights reserved©2015



cis-regulatory effects on expression (Table 2, Supplementary Tables 12–15
and Supplementary Note). At 11 of the new loci, lead WHRadjBMI SNPs
were in LD with cis-expression quantitative trait loci (eQTLs) for tran-
scripts in subcutaneous adipose tissue, omental adipose tissue, liver or
blood cell types (Table 2 and Supplementary Table 15). No additional
sex-specific eQTLs were identified, perhaps reflecting limited power
(Supplementary Table 16).

At the 11 WHRadjBMI loci containing eQTLs, we compared the
location of the candidate variants to regions of open chromatin (DNase
I hypersensitivity and formaldehyde-assisted isolation of regulatory ele-
ments (FAIRE)) and histone modification enrichment (histone 3 Lys 4
methylation (H3K4me1), H3K4me2, H3K4me3, histone 3 Lys 27 acety-
lation (H3K27ac), and H3K9ac) in adipose, liver, skeletal muscle, bone,
brain, blood and pancreatic islet tissues or cell lines (Supplementary
Table 17). At 7 of these 11 loci, at least one variant was located in a puta-
tive regulatory element in two or more data sets from the same tissue as
the eQTL, suggesting that these elements may influence transcriptional
activity (Supplementary Table 18). For example, at LEKR1, five variants
in LD with the WHRadjBMI lead SNP are located in a 1.1-kb region
with evidence of enhancer activity (H3K4me1 and H3K27ac) in adi-
pose tissue (Extended Data Fig. 5a).

We also examined whether any variants overlapped with open chro-
matin or histone modifications from only one of the tested tissues,
possibly reflecting tissue-specific regulatory elements (Supplementary
Table 18). For example, five variants in a 2.2-kb region, located 77 kb
upstream from a CALCRL transcription start site, overlapped with peaks

in at least five data sets in endothelial cells (Extended Data Fig. 5b),
suggesting that one or more of these variants may influence transcrip-
tional activity. CALCRL, which is expressed in endothelial cells, is required
for lipid absorption in the small intestine, and influences body weight
in mice18. Other variants located in tissue-specific regulatory elements
were detected at NMU for endothelial cells, at KLF13 and MEIS1 for
liver, and at GORAB and MSC for bone (Supplementary Table 18).

Biological mechanisms
To identify potential functional connections between genes mapping
to the 49 WHRadjBMI loci, we used three approaches (Supplemen-
tary Note). A survey of literature using GRAIL19 identified 15 genes with
nominal significance (P , 0.05) for potential functional connectivity
(Table 2 and Supplementary Table 19). The predefined gene set rela-
tionships across loci identified using MAGENTA20 highlighted signal-
ling pathways involving vascular endothelial growth factor (VEGF),
phosphatase and tensin (PTEN) homologue, the insulin receptor, and
peroxisome proliferator-activated receptors (Supplementary Table 20).
VEGF signalling plays a central, complex role in angiogenesis, insulin
resistance and obesity21, and PTEN signalling promotes insulin resist-
ance22. Analyses using Data-driven Expression Prioritized Integration
for Complex Traits (DEPICT)23 facilitated prioritization of genes at asso-
ciated loci, analyses of tissue specificity, and enrichment of reconsti-
tuted gene sets through integration of association results with expression
data, protein–protein interactions, phenotypic data from gene knockout
studies in mice, and predefined gene sets. DEPICT identified at least one

Table 2 | Candidate genes at new WHRadjBMI loci
SNP Locus eQTL

(P , 1025)*
GRAIL
(P , 0.05){

DEPICT
(FDR , 0.05){

Literature1 Other GWAS signalsI

rs905938 DCST2 ZBTB7B (PB, blood) - - - -
rs10919388 GORAB - - - - -
rs1385167 MEIS1 - - - MEIS1 -
rs1569135 CALCRL - TFPI - CALCRL -
rs10804591 PLXND1 - - PLXND1 -
rs17451107 LEKR1 TIPARP (S,O), LEKR1 (S) - - Birth weight: CCNL1, LEKR1
rs3805389 NMU - - - NMU -
rs9991328 FAM13A FAM13A (S) FAM13A - FI: FAM13A
rs303084 SPATA5-FGF2 - FGF2 - FGF2, NUDT6, SPRY1 -
rs9687846 MAP3K1 - MAP3K1 - MAP3K1 FI, TG: ANKRD55, MAP3K1
rs6556301 FGFR4 - MXD3 - FGFR4 Height
rs7759742 BTNL2 HLA-DRA (S), KLHL31 (S) - (not analysed) - -
rs1776897 HMGA1 - - (not analysed) HMGA1 Height: HMGA1, C6orf106, LBH
rs1534696 SNX10 SNX10 (S), CBX3 (S) - - SNX10 -
rs7801581 HOXA11 - HOXA11 HOXA11 HOXA11 -
rs7830933 NKX2-6 STC1 (S) - - NKX2-6, STC1 -
rs12679556 MSC - EYA1 RP11-1102P16.1 MSC, EYA1 -
rs10991437 ABCA1 - - ABCA1 -
rs7917772 SFXN2 - - - SFXN2 Height
rs11231693 MACROD1-VEGFB - VEGFB MACROD1 MACROD1, VEGFB -
rs4765219 CCDC92 CCDC92 (S, O, L),

ZNF664 (S, O)
FAM101A - - Adiponectin, FI, HDL, TG:

CCDC92, ZNF664
rs8042543 KLF13 - KLF13 - KLF13 -
rs8030605 RFX7 - - - -
rs1440372 SMAD6 SMAD6 (blood) SMAD6 SMAD6 SMAD6 Height
rs2925979 CMIP CMIP (S) - - CMIP, PLCG2 Adiponectin, FI, HDL: CMIP
rs4646404 PEMT - - PEMT PEMT -
rs8066985 KCNJ2 - - - KCNJ2 -
rs12454712 BCL2 - - - BCL2 -
rs12608504 JUND KIAA1683 (PB, O), JUND

(LCL)
JUND - JUND -

rs4081724 CEBPA - CEBPA - CEBPA, CEBPG -
rs979012 BMP2 - BMP2 BMP2 BMP2 Height: BMP2
rs224333 GDF5 CEP250 (S, O), UQCC

(blood, S, O, L, LCL)
GDF5 GDF5 GDF5 Height: GDF5, UQCC

rs6090583 EYA2 - EYA2 EYA2 EYA2 -

Candidate genes based on secondary analyses or literature review. Details are provided in SupplementaryTables 8, 9, 11–13, 15, 19, 21 and Supplementary Note. The only non-synonymous variant in high LD with
an index SNP was GDF5 S276A. No copy number variants were identified. PB, peripheral blood mononuclear cells; FI, fasting insulin adjusted for BMI; HDL, high-density lipoprotein cholesterol; L, liver; LCL,
lymphoblastoid cell line; O, omental adipose; S, subcutaneous adipose; TG, triglycerides.
*Gene transcript levels associated with the SNP in the indicated tissue(s).
{Genes in pathways identified as enriched by GRAIL analysis.
{Significant (FDR , 5%) pathway genes derived by DEPICT using GWAS-only results.
1 Most plausible candidate genes based on literature review.
I Traits associated at P , 5 3 1028 in GWAS or the GWAS catalogue using the index SNP or a proxy, and the genes(s) named.
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prioritized gene (false discovery rate (FDR) , 5%) at nine loci (Table 2
and Supplementary Table 21) and identified 234 reconstituted gene
sets (161 after pruning of overlapping gene sets) enriched for genes at
WHRadjBMI loci. Among these we highlight biologically plausible gene
sets suggesting roles in body fat regulation (including adiponectin sig-
nalling, insulin sensitivity and regulation of glucose levels), skeletal
growth, transcriptional regulation and development (Fig. 2 and Sup-
plementary Table 22). We also note gene sets that are specific for abun-
dance or development of metabolically active tissues including adipose,
heart, liver and muscle. Specific genes at the loci were significantly enriched
(FDR , 5%) for expression in adipocyte-related tissues, including abdo-
minal subcutaneous fat (Fig. 2 and Supplementary Table 23). Together,
these analyses identified processes related to insulin and adipose bio-
logy and highlight mesenchymal tissues, especially adipose tissue, as
important to WHRadjBMI.

We also tested variants at the 49 WHRadjBMI loci for overlap with
elements from 60 selected regulatory data sets from the ENCODE24

and Epigenomic RoadMap25 data and found evidence of enrichment
in 12 data sets (P , 0.05/60 5 8.3 3 1024; Extended Data Table 3). The
strongest enrichments were detected for data sets typically attributed to
enhancer activity (H3K4me1 and H3K27ac) in adipose, muscle, endo-
thelial cells, and bone, suggesting that variants may regulate transcription
in these tissues. These analyses point to mechanisms linking WHRadjBMI
loci to regulation of gene expression in tissues highly relevant for adi-
pocyte metabolism and insulin resistance.

We also reviewed functions of candidate genes located near new and
previously established WHRadjBMI loci7,8, identifying genes involved
in adipogenesis, angiogenesis and transcriptional regulation (Table 2,
literature review in the Supplementary Note). Adipogenesis candidate
genes include CEBPA, PPARG, BMP2, HOXC-mir196, SPRY1, TBX15,
and PEMT. Of these, CEBPA and PPARG are essential for white adipose
tissue differentiation26, BMP2 induces differentiation of mesenchymal

stem cells towards adipogenesis or osteogenesis27, and HOXC8 is a
repressor of brown adipogenesis in mice that is regulated by miR-196a
(ref. 28), also located within the HOXC region (Fig. 1). Angiogenesis
genes may influence expansion and loss of adipose tissue29; they include
VEGFA, VEGFB, RSPO3, STAB1, WARS2, PLXND1, MEIS1, FGF2,
SMAD6 and CALCRL. VEGFB is involved in endothelial targeting of
lipids to peripheral tissues30, and PLXND1 limits blood vessel branch-
ing, antagonizes VEGF, and affects adipose inflammation31,32. Tran-
scriptional regulators at WHRadjBMI loci include CEBPA, PPARG,
MSC, SMAD6, HOXA, HOXC, ZBTB7B, JUND, KLF13, MEIS1, RFX7,
NKX2-6 and HMGA1. Other candidate genes include NMU, FGFR4 and
HMGA1, for which mice deficient for the corresponding genes exhibit
obesity, glucose intolerance and/or insulin resistance33–35.

Five additional central obesity traits
To determine whether the WHRadjBMI variants exert their effects pri-
marily through waist circumference or hip circumference and to iden-
tify loci that are not reported for WHRadjBMI, BMI or height36,37, we
performed association analyses for five additional traits: WCadjBMI,
HIPadjBMI, WHR, waist circumference and hip circumference. On
the basis of phenotypic data alone, waist circumference and hip circum-
ference are highly correlated with BMI (r 5 0.59–0.92), and WHR is
highly correlated with WHRadjBMI (r 5 0.82–0.95), while WCadjBMI
and HIPadjBMI are moderately correlated with height (r 5 0.24–0.63;
Supplementary Table 24). In contrast to WHRadjBMI, which has almost
no genetic correlation (see Methods) with height (rG , 0.04; Extended
Data Fig. 2c), WCadjBMI (rG 5 0.42) and HIPadjBMI (rG 5 0.82) have
moderate genetic correlations with height. These data suggest that some,
but not all, WCadjBMI and HIPadjBMI loci would be associated with
height.

Across all meta-analyses, we identified an additional 19 loci associ-
ated with one of the five traits (P , 5 3 1028), nine of which showed
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Figure 2 | Gene set enrichment and tissue
expression of genes at WHRadjBMI-associated
loci (GWAS-only P , 1025). a, Reconstituted
gene sets found to be significantly enriched by
DEPICT (FDR , 5%) are represented as nodes,
with pairwise overlap denoted by the width of
connecting lines and empirical enrichment P value
indicated by colour intensity (darker is more
significant). b, The ‘decreased liver weight’
meta-node, which consisted of 12 overlapping gene
sets, including adiponectin signalling and insulin
sensitivity. c, On the basis of expression patterns in
37,427 human microarray samples, annotations
found to be significantly enriched by DEPICT are
shown, grouped by type and significance.
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significantly larger effects (Pdifference , 0.05/19 5 0.003) in one sex than
in the other (Table 3, Supplementary Figs 1–4 and Supplementary
Table 25). Three of four new loci with larger effects in women were
associated with HIPadjBMI and three of five new loci with larger effects
in men were associated with WCadjBMI. Most of the 19 loci showed
some evidence of association with WHRadjBMI in sex-combined or
sex-specific analyses, but four loci showed no association (P . 0.01) with
WHRadjBMI, BMI, or height (Supplementary Tables 8 and 26).

We next asked whether the genes and pathways influencing these
five traits are shared with WHRadjBMI or are distinct. Candidate genes
were identified based on association with other traits, eQTLs, GRAIL and
literature review (Extended Data Table 4 and Supplementary Tables 8,
11–13, 15–16 and 19). Candidate variants identified based on LD
(r2 . 0.7) included coding variants in NTAN1 and HMGXB4, and six
loci showed significant eQTLs in subcutaneous adipose tissue. On the
basis of the literature, several candidate genes are involved in adi-
pogenesis and insulin resistance. For example, delayed induction of
preadipocyte transcription factor ZNF423 in fibroblasts results in
delayed adipogenesis38, and NLRP3 is part of inflammasome and pro-
inflammatory T-cell populations in adipose tissue that contribute to
inflammation and insulin resistance39. GRAIL analyses identified con-
nections that partially overlap with those identified for WHRadjBMI
(Supplementary Table 19). Taken together, the additional loci appear
to function in processes similar to the WHRadjBMI loci. The iden-
tification of loci that are more strongly associated with WCadjBMI or
HIPadjBMI than the other anthropometric traits suggests that the addi-
tional traits characterize aspects of central obesity and fat distribution
that are not captured by WHRadjBMI or BMI alone.

Discussion
These meta-analyses of GWAS and Metabochip data in up to 224,459
individuals identified additional loci associated with waist and hip cir-
cumference measures and help to determine the role of common genetic
variation in body fat distribution that is distinct from BMI and height.
Our results emphasize the strong sexual dimorphism in the genetic reg-
ulation of fat distribution traits, a characteristic not observed for overall
obesity as assessed by BMI36. Differences in body fat distribution between
the sexes emerge in childhood, become more apparent during puberty40,
and change with menopause, generally attributed to the influence of sex

hormones41,42. At loci with stronger effects in one sex than the other, these
hormones may interact with transcription factors to regulate gene activity.

Annotation of the loci emphasized the role for mesenchymally derived
tissues, especially adipose tissue, in fat distribution and central obesity.
The development and regulation of adipose tissue deposition is closely
associated with angiogenesis29, a process highlighted by candidate genes
at several WHRadjBMI loci. These tissues are implicated in insulin
resistance, consistent with the enrichment of shared GWAS signals with
lipids, T2D, and glycaemic traits. The identification of skeletal growth
processes suggests that the underlying genes affect early development
and/or differentiation of adipocytes from mesenchymal stem cells. By
contrast, BMI has a substantial neuronal component, involving pro-
cesses such as appetite regulation36. Our results provide a foundation
for future biological research in the regulation of body fat distribution
and its connections with cardiometabolic traits, and offer potential target
mechanisms for interventions in the risks associated with abdominal
fat accumulation.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Randall7,27, André Scherag28,29, Sailaja Vedantam11,12, Andrew R. Wood30, Jin
Chen31, Rudolf Fehrmann32, Juha Karjalainen32, Bratati Kahali33, Ching-Ti Liu17,
Ellen M. Schmidt34, Devin Absher35, Najaf Amin36, Denise Anderson37,
Marian Beekman38,39, Jennifer L. Bragg-Gresham8,40, Steven Buyske41,42, Ayse
Demirkan36,43, Georg B. Ehret44,45, Mary F. Feitosa46, Anuj Goel7,47, Anne U. Jackson8,
Toby Johnson25,26,48, Marcus E. Kleber49,50, Kati Kristiansson51, Massimo Mangino52,
Irene Mateo Leach53, Carolina Medina-Gomez54,55,56, Cameron D. Palmer11,12, Dorota
Pasko30, Sonali Pechlivanis28, Marjolein J. Peters54,56, Inga Prokopenko7,57,58, Alena
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METHODS
Study overview. Our study included 224,459 individuals of European, east Asian,
south Asian and African-American ancestry. The European ancestry arm included
142,762 individuals from 57 cohorts genotyped with genome-wide SNP arrays and
67,326 individuals from 44 cohorts genotyped with the Metabochip11 (Extended
Data Fig. 1 and Supplementary Table 1). The non-European ancestry arm comprised
,1,700 individuals from one cohort of east Asian ancestry, ,3,400 individuals
from one cohort of south Asian ancestry, and ,9,200 individuals from six cohorts
of African-American ancestry, all genotyped with the Metabochip. There was no
overlap between individuals genotyped with genome-wide SNP arrays and Meta-
bochip. For each study, local institutional committees approved study protocols
and confirmed that informed consent was obtained. No statistical methods were
used to predetermine sample size.
Traits. Our primary trait was WHRadjBMI, the ratio of waist and hip circumfer-
ences adjusted for age, age-squared, study-specific covariates if necessary and BMI.
For each cohort, residuals were calculated for men and women separately and then
transformed by the inverse standard normal function. Cohorts with related men
and women provided inverse standard normal transformed sex-combined residuals.
For each cohort, the same transformations were applied to other traits: (1) WHR
without adjustment for BMI (WHR); (2) waist circumference with (WCadjBMI)
and without adjustment for BMI; and (3) hip circumference with (HIPadjBMI)
and without adjustment for BMI.
European ancestry meta-analysis for genome-wide SNP array data. Sample and
SNP quality control were undertaken within each cohort44 (Supplementary Table 3).
The GWAS scaffold in each cohort was imputed up to CEU haplotypes from
HapMap resulting in ,2.5 million SNPs. Each directly typed and imputed SNP
passing quality control was tested for association with each trait under an additive
model in a linear regression framework (Supplementary Table 3). SNP positions are
reported based on NCBI Build 36. For each cohort, sex-specific association sum-
mary statistics were corrected for residual population structure using the genomic
control inflation factor45 (median lGC 5 1.01, range 5 0.99–1.08). SNPs were removed
before meta-analysis if they had a minor allele count #3, deviation from Hardy–
Weinberg equilibrium exact P , 1026, directly genotyped SNP call rate ,95%, or
low imputation quality (below 0.3 for MACH, 0.4 for IMPUTE, and 0.8 for PLINK).
Association summary statistics for each trait were combined via inverse-variance
weighted fixed-effects meta-analysis and corrected for a second round of genomic
control to account for structure between cohorts (Extended Data Fig. 1 and Sup-
plementary Fig. 1).
European ancestry meta-analysis for Metabochip data. Sample and SNP quality
control analyses were undertaken in each cohort (Supplementary Table 3). Each
SNP passing quality control was tested for association with each trait under an
additive model using linear regression. The Metabochip array11 is enriched, by
design, for loci associated with anthropometric and cardiometabolic traits, thus, we
based our correction on 4,425 SNPs selected for inclusion based on associations
with QT-interval that were not expected to be associated with anthropometric
traits (.500 kb from variants on Metabochip46 for these traits). These study-specific
inflation factors had a median lGC 5 1.01(range 0.93–1.11), with only one study
exceeding 1.10. After removing SNPs for quality control as described in the pre-
vious section, association summary statistics were combined via inverse-variance
weighted fixed-effects meta-analysis and corrected for a second round of genomic
control on the basis of QT-interval SNPs to account for structure between cohorts.
European ancestry meta-analyses. Association summary statistics from the two
parts of the European ancestry arm were combined via inverse-variance weighted
fixed-effects meta-analysis using METAL47 with no further genomic control cor-
rection. Results were reported for SNPs with a sex-combined sample size $50,000.
The meta-analyses were repeated for men and women separately for each trait.
Analyses were corrected for population structure within each sex. The meta-analysis
of WHRadjBMI in men included up to 93,480 individuals, and in women up to
116,742 individuals.
Meta-analyses of studies of all ancestries. Sample and SNP quality control, tests
of association, genomic control correction (median lGC 5 1.01, range 5 0.90–1.17,
with only one study exceeding 1.10), and meta-analyses were performed as described
above. Association summary statistics from the European and non-European ances-
try meta-analyses were combined via inverse-variance weighted fixed-effects meta-
analysis without further genomic control correction.
Heterogeneity. For each lead SNP, we tested for sex differences based on the sex-
specific beta estimates and standard errors, while accounting for potential correla-
tion between estimates as previously described10. Similarly, we tested for potential
differences in effects between European and non-European samples, comparing
the effects from GWAS1Metabochip data for Europeans and Metabochip data for
non-Europeans, and we tested for differences between population-based studies and
samples ascertained on diabetes status, and cardiovascular disease, or both. In assess-
ing effects of ascertainment overall, we compared effects in seven subsets of our

study sample using population-based studies (that is, those not ascertained on any
phenotype) as the referent population: (1) all studies ascertained on any pheno-
type, (2) T2D cases, (3) T2D controls, (4) T2D cases plus controls, (5) CAD cases,
(6) CAD controls and (7) CAD cases plus controls. We evaluated significance for
heterogeneity tests within each comparison using a Bonferroni-corrected P value
of 0.05/49 5 0.05/49 5 1.02 3 1023 as well as an FDR threshold48 of ,5% (Sup-
plementary Table 28). Between-study heterogeneity in all meta-analyses was assessed
using I2 statistics49.
Heritability and genetic and phenotypic correlations of waist traits. We cal-
culated the heritability and genetic correlations of several central obesity traits
using variance component models50,51 in the Framingham Heart Study (FHS) and
TwinGene study. In this approach, the phenotypic variance is decomposed into
additive genetic, non-additive genetic, and environmental sources of variation (includ-
ing model error), and for sets of traits, the covariances between traits. We report
narrow sense heritability (h2), the ratio of the additive genetic variance to the total
phenotypic variance. Sex-specific inverse normal trait residuals, adjusted for age
(and cohort in FHS), were used to estimate heritability separately in men and
women, using variance components analysis in SOLARv.4.2.7 (FHS)52 or Mx1.703
(TwinGene)53. Additionally, the sex-specific residuals were used to conduct bivari-
ate quantitative variance component genetic analyses that calculate genetic and
environmental correlations between traits. The genetic correlations obtained are
estimates of the additive effects of shared genes, and a genetic correlation signifi-
cantly different from zero suggests a direct influence of the same genes on more than
one trait. Similarly, significant environmental correlations suggest shared environ-
mental effects.

We estimated sex-stratified correlations between all waist traits, as well as BMI,
height, and weight in TwinGene, FHS, KORA and EGCUT. In TwinGene and FHS,
age-adjusted Pearson correlations were used; in EGCUT and KORA, correlations
were adjusted for age and age-squared.
European ancestry approximate conditional analyses. To evaluate the evidence
for multiple association signals within identified loci, we performed approximate
conditional analyses of sex-combined, women-specific and men-specific data as
implemented in the GCTA software14,54. This approach makes use of association
summary statistics from the combined European ancestry meta-analysis and a
reference data set of individual-level genotype data to estimate LD between var-
iants and hence also the approximate correlation between allelic effect estimates
in a joint association model.

To evaluate robustness of the GCTA results, we performed analyses using two
reference data sets: Prospective Investigation of the Vasculature in Uppsala Seniors
(PIVUS) consisting of 949 individuals from Uppsala County, Sweden, with both
GWAS and Metabochip genotype data; and Atherosclerosis Risk in Communities
(ARIC) consisting of 6,654 individuals of European descent from four communit-
ies in the United States with GWAS data. Both GWAS data sets were imputed using
data from phase II of the International HapMap Project55. Results shown use the
PIVUS reference data set because Metabochip genotypes are available (see a com-
parison in the Supplementary Note). Assuming that the LD correlations between
SNPs more than 10 megabases (Mb) away are zero, and using each reference data set
in turn, we performed a genome-wide stepwise selection procedure to select asso-
ciated SNPs one-by-one at a P , 5 3 1028. For each locus at which multiple asso-
ciation signals were observed in the sex-combined, women-, and/or men-specific
data, the SNPs selected by GCTA as independently associated with WHRadjBMI
in any of the three meta-analyses are reported, with the SNP identified in the sex-
combined analysis taken by default when proxies are identified in the women- and/
or men-specific analyses. For SNPs not selected by a particular joint conditional
analysis, but identified by either of the other two analyses, summary statistics were
calculated for association analysis of the SNP conditioned on the GCTA-selected
SNP(s).
Genetic risk score. We calculated a genetic risk score for each individual in the
population-based KORA study (1,670 men and 1,750 women) using the 49 identified
variants, weighted by the allelic effect from the European ancestry meta-analyses of
WHRadjBMI. Sex-combined scores were computed on the basis of the sex-combined
meta-analysis. Sex-stratified scores were calculated on the basis of men- and women-
specific meta-analyses, in which SNPs not achieving nominal significance in the
respective sex (P $ 0.05) were excluded. For each individual, the sex-combined
and sex-stratified risk scores were rounded to the nearest integer for plotting. Risk
scores were then tested for association with WHRadjBMI using linear regression.
Explained variance. We calculated the variance explained by a single SNP as:

2NMAFN 1{MAFð ÞN b2

Var Yð Þ
in which MAF is the minor allele frequency, b is the SNP effect estimate computed
by meta-analysis, and Var(Y) is the variance of the phenotype Y as it went into the
study-specific association testing. To derive the total variance explained by a set of
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independent SNPs, we computed the sum of single-SNP explained variances under
the assumption of independent contributions.

To estimate the polygenic variance explained by all HapMap SNPs, we used the
all-SNP estimation approach implemented in GCTA and analysed individuals in
the ARIC and TwinGene cohorts, including the first 20 principal components as
fixed covariates. After removing one of each pair of individuals with estimated
genetic relatedness .0.025, 11,898 unrelated individuals with WHRadjBMI were
available.
Fine-mapping analyses. We considered each identified locus, defined as 500 kb
upstream and downstream of the lead SNP, and computed 99% credible intervals
using a Bayesian approach. On the basis of association summary statistics from
the European ancestry, non-European ancestry, or all ancestries sex-combined
meta-analyses, we calculated an approximate Bayes’ factor56 in favour of associa-
tion, given by:

BFj~

ffiffiffiffiffiffiffiffiffiffiffiffi
1{Rj

p
exp {

Rjb
2
j

2s2
j

 !

in which bj is the allelic effect of the jth SNP, with corresponding standard error
sj, and Rj 5 0.04/(sj

2 1 0.04), which incorporates a N(0,0.22) prior for bj. This
prior gives high probability to small effect sizes, and only small probability to large
effect sizes. We then calculated the posterior probability that the jth SNP is causal
by:

Qj~
BFjP
k BFk

in which the summation in the denominator is over all SNPs passing quality
control across the locus. We compared the meta-analysis results and credible sets
of SNPs likely to contain the causal variant as described57. Assuming a single
causal variant at each locus, a 99% credible set of variants was then constructed by:
(1) ranking all SNPs according to their Bayes’ factor; and (2) combining ranked
SNPs until their cumulative posterior probability exceeded 0.99. For each locus,
we calculated the number of SNPs contained within the 99% credible sets, and the
length of the genomic interval covered by these SNPs.
Comparison of loci across traits. To determine whether the identified loci were
also associated with any of 22 cardio-metabolic traits, we obtained association data
from meta-analysis consortia DIAGRAM (T2D)58, CARDIoGRAM-C4D (CAD)59,
ICBP (diastolic and systolic blood pressure)60, GIANT (BMI, height)36,37, GLGC
(HDL, LDL, and triglycerides)61, MAGIC (fasting glucose, fasting insulin, fasting
insulin adjusted for BMI, and two-hour glucose)62–64, ADIPOGen (BMI-adjusted
adiponectin)65, CKDgen (urine albumin-to-creatinine ratio (UACR), estimated glo-
merular filtration rate (eGFR), and overall CKD)66,67, ReproGen (age at menarche,
age at menopause)68,69, and GEFOS (bone mineral density)70; others provided asso-
ciation data for IgA nephropathy71 (also K.K., M.C., R.P.L. and A.G.G., unpub-
lished data) and for endometriosis (stage B cases only)72. Proxies (r2 . 0.8 in CEU)
were used when an index SNP was unavailable.

We also searched the NHGRI GWAS catalogue for previous SNP-trait associations
near our lead SNPs73. We supplemented the catalogue with additional genome-wide
significant SNP-trait associations from the literature13,70,74–80. We used PLINK to
identify SNPs within 500 kb of lead SNPs using 1000 Genomes Project pilot I
genotype data and LD (r2) values from CEU81,82; for rs7759742, HapMap release
22 CEU data81,83 were used. All SNPs within the specified regions were compared
with the NHGRI GWAS catalogue16.
Enrichment of concordant cross-trait associations and effects. To evaluate
whether the alleles associated with increased WHRadjBMI at the 49 identified
SNPs convey effects for any of the 22 cardiometabolic traits, we conducted meta-
regression analyses of the beta-estimates on these metabolic outcomes from other
consortia with the beta-estimates for WHRadjBMI in our data65.

On the basis of the association data across traits, we generated a matrix of
Z-scores by dividing the association betas for each of the 49 WHRadjBMI SNPs
for each of 22 traits by their respective standard errors. The traits did not include
WHRadjBMI or nephropathy in Chinese subjects, but did include HIPadjBMI
and WCadjBMI. Each Z-score was made positive if the original trait-increasing
allele also increased the look-up trait and negative if not. Missing associations with
were assigned a value of zero. We performed unsupervised hierarchical clustering
of the Z score matrix in R using the default settings of the ‘heatplot’ function from
the made4 library (version 1.20.0), agglomerating clusters using average linkage
and Pearson correlation metric distance. The rows and columns of matrix values
were each automatically scaled to range from 3 to 23. Confidence in the hierarch-
ical clustering was assessed by bootstrap analysis (10,000 resamplings) using the R
package ‘pvclust’84.

Identification of candidate functional variants. The 1000 Genomes CEU pilot
data were queried for SNPs within 500 kb and in LD (r2 . 0.7, an arbitrary thresh-
old) with any index SNP. All identified variants were then annotated based on RefSeq
transcripts using Annovar to identify potential nonsynonymous variants near iden-
tified association signals. The distance between each variant and the nearest tran-
scription start site were calculated using gene annotations from GENCODE (v.12).

To investigate whether SNPs in LD with index SNPs are also in LD with com-
mon copy number variants (CNVs), we extracted waist trait association results for
a list of SNP proxies that are in high LD (r2 . 0.8, CEU) with CNVs in European
populations as described previously7. Altogether 6,200 CNV-tagging SNPs were
used, which are estimated collectively to capture .40% of CNVs .1 kb in size.
eQTLs. We examined our lead SNPs in eQTL data sets from several sources (Sup-
plementary Note) for cis effects significant at P , 1025. We then checked if the
trait-associated SNP also had the strongest association with the expression level of
its corresponding transcript. If not, we identified a nearby SNP that had a stronger
association with expression (peak transcript SNP) of that transcript. To check
whether effects of the peak transcript SNP and waist trait-associated SNP over-
lapped, we conducted conditional analyses to estimate associations between the
waist-associated SNP and transcript level when the peak-transcript-associated
SNP was also included in the model, and vice versa. If the association for the
expression-associated SNP was not significant (P . 0.05) when conditioned on the
waist-associated SNP, we concluded that the waist-associated SNP is likely to explain
a substantial proportion of the variance in gene transcript levels in the region.
For SNPs that passed these criteria in either women or men eQTL data sets from
deCODE, we investigated sex heterogeneity in gene transcript levels for whole blood
(312 men, 435 women) and subcutaneous adipose tissue (252 men, 351 women)
based on the sex-specific beta estimates and standard errors, while accounting for
potential correlation between the sex-specific associations8.
Epigenomic regulatory element overlap with individual variants. We examined
overlap of regulatory elements with the 68 trait-associated variants and variants in
LD with them (r2 . 0.7, 1000 Genomes phase 1 version 2 EUR85), totalling 1,547
variants. We obtained regulatory element data sets from the ENCODE Consortium24

and Roadmap Epigenomics Project25 corresponding to eight tissues selected based
on a current understanding of WHRadjBMI pathways. The 226 regulatory element
data sets included experimentally identified regions of open chromatin (DNase-
seq, FAIRE-seq), histone modification (H3K4me1, H3K27ac, H3K4me3, H3K9ac
and H3K4me2), and transcription factor binding (Supplementary Table 17). When
available, we downloaded data processed during the ENCODE Integrative Analysis24.
We processed Roadmap Epigenomics sequencing data with multiple biological
replicates using MACS2 (ref. 86) and the same Irreproducible Discovery Rate
pipeline used in the ENCODE Integrative Analysis. Roadmap Epigenomics data
with only a single replicate was processed using MACS2 alone.
Global enrichment of WHRadjBMI-associated loci in epigenomic data sets.
We performed permutation-based tests in a subset of 60 open chromatin (DNase-
seq) and histone modification (H3K27ac, H3K4me1, H3K4me3 and H3K9ac) data
sets to identify global enrichment of the WHRadjBMI-associated loci. We matched
the index SNP at each locus with 500 variants having no evidence of association
(P . 0.5, ,1.2 million total variants) with a similar distance to the nearest gene
(611,655 bp), number of variants in LD (68 variants), and minor allele frequency.
Using these pools, we created 10,000 sets of control variants for each of the 49 loci
and identified variants in LD (r2 . 0.7) and within 1 Mb. For each SNP set, we
calculated the number of loci with at least one variant located in a regulatory region
under the assumption that one regulatory variant is responsible for each associ-
ation signal. We initially calculated an enrichment P value by finding the propor-
tion of control sets for which as many or more loci overlap a regulatory element
than the set of associated loci. For increased P value accuracy, we estimated the P
value assuming a sum of binomial distributions to represent the number of index
SNPs or their LD proxies that overlap a regulatory data set compared to the 500
matched control sets.
GRAIL. Gene Relationships Among Implicated Loci (GRAIL)19 is a text-mining
algorithm that evaluates the degree of relatedness among genes within trait regions.
Using PubMed abstracts, a subset of genes enriched for relatedness and a set of
keywords that suggest putative pathways are identified. To avoid potential bias
from papers investigating candidate genes stimulated by GWAS, we restricted our
search to abstracts published before 2006. We tested for enrichment of connectiv-
ity in the independent SNPs that were significant in our study at P , 1025.
MAGENTA. To investigate whether pathways including predefined sets of genes
were enriched in the lower part of the gene P value distribution for WHRadjBMI,
we performed a pathway analysis using Magenta 2.4 (ref. 20) and SNPs present in
both the Metabochip and GWAS meta-analyses. SNPs were assigned to a gene if
within 110 kb upstream or 40 kb downstream of the transcript’s boundaries. The
most significant SNP P value within this interval was adjusted for putative con-
founders (gene size, number of SNPs in a gene, LD pattern) using stepwise linear
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regression, creating a gene association score. If the same SNP was assigned to
multiple genes, only the gene with the lowest gene score was kept. The HLA region
was removed from further analyses owing to its high LD structure and gene density.
Each gene was then assigned pathway terms using Gene Ontology (GO), PANTHER,
Ingenuity and Kyoto Encyclopedia of Genes and Genomes (KEGG)87–90. Finally,
the genes were ranked based on their gene association score, and a modified gene-
set enrichment analysis using MAGENTA was performed. This analysis tested for
enrichment of gene association score ranks above a given rank cutoff (including
5% of all genes) in a gene-set belonging to a predefined pathway term, compared
to multiple, equally sized gene-sets that were randomly sampled from all genes in
the genome. Around 10,000–1,000,000 gene-set permutations were performed.
DEPICT. This method is described in detail elsewhere23,36. In brief, DEPICT uses
gene expression data derived from a panel of 77,840 expression arrays91, 5,984 molec-
ular pathways (based on 169,810 high-confidence experimentally derived protein–
protein interactions92), 2,473 phenotypic gene sets (based on 211,882 gene-phenotype
pairs from the Mouse Genetics Initiative93), 737 reactome pathways94, 184 KEGG
pathways95, and 5,083 GO terms19. DEPICT uses the expression data to reconstitute
the protein–protein interaction gene sets, mouse phenotype gene sets, reactome
pathway gene sets, KEGG pathway gene sets, and GO term gene sets. To avoid
biasing the identification of genes and pathways covered by SNPs on the Metabo-
chip, analyses were restricted to GWAS cohort data and included 226 WHRadjBMI
SNPs in 78 non-overlapping loci with sex-combined P , 1025. We used DEPICT
to map genes to associated WHRadjBMI loci, which then allowed us to (1) system-
atically identify the most likely causal gene(s) in a given associated region, (2) iden-
tify reconstituted gene sets that were enriched in genes from associated regions, and
(3) identify tissue and cell type annotations in which genes from associated regions
were highly expressed. Associated regions were defined by all genes residing within
LD (r2 . 0.5) distance of the WHRadjBMI-associated index SNPs. Overlapping
regions were merged, and SNPs that mapped near to or within the HLA region
were excluded. The 93 WHRadjBMI SNPs with P , 1025 (clumping thresholds:
HapMap release 27 CEU r2 5 0.01, 500 kb) resulted in 78 non-overlapping regions.
GWAS1Metabochip index SNPs were annotated with DEPICT-prioritized genes
if the DEPICT (GWAS-only) SNP was located within 500 kb. To mark related
gene sets, we first quantified significant gene sets’ pairwise overlap using a non-
probabilistic version of the reconstituted gene sets and the Jaccard index measure.
Groups of gene sets with mutual Jaccard indices .0.25 were subsequently referred
to as meta gene sets and named by the most significant gene set in the group (Sup-
plementary Table 18 and Fig. 2a). In Fig. 2a, b, gene sets with similarities between
0.1 and 0.25 were connected by an edge that was scaled according to degree of
similarity. The Cytoscape tool was used to construct parts of Fig. 2 (ref. 96). In
Fig. 2c, we show the significance of all cell type annotations and annotations that
were categorized as ‘tissues’ at the outermost level of the Medical Subject Heading
ontology.
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Extended Data Figure 1 | Overall WHRadjBMI meta-analysis study design.
Data (dashed lines) and analyses (solid lines) related to the GWAS cohorts for
WHRadjBMI are coloured red and those related to the Metabochip (MC)
cohorts are coloured blue. The two genomic control (lGC) corrections
(within-study and among-studies) performed on associations from each data
set are represented by grey-outlined circles. The lGC corrections for the GWAS
meta-analysis were based on all SNPs and the lGC corrections for the
Metabochip meta-analysis were based on a null set of 4,319 SNPs previously
associated with QT interval. The joint meta-analysis of the GWAS and

Metabochip data sets is coloured purple. All SNP counts reflect a sample size
filter of n $ 50,000 subjects. Additional WHRadjBMI meta-analyses included
Metabochip data from up to 14,371 subjects of east Asian, south Asian or
African-American ancestry from eight cohorts. Counts for the meta-analyses of
waist circumference, hip circumference, and their BMI-adjusted counterparts
(WCadjBMI and HIPadjBMI) differ from those of WHRadjBMI because
some cohorts only had phenotype data available for one type of body
circumference measurement (see Supplementary Table 2).
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Extended Data Figure 2 | Women- and men-specific effects, phenotypic
variances and genetic correlations. a, Figure showing effect beta estimates for
the 20 WHRadjBMI SNPs showing significant evidence of sexual dimorphism.
Sex-specific effect betas and 95% confidence intervals for SNPs associated
with WHRadjBMI are shown as red circles and blue squares for women and
men, respectively. Sample sizes, comprising more than 73,576 men and 96,182
women, are listed in Table 1. The SNPs are classified into three categories:
(1) those showing a women-specific effect (‘women SSE’), namely a significant
effect in women and no effect in men (Pwomen , 5 3 1028, Pmen $ 0.05),
(2) those showing a pronounced women effect (‘women CED’), namely a
significant effect in women and a less significant but directionally consistent
effect in men (Pwomen , 5 3 1028, 5 3 1028 , Pmen # 0.05); and (3) those
showing a men-specific effect (‘men SSE’), namely a significant effect in men
and no effect in women (Pmen , 5 3 1028, Pwomen $ 0.05). Within each of the

three categories, the loci were sorted by increasing P value of sex-based
heterogeneity in the effect betas. b, Figure showing standardized sex-specific
phenotypic variance components for six waist-related traits. Values are shown
in men (M) and women (W) from the Swedish Twin Registry (n 5 11,875).
The ACE models are decomposed into additive genetic components (A) shown
in black, common environmental components (C) in grey, and non-shared
environmental components (E) in white. Components are shown for waist
circumference (WC), hip circumference (HIP), WHR, WCadjBMI,
HIPadjBMI and WHRadjBMI. When the ‘A’ component is different in men
and women with P , 0.05 for a given trait, its name is marked with an asterisk.
c, Genetic correlations of waist-related traits with height, adjusted for age
and BMI. Genetic correlations of three traits with height were based on variance
component models in the Framingham Heart Study and TwinGene study
(see Methods).
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Extended Data Figure 3 | Cumulative genetic risk scores for WHRadjBMI
applied to the KORA study cohort. a, All subjects (n 5 3,440,
Ptrend 5 6.7 3 1024). b, Only women (n 5 1,750, Ptrend 5 1.0 3 10211). c, Only
men (n 5 1,690, Ptrend 5 0.02). Each genetic risk score illustrates the joint effect
of the WHRadjBMI-increasing alleles of the 49 identified variants from Table 1
weighted by the relative effect sizes from the applicable sex-combined or
sex-specific meta-analysis. The mean WHRadjBMI residual and 95%
confidence interval is plotted for each genetic risk score category (red dots). The
histograms show each genetic risk score is normally distributed in KORA
(grey bars).
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Extended Data Figure 4 | Heat map of unsupervised hierarchical clustering
of the effects of 49 WHRadjBMI SNPs on 22 anthropometric and
metabolic traits and diseases. The matrix of Z-scores representing the set of
associations was scaled by row (locus name) and by column (trait) to range
from 23 to 3. Negative values (blue) indicate that the WHRadjBMI-increasing
allele was associated with decreased values of the trait and positive values (red)
indicate that this allele was associated with increased values of the trait.
Sample sizes for the associations are listed in Supplementary Table 8.
Dendrograms indicating the clustering relationships are shown to the left and
above the heat map. The WHRadjBMI-increasing alleles at the 49 lead SNPs

segregate into three major clusters comprised of alleles that associate with:
(1) larger WCadjBMI and smaller HIPadjBMI (n 5 30 SNPs); (2) taller stature
and larger WCadjBMI (n 5 8 SNPs); and (3) shorter stature and smaller
HIPadjBMI (n 5 11 SNPs). The three visually identified SNP clusters could be
statistically distinguished with .90% confidence. Alleles of the first cluster
were predominantly associated with lower high density lipoprotein (HDL)
cholesterol and with higher triglycerides and fasting insulin adjusted for BMI
(FIadjBMI). BMD, bone mineral density; eGFRcrea, estimated glomerular
filtration rate based on creatinine; LDL cholesterol, low-density lipoprotein
cholesterol; UACR, urine albumin-to-creatinine ratio.
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Extended Data Figure 5 | Regulatory element overlap with WHRadjBMI-
associated loci. a, Five variants associated with WHRadjBMI and located
,77 kb upstream of the first CALCRL transcription start site overlap regions
with genomic evidence of regulatory activity in endothelial cells. b, Five
WHRadjBMI variants, including rs8817452, in a 1.1-kb region (box) ,250 kb

downstream of the first LEKR1 transcription start site overlap evidence of active
enhancer activity in adipose nuclei. Signal enrichment tracks are from the
ENCODE Integrative Analysis and the Roadmap Epigenomics track hubs on
the UCSC Genome Browser. Transcripts are from the GENCODE basic
annotation.
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Extended Data Table 1 | WHRadjBMI loci with multiple association signals in the sex-combined and/or sex-specific approximate conditional
meta-analyses

P values and b coefficients for the association with WHRadjBMI from the joint model in the approximate conditional analysis of combined GWAS and Metabochip studies. SNPs selected by conditional analyses as
independently associated with WHRadjBMI in a meta-analysis (sex-combined, women- or men-specific) have their respective summary statistics for these analyses marked in black and bold. SNPs not selected by
a particular conditional analysis as independently associated are marked in grey and show the association analysis results for the SNP conditioned on the locus SNPs selected by GCTA. Sample sizes are from the
unconditioned meta-analysis.
*Locus and lead SNPs are defined by Table 1.
{The effect allele is the WHRadjBMI-increasing allele in the sex-combined analysis.
{Test for sex difference in conditional analysis based on the effect correlation estimate from primary analyses; values significant at the table-wise Bonferroni threshold of 0.05/25 5 2 3 1023 are marked in bold.
1 SNPs selected by conditional analysis in the sex-combined analysis; proxies were selected by joint conditional analysis in the women- and/or men-specific analyses.
ISNP not present in the sex-specific meta-analyses due to sample size filter requiring n $ 50,000; sample size from GCTA.
"At NFE2L3-SNX10, different lead SNPs were identified in the European and all-ancestry analyses but LD is reported with respect to rs10245353.
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Extended Data Table 2 | Enrichments of 49 WHRadjBMI signal SNPs with metabolic and anthropometric traits

The 49 WHRadjBMI SNPs were tested for association with other traits by GWAS meta-analyses performed by other groups (see Methods). The maximum sample size available is shown overall or separately for
cases/controls. N indicates the number of the total SNPs for which the WHRadjBMI-increasing allele is associated with the trait in the concordantdirection (increased levels, except for HDL-C, adiponectin and BMI).
One-sided binomial P values test whether this number is greater than expected by chance (null P 5 0.5 and null P 5 0.025, respectively). The tests do not account for correlation between WHRadjBMI and the tested
traits. P values representing significant column-wise enrichment (P , 0.05/23 tests) are marked in bold.
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Extended Data Table 3 | Enrichment of 49 WHRadjBMI-associated loci in epigenomic data sets

Enrichment of WHRadjBMI-associated loci in regulatory elements from selectedWHRadjBMI-relevant tissues. P values are derived using a sumof binomial distributions (see Methods). P values below a Bonferroni-
corrected threshold for 60 tests of 8.3 3 1024 are indicated in bold font. The binomial-based P values are similar to P values generated from 10,000 permutation tests. Dashes indicate that data sets were not
available.
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Extended Data Table 4 | Candidate genes at new loci associated with additional waist and hip-related traits

Candidate genes for loci shown on Table 3 based on secondary analyses or literature review. Further details are provided in other Supplementary Tables and the Supplementary Note. Loci are shown in order of
chromosome and position.
*Gene transcript levels associated with SNP genotype (eQTL) in the indicated tissue(s).
{Genes in pathways identified as enriched by GRAIL analysis.
{Strongest candidate genes identified based on manual literature review.
1 Traits associated at P , 5 3 1028 in GWAS lookups or in the GWAS catalogue using the index SNP or a proxy in high LD (r2 . 0.7), and the genes(s) named in those reports.
INon-synonymous variants (nsSNPs) and copy number variants (CNVs) with tag SNPs in high LD with index SNP based on a 1000 Genomes CEU reference panel. DEPICT analysis was not performed for loci
associated with these traits.

RESEARCH ARTICLE

Macmillan Publishers Limited. All rights reserved©2015


	Title
	Authors
	Abstract
	New loci associated with WHRadjBMI
	Genetic architecture of WHRadjBMI
	WHRadjBMI variants and other traits
	Potential functional WHRadjBMI variants
	Biological mechanisms
	Five additional central obesity traits
	Discussion
	References
	Methods
	Study overview
	Traits
	European ancestry meta-analysis for genome-wide SNP array data
	European ancestry meta-analysis for Metabochip data
	European ancestry meta-analyses
	Meta-analyses of studies of all ancestries
	Heterogeneity
	Heritability and genetic and phenotypic correlations of waist traits
	European ancestry approximate conditional analyses
	Genetic risk score
	Explained variance
	Fine-mapping analyses
	Comparison of loci across traits
	Enrichment of concordant cross-trait associations and effects
	Identification of candidate functional variants
	eQTLs
	Epigenomic regulatory element overlap with individual variants
	Global enrichment of WHRadjBMI-associated loci in epigenomic data sets
	GRAIL
	MAGENTA
	DEPICT

	Methods References
	Figure 1 Regional SNP association plots illustrating the complex genetic architecture at two WHRadjBMI loci.
	Figure 2 Gene set enrichment and tissue expression of genes at WHRadjBMI-associated loci (GWAS-only P < 10-5).
	Table 1 WHRadjBMI loci in sex-combined and sex-specific meta-analyses
	Table 2 Candidate genes at new WHRadjBMI loci
	Table 3 New loci achieving genome-wide evidence of association (P < 5 x 10-8) with additional waist and hip circumference traits
	Extended Data Figure 1 OverallWHRadjBMI meta-analysis study design.
	Extended Data Figure 2 Women- and men-specific effects, phenotypic variances and genetic correlations.
	Extended Data Figure 3 Cumulative genetic risk scores for WHRadjBMI applied to the KORA study cohort.
	Extended Data Figure 4 Heat map of unsupervised hierarchical clustering of the effects of 49 WHRadjBMI SNPs on 22 anthropometric and metabolic traits and diseases.
	Extended Data Figure 5 Regulatory element overlap with WHRadjBMI-associated loci.
	Extended Data Table 1 WHRadjBMI loci with multiple association signals in the sex-combined and/or sex-specific approximate conditional meta-analyses
	Extended Data Table 2 Enrichments of 49 WHRadjBMI signal SNPs with metabolic and anthropometric traits
	Extended Data Table 3 Enrichment of 49 WHRadjBMI-associated loci in epigenomic data sets
	Extended Data Table 4 Candidate genes at new loci associated with additional waist and hip-related traits

