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Modeling of the hemodynamic responses in block design fMRI
studies
Zuyao Y Shan1, Margaret J Wright2, Paul M Thompson3, Katie L McMahon1, Gabriella GAM Blokland2, Greig I de Zubicaray4,
Nicholas G Martin2, Anna AE Vinkhuyzen5 and David C Reutens1

The hemodynamic response function (HRF) describes the local response of brain vasculature to functional activation. Accurate HRF
modeling enables the investigation of cerebral blood flow regulation and improves our ability to interpret fMRI results. Block
designs have been used extensively as fMRI paradigms because detection power is maximized; however, block designs are not
optimal for HRF parameter estimation. Here we assessed the utility of block design fMRI data for HRF modeling. The trueness
(relative deviation), precision (relative uncertainty), and identifiability (goodness-of-fit) of different HRF models were examined and
test–retest reproducibility of HRF parameter estimates was assessed using computer simulations and fMRI data from 82 healthy
young adult twins acquired on two occasions 3 to 4 months apart. The effects of systematically varying attributes of the block
design paradigm were also examined. In our comparison of five HRF models, the model comprising the sum of two gamma
functions with six free parameters had greatest parameter accuracy and identifiability. Hemodynamic response function height and
time to peak were highly reproducible between studies and width was moderately reproducible but the reproducibility of onset
time was low. This study established the feasibility and test–retest reliability of estimating HRF parameters using data from block
design fMRI studies.
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INTRODUCTION
The hemodynamic response function (HRF) reflects the regulation
of regional cerebral blood flow in response to neuronal activation.
Accurate modeling of the HRF is of interest in a number of areas of
research.1–5 The HRF has a key role in the analysis of functional
magnetic resonance imaging (fMRI) data3 and variation in the HRF
between individual subjects and between brain regions has
prompted the estimation of subject-specific HRFs as a means of
enhancing the accuracy and power of fMRI studies.1 Charac-
teristics of the shape of the evoked hemodynamic response such
as height, delay, and duration may also be used to infer
information about intensity, onset latency, and duration of the
underlying neuronal activity.4 Accurate estimation of the HRF
is essential if fMRI is to be used to detect fine differences in
the timing of neuronal activation as a means of understanding
the temporal sequences of brain processes. Hemodynamic
response function modeling also enables noninvasive investi-
gation of neurovascular coupling, which changes with brain aging
and may have a pathophysiological role in dementia and
cerebrovascular disease.6,7

The design of fMRI studies affects both estimation efficiency,
a measure of the ability to estimate the shape of the HRF,
and detection power, a measure of the ability to detect activa-
tion. Previous studies have demonstrated that there is a funda-
mental tradeoff between these characteristics such that designs

maximizing detection power necessarily have minimum esti-
mation efficiency and designs that achieve maximum estimation
efficiency cannot attain maximum detection power.8,9 For
example, event-related designs offer high estimation efficiency
but poor detection power, whereas block designs offer good
detection power at the cost of low estimation efficiency.9

A considerable body of fMRI data has already been acquired
using block designs to maximize signal-to-noise ratio (SNR) and to
increase the likelihood of detecting a response. In some of these
studies, it would be of interest to examine the HRF explicitly even
though study designs were not optimized with this in mind. In
particular, studies involving large number of subjects,10,11 multiple
sites,10,12,13 special subject groups,11,14 and longitudinal designs14

would be difficult and expensive to replicate. Our specific interest
in estimating HRF parameters from a block design study was
stimulated by a large twin study. Here we were interested in how
robustly HRF parameters could be estimated as a prelude to
examining the heritability of the HRF. We approached this
question first by comparing the performance of different HRF
models. We then examined the test–retest reliability of HRF
parameter estimation. This allowed us to identify which HRF
traits remain stable over time, providing some insight into the
extent to which individual parameters serve as variables
reflecting a biologic trait or an experimental state. Test–retest
reliability was examined in 82 healthy young adult twins
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tested with the same fMRI paradigm on two occasions. We
examined the following parameters of the HRF: height (H), time to
peak (T), full width at half maximum (W), and onset (O),
respectively reflecting the magnitude, peak latency, duration,
and onset latency of the localized increase in blood flow with
neural activation.

MATERIALS AND METHODS
Hemodynamic Response Function Model and Features
The blood oxygenation level dependent (BOLD) fMRI signal was modeled
as the convolution of the stimulus function and the HRF. Before assessing
test–retest reliability in human data, we assessed the identifiability
of five HRF models, summarized in Table 1, in simulated fMRI time
series. Model I was the canonical HRF used in SPM8 (The Wellcome Trust
Centre for Neuroimaging, London, UK), in which only the height parameter
A varies. Models II, III, and IV were variants of the canonical HRF and
comprise the sum of two or three gamma functions. Model V was the sum
of inverse logit functions used by Lindquist et al.4,15 The number of
free parameters for model V was reduced from nine (three inverse
logit functions) to seven by explicitly imposing the conditions that the
fitted response should start and end at zero4,15 noting that the other
models were implicitly constrained to the same condition by
their equations. Models III and V were chosen because they were
previously found to have low parameter bias for event-related designs.4

Model IV was chosen as it can model the initial dip and poststimulus
undershoot.16

We used the following summary HRF features: height (H), defined as
the maximum signal change during the peristimulus time window
(30 seconds was used for this study); time to peak (T), the time taken
from start time to the time when signal change reached its maximum
value; full width at half maximum of the HRF (W); the onset (O), the first
time point after the stimulus at which signal intensity exceeded 0.1�H
(Figure 1A).

Simulation of Functional Magnetic Resonance Imaging Signal
Time Course
Functional magnetic resonance imaging signal time courses were
simulated using known HRFs to test the performance of different HRF
models. Three ground truth HRFs were created (Supplementary Figure S1).
In Simulation 1, the HRF was generated using the balloon model.17,18 The
HRF was generated using a single input at 1.5 seconds with 0.1-second
duration and using typical parameters obtained empirically in a previous
study: neuronal efficacy 0.54, signal decay 1.54, autoregulation 2.46, transit
time 0.98, stiffness parameter 0.33, resting oxygen extraction 0.34, and
resting blood volume fraction 0.06.18 The HRF in Simulation 2 was
generated using the sum of four inverse logit functions to create four
segments of HRF time course:

hðtÞ ¼
X4

i¼1

Ai
1

1þ eðt� TiÞ=Di
; ð6Þ

in which A1¼ � 0.2, A2¼ 1.8, A3¼ � 1.8, A4¼ 0.2, T1¼ 0.1, T2¼ 4, T3¼ 10,
T4¼ 20, D1¼ 0.8, D2¼ 1, D2¼ 1, and D3¼ 1.2. These parameters were
determined empirically as generating an HRF shape with summary features

Table 1. Summary of HRFsa

M Equations k P0 Bounds (LB; UB)

I hðtÞ ¼ A
t5e� t

Gð6Þ �
1
6

t15e� t

Gð16Þ

� �
ð1Þ 1 A0¼ 6 A (0; 15)

II hðtÞ ¼ A
ta1 � 1ba1

1 e�b1 t

Gða1Þ
� ta2 � 1ba2

2 e�b2 t

6Gða2Þ

� �
ð2Þ

5

A0¼ 6
a1, 0¼ 7
b1, 0¼ 1
a2, 0¼ 16
b2, 0¼ 1

A (0; 15)
a1 (2; 10)
b1 (0.5; 2)
a2 (6; 25)
b2 (0; 1.5)

III hðtÞ ¼
X2

i¼1

Ai
tai � 1bai

i e�bi t

GðaiÞ

� �
ð3Þ 6

A1, 0¼ 6
a1, 0¼ 7
b1, 0¼ 1
A2, 0¼ 1
a2, 0¼ 16
b2, 0¼ 1

A1 (0; 15)
a1 (2; 10)
b1 (0.5; 2)
A2 (0; 10)
a2 (6; 25)
b2 (0; 1.5)

IV hðtÞ ¼
X3

i¼1

Ai
tai � 1bai

i e�bi t

GðaiÞ

� �
ð4Þ 9

A1, 0¼ 0.5
a1, 0¼ 1.5
b1, 0¼ 0.8

A2, 0¼ 6
a2, 0¼ 7
b2, 0¼ 1
A3, 0¼ 1
a3, 0¼ 16
b3, 0¼ 1

A1 (0; 5)
a1 (0; 3)
b1 (0.5; 2)
A2 (0; 15)
a2 (2; 10)
b2 (0.5; 2)
A3 (0; 10)
a3 (6; 25)
b3 (0; 1.5)

V hðtÞ ¼
X3

i¼1

Ai
1

1þ eðt� TiÞ=Di
ð5Þ 7

A1, 0¼ 1
T1, 0¼ 4
D1, 0¼ 1
T2, 0¼ 5

D2, 0¼ 1.5
T3, 0¼ 10
D3, 0¼ 2

A1 (0; 10)
T1 (0; 5)

D1 (0; 10)
T2 (3; 10)
D2 (0; 10)
T3 (6; 25)
D3 (0; 10)

HRF, hemodynamic response function; k, the number of free parameters in the HRF models; LB, lower bounds; M, models; P0, initial values for model fittings;
UB, upper bounds. aA: height; G: the gamma function; Ai ai , bi , Ti, and Di control the height and direction, shape, scale, shift center, and slope of the HRF,
respectively.
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(H, W, T, and O) in keeping with published values.19,20 In Simulation 3, we
used the sum of three gamma functions to generate the HRF:

hðtÞ ¼
X3

i¼1

Ai
tai � 1bai

i e�bi t

GðaiÞ

� �
; ð7Þ

in which A1¼ � 0.2, A2¼ 10, A3¼ � 3.6, a1¼ 1.5, a2¼ 6.6, a3¼ 15, b1¼
0.8, b2¼ 0.8, and b3¼ 1. Figure 1 illustrates the procedures we used to
simulate the fMRI time series. We used a block design stimulus function
comprising 16 alternating blocks of rest and active conditions (8 for each
condition). Each active block included 16 trials of 0.2-second duration with
0.8 seconds gap (Figure 1B). Random noise was added to achieve SNR
levels of 50, 100, and 150 (Figure 1D). Noise was added without
consideration of autocorrelation:

TC ¼ TC�ð1þ s�randnÞ; ð8Þ

where TC is the time course of simulated fMRI data; s is the s.d. (0.02, 0.01,
and 0.067 for SNR of 50, 100, and 150, respectively); and the randn refers to
a vector of pseudorandom values drawn from the standard normal
distribution with the same length as TC. The range of SNR levels was
selected given previous studies showing that the minimum SNR for
detecting signal change in fMRI studies is 69 and the highest possible
SNR is 154.21 The simulated signal was sampled according to a typical
fMRI acquisition with TR¼ 2.1 seconds (Figure 1E). Each simulation was run
100 times.

Hemodynamic Response Function Model Selection
Hemodynamic response function modeling was performed using an in-
house MATLAB (MATLAB R2010a, The MathWorks, Natick, MA, USA) toolkit,
sHRF, which is publicly available at our website (http://www.cai.uq.edu.au/
shrf-toolkit). The fMRI time courses were high-pass filtered with a
128 seconds discrete cosine basis set and then modeled as the convolution
of the HRF (Table 1) and the stimulus function:22

TC ¼ hðtÞ�uðtÞþC; ð8Þ

where h(t) and u(t) are the HRF and stimulus function, respectively. For the
fitting we used a modified constrained Nelder–Mead Simplex algorithm
that allows the use of constraints specified as parameter bounds (http://
www.mathworks.com/matlabcentral/fileexchange/8277). Fitting was initi-
alized using parameters, which generated an initial HRF shape that closely
matched that of the canonical HRF. Initial values and constraints for each
model are summarized in Table 1. Parameter constraints were set
empirically to cover plausible HRFs with the following characteristics: an
initial dip with a minimum at 0 to 3 seconds of magnitude 0% to 5%; peak
BOLD signal at 2 to 10 seconds of magnitude 0% to 15%; signal undershoot
with a minimum at 6 to 25 seconds of magnitude 0% to 10%. The five
models cover the same space of possible HRFs except where the functional
form imposes a limitation in the ability to describe the HRF. For example,
Model I covers the same space for the amplitude of the BOLD peak as
other models but does not allow temporal variation; Model II covers the
same space for the BOLD peak and undershoot as Models III to V but the

Figure 1. The procedure used to simulate the functional magnetic resonance imaging (fMRI) signal time course. (A) A typical hemodynamic
response function (HRF) generated using three gamma functions. Illustrated are the HRF parameters used to describe HRF shape: height (H),
time to peak (T), full-width-at-half-maximum (W), and onset (O). (B) The stimulus function created according to a typical experimental design
used in human fMRI experiments. (C) The signal time course generated by convolution of HRF and the stimulus function. (D) The signal time
course after adding random noise. (E) The sampled fMRI time course with the repetition time of 2.1 seconds (green) and the presentation of
stimuli (gray). SNR, signal-to-noise ratio.
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functional form does not allow an initial dip. The parameter C allows base-
line adjustment of the fitted time course to match that of the simulated
time series (Figure 1D). The trueness of estimated HRF parameters or the
closeness of agreement between measured and ground truth values was
assessed by calculating the relative deviation from the values for the HRF
used to generate the simulated fMRI time course, i.e. the difference
between estimated and ground truth values divided by the ground truth
value. The measure of precision, or relative uncertainty, used in this study
was the interquartile range of relative deviation from the values for the
HRF used to generate the simulated fMRI time course. Trueness and
precision were summarized using boxplots of the simulation results
created in MATLAB (MATLAB R2010a, The MathWorks). The identifiability of
HRF models was assessed using their Akaike weights,23 which is the
probability of each model transformed from the Akaike Information
Criterion (AIC):

wi ¼ e�
1
2Di ðAICÞ

,XM

j¼1

e�
1
2DjðAICÞ; DiðAICÞ ¼ AICi � minðAICÞ; ð9Þ

in which M is number of models tested and Di(AIC) is the difference
between the AIC of each model and that of model with the smallest AIC
value. In this study, we used the AIC for finite samples:24

AIC ¼ n ln ðRSS=nÞþ 2kðkþ 1Þ=ðn� k� 1Þ; ð10Þ

where RSS is the residual sum of squares between the fitted and fMRI time
courses, n is the sample size, and k is the number of parameters. The HRF
model with the highest AIC weight was selected for subsequent analyses
of parameter estimation and reproducibility.

Parameter Estimation from Block Design Functional Magnetic
Resonance Imaging Data
The noise in measured fMRI time series and sparse sampling in acquired
data may lead to HRF parameter mis-specification. To examine this, we
used the balloon model simulation17,18 as the ground truth. The HRF
parameters were varied in three ways: (1) H only, (2) T and O only, and (3)
W, T, and O only. As illustrated in Supplementary Figure S2, varying T
unavoidably changed O and varying W unavoidably changed T and O. The
temporal SNR was set at 100, a typical SNR for fMRI data according to
previous reports.25,26 The highest variability across subjects observed in the
literature is 25%.1,3,19 Hence, we varied ground truth HRF parameter values
by 25%, 15%, and 10%. The simulation procedure described above in the
section on HRF model selection was employed, although here only Model
III was used to estimate the HRF. The simulation was executed 100 times
for each type and level of parameter variation. The estimated HRF
parameters were compared using the paired t-test in SPSS20 (IBM,
Madison Avenue, New York City, NY, USA).

Variations in the Block Design Paradigm
To investigate the influence of variations in the block design paradigm on
the trueness and precision of HRF modeling, the experimental conditions
of the block design were systematically varied: (1) the number of blocks
was varied from 1 to 8 with one block increments; (2) block length was
varied from 4 to 16 seconds with 2-second increments; (3) stimulus
duration was varied from 0.2 to 6.2 seconds with 1-second increments and
a stimulus duration of 16 seconds in individual blocks (long block design)
was also evaluated; (4) the gap between individual stimuli in each block
was varied from 0.8 to 6.8 seconds with 1-seconds increments. Simulation
of the fMRI time course was carried out as described above using the
balloon model to generate ground truth, a SNR of 100, and Model III to
estimate the HRF. Each simulation was executed 100 times. Trueness and
precision for each paradigm were calculated as described above.

Experimental Functional Magnetic Resonance Imaging Time
Course Data
The data we analyzed were acquired as part of a prior fMRI study,11 the
Queensland Twin Imaging Study.27 Retrospective utilization of the data
was approved by the Research Ethics Committee of the Queensland
Institute of Medical Research and The University of Queensland in
compliance with the Australian National Statement on Ethical Conduct in
Human Research. Functional MRI data from 30 male and 52 female healthy
young adult twins of mean age 22.5±2.5 (s.d.) years were included. For all

participants, the fMRI scans were repeated 2 to 6 months later (mean
117±56 days).

Participants performed the 0- and 2-back versions of the N-back working
memory task. The detailed fMRI experimental procedure is described in a
previous report.28 In the N-back task, a series of numbers is presented on a
screen. The 0-back condition required participants to respond to the
number currently shown on the screen. The 2-back condition required
participants to respond to the number presented 2 trials earlier. The
number was presented for 200 milliseconds with an 800-millisecond
interval between stimuli and 16 trials per block. In total, 16 alternating
blocks were performed for the two conditions (eight blocks per condition).

The three-dimensional T1-weighted MR image and echo planar imaging
data were acquired on a 4T Bruker Medspec whole body scanner (Bruker,
Hanau, Germany). Three-dimensionalT1-weighted images were acquired
using an MP-RAGE pulse sequence (TR¼ 2500 milliseconds, TE¼ 3.83
milliseconds, T1¼ 1500 milliseconds, flip angle¼ 15 degrees, 0.89�
0.89� 0.89 mm). For each participant, 127 sets of echo planar imaging
data (TR¼ 2.1 seconds, TE¼ 30 milliseconds, flip angle¼ 90, 3.6� 3.6� 3.0
mm) were acquired continuously during the tasks.

The fMRI data were analyzed using Statistical Parametric Mapping
(SPM8, the Wellcome Trust Centre for Neuroimaging, London, UK). The first
five echo planar imaging volumes were discarded to ensure that tissue
magnetization had reached steady state. The spatial preprocessing
included 2-pass motion correction29 and spatial normalization to the
average brain T1 template30 implemented in SPM8. Normalized volumes
were smoothed with an 8� 8� 8 mm full width half maximum Gaussian
kernel. In a first-level analysis of individual subject data, we determined
locations of activation using the general linear model with a finite impulse
response basis function. The 2-back minus 0-back contrast images were
then entered into a group level, random-effects one-sample t-test to
identify the common activation voxels (Po0.05 with family wise error rate
adjustment for multiple comparisons).

Four regions identified at the group level were selected for HRF
modeling: left and right middle frontal gyrus and left and right angular
gyrus (Supplementary Figure S3). Volumes of interest were defined as the
overlap of an existing probabilistic atlas of each structure in stereotaxic
coordinate space31 with group activation regions. For each participant, the
fMRI time course was extracted by averaging the signal intensity at each
time point in the voxels with the top 12.5% of SPM t statistics within each
VOI. The top 12.5% is used here to accommodate individual variation in the
pattern of functional activation within each VOI. The threshold was
selected empirically as the value when the extracted time course stabilized
as the percentage was decreased from 100, 50, 25, to 12.5. The HRF model
selected from the simulation study was fitted to the extracted time series
and used to estimate HRF parameters. Akaike Information Criterion
weights were also calculated for each HRF model using real time series
data.

Analysis of Test–Retest Reliability
For each brain region and each HRF parameter, the intraclass correlations
of the two experimental sessions were calculated using SPSS20 (IBM) using
a two-factor mixed effects model and tests of significant difference in ICC
from zero performed.32 Because the participants were biologically related
monozygotic and dizygotic twins, the intraclass correlations of the HRF
heights from the first-born participant in each twin pair were also
evaluated to assess whether relatedness between participants affected the
reliability results. The reliability of the performance measure used in the
experiment has been reported previously.11

RESULTS
Simulation Study
Figure 2 summarizes the HRF parameter estimates from the
simulations. Parameter estimation was considered accurate if
estimated values did not differ significantly (i.e. P40.05) from the
corresponding ground truth values. Height was estimated
accurately for all SNR levels and all models except for Model V
at an SNR of 50 in simulation 1 (Po0.05, one sample t-test). For
Model I, T, W, and O are fixed and there is only one free parameter.
Models II, III, and IV were able to estimate T, W, and O of the HRF
for all noise levels accurately. Model V was able to estimate T and
W accurately at all noise levels but did not estimate O accurately
(Po0.05 for all three simulations). The central line and lower and
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upper box boundaries of the boxplots in Figure 3 respectively
represent the median, 25th and 75th percentiles of 100 simu-
lations. Models with more free parameters showed a lower preci-
sion (wider range) of parameter estimation but higher trueness
(smaller relative deviation) than those with fewer parameters.
Model I had the least variation but the highest bias of parameter
estimation. For all three simulations, the variation and bias of
parameter estimation decreased with increasing SNR for all
models. For Models II to V, T was estimated with the highest preci-
sion and trueness followed by W, H, and O.

Table 2 summarizes the AIC of different models for data with
different noise levels. Model III had the highest AIC weights and
Model I the lowest across different simulations and noise levels.

Results for HRF parameter estimation are summarized in
Table 3. The selected HRF model (Model III) was able to identify
parameter differences exceeding 10% with SNR of 100. There were
no instances in which significant changes in one parameter
resulted from variation in another parameter.

Results of parameter estimation with different block design
paradigms are summarized in Figure 3 using boxplots constructed
in the same manner as Figure 2. For less than six blocks, mean
estimated H, W, and O generally had relative errors greater than
0.1 and an interquartile range greater than 0.5 (Figure 3A).
Trueness was similar across paradigms with different block
lengths. However, precision was increased with reduced block
length (Figure 3B). Both trueness and precision of parameter
estimation increased with greater stimulus duration within each
block (Figure 3C). Trueness and precision also increased when the
gap between stimuli was increased to 3.8 seconds and remained
similar with larger gaps (Figure 3D).

Real Functional Magnetic Resonance Imaging Data
Akaike Information Criterion weights for the models using real
fMRI data were consistent with results from simulations (Table 2).
Model III had the highest AIC weights. Activation maps between

Figure 2. Box-and-whisker plot of the relative differences of estimated hemodynamic response function (HRF) parameters from the true values
in the simulation study. Outliers were defined as exceeding three times the s.d.; all data including outliers were included in the analysis. Rows
from top to bottom are the results for height (H), time to peak (T), width (W), and onset (O). Columns from left to right are results for Simulation
1 (‘balloon’ model), Simulation 2 (sum of four inverse logit functions), and Simulation 3 (sum of three gamma functions).
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the two experimental sessions were highly reproducible (Supple-
mentary Figure S3). Quantitative assessment of the repeatability of
the activation map between two experimental sessions has been

reported previously.11 The ICC(3,1) of HRF parameters estimated in
the two experimental sessions using Model III are summarized in
Table 4. Height and T are highly reproducible, W is moderately

Figure 3. Boxplots of estimated hemodynamic response function (HRF) features with systematic variation in attributes of the block design
paradigm. The columns from left to right relate to estimated height, time to peak, width, and onset, respectively. The rows from top to bottom
relate to variation in the number of blocks (A), the length of blocks (B), the duration of stimuli in each block (C), and the gap between
individual stimuli (D). Outliers were defined as exceeding three times the s.d.. Outliers were not excluded from data analysis.

Table 2. Akaike weights (Wi) for HRF models for computer simulations and real fMRI dataa

HRF model Simulation 1 Simulation 2 Simulation 3 Real data

150 100 50 150 100 50 150 100 50

III (2 Gamma functions 6 parameters) 0.34 0.31 0.25 0.36 0.33 0.27 0.4 0.33 0.3 0.41
IV (3 Gamma functions 9 parameters) 0.27 0.23 0.2 0.34 0.22 0.22 0.32 0.25 0.22 0.36
II (2 Gamma functions 5 parameters) 0.22 0.21 0.23 0.25 0.3 0.23 0.26 0.26 0.23 0.16
V (3 Inverse logit functions 7 parameters) 0.16 0.2 0.2 0.05 0.15 0.21 0.02 0.15 0.18 0.07
I (Canonical function) 0.01 0.05 0.12 o0.01 o0.01 0.07 o0.01 0.01 0.07 o0.01

fMRI, functional magnetic resonance imaging; HRF, hemodynamic response function; SNR, signal-to-noise ratio. aThe Akaike weights were calculated for each
model at a specific SNR level (150, 100, and 50) with different ground truth generation method (Simulation 1, 2, and 3) on simulation data and on real fMRI
data. The simulation was run 100 times for each condition.
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reproducible, and reproducibility of O is low. The 95% confidence
intervals of all parameters overlap between the two experimental
sessions. Height is lower in session 2 than in session 1. A practice
effect was also observed in the performance data.11 Biologic
relatedness between participants did not affect reliability results.
The intraclass correlations of HRF heights from the first-born
participant in each twin pair (N¼ 41) for left and right middle
frontal gyrus and left and right angular gyri were 0.64 (Po0.01),
0.58 (Po0.01), 0.63 (Po0.01), and 0.64 (Po0.01), respectively.

DISCUSSION
Modeling of the HRF using fMRI is a noninvasive method to
investigate the brain’s hemodynamic response to neuronal
activation. In this study, we found that with block design fMRI
paradigms, most HRF models were able to estimate HRF
parameters except for Model V that had difficulty estimating
onsets. The sum of two gamma functions with six free parameters
had the greatest identifiability of the five models tested but the
accuracy of parameter estimation varied with block design
attributes. H, T, and W were reproducible between two experi-
mental sessions.

We used computer simulations with a known ground truth to
assess the performance of the HRF models. In the simulations,
Gaussian noise was added at each SNR level without consideration
of autocorrelation. However, fMRI noise typically exhibits temporal
dependence (autocorrelation); therefore, the SNR level is slightly
lower than in practice. Parrish et al21 demonstrated that a
minimum SNR of 69 is required to detect a 1% BOLD signal
change with 112 image volumes. Our results were similar, showing
that Models I to IV could estimate H accurately with a SNR of 50
and 122 image volumes. The simulation results for the five models
showed that models with more free parameters had lower
precision but higher trueness of HRF parameter estimation
(Figure 3). The canonical HRF (Model I) had the least variance,
but the estimated height was more likely to be biased. The

tradeoff between the number of parameters and precision and
trueness motivated the use of AIC weights for model selection.

A key consideration in HRF model selection is the number and
nature of a priori assumptions. Recently, Lindquist et al4 assessed
the performance of different HRF models for event-related designs
in terms of bias, mis-specification, and statistical power. Seven
models were compared: the canonical HRF, canonical HRF with
temporal derivatives, canonical HRF with temporal and dispersion
derivatives, finite impulse response, smoothed finite impulse
response, sum of two gamma functions, and the sum of three
inverse logit functions. The study suggested the sum of two
gamma functions is not optimal for fitting noisy data from event-
related studies and should only be used on regions where it is
known that there is signal present.4 Our study focused on HRF
modeling using block design fMRI data in which signal is present.
As illustrated in the simulation study (Figure 3), models with few
assumptions are more flexible or may handle HRF shapes with
unexpected response behaviors more accurately than models with
many fixed parameters. However, a greater number of free
parameters may also lead to overfitting of noise, lowering
precision. This may explain the relatively poor performance of
Model V in our study. In Lindquist et al,4 superior performance for
Model V compared with gamma function models for event-related
designs that have a high HRF estimation efficiency8 and high
temporal resolution (TR¼ 0.5 seconds),4,15 most likely reflects
Model V’s greater flexibility.4,15 In contrast, in the present study
of block designs with low estimation efficiency, prior knowledge
implicitly encoded in the gamma function models constrained
them from overfitting noisy data. We used AIC weights to judge
model identifiability. The AIC is a measure of the relative
goodness-of-fit of a statistical model compared with others, with
a penalty given for using extra parameters.33 The AIC with a
correction for finite sample sizes was used in this study
(equation (10)); the correction is minimized when the sample
size is large.24 Based on AIC values, Wagenmakers et al23 further
proposed Akaike weights, which may be directly interpreted as

Table 3. Estimation of HRF parameter variationa

Estimated parameters (±s.d.) with variations in percentage

P D¼ 0 DH¼ 10 DH¼ 15 DH¼ 25 DT¼ 10
O¼ 18

DT¼ 15
O¼ 32

DT¼ 25
O¼ 50

DW¼ 10
DT¼ 9

DW¼ 15
DT¼ 13

O¼ 4

DW¼ 25
DT¼ 20

O¼ 4

H (%) 1.12±0.46 1.21±0.49 1.31± 0.32* 1.41±0.38** 1.14±0.39 1.06± 0.39 1.11±0.37 1.13± 0.45 1.17±0.39 1.18±0.35
T (s) 4.70±0.92 4.65±0.91 4.71±0.78 4.45±0.65 5.08±0.81* 5.53±0.75** 5.82± 0.68** 5.14±0.93* 5.14±0.84* 5.35±0.85**
W (s) 3.85±1.07 4.05±1.07 4.10±0.96 4.00±0.98 4.08±1.01 4.23±1.25 4.15±0.73 4.53±1.09** 4.51±1.01** 4.77±0.97*
O (s) 1.90±0.88 1.79±0.84 1.83±0.74 1.74±0.82 2.20±0.90 2.41± 0.85* 2.79±0.89* 1.98±0.81 2.02±0.89 2.08±0.89*

HRF, hemodynamic response function; H, height; O, onset; P, HRF parameters; T, time to peak; W, width; D, variation (no variation is introduced if D¼ 0 or the
parameter is absent). aThe * and ** denote Po0.05 and Po0.001, respectively.

Table 4. The ICC(3,1) of HRF parameters between the two experimental sessionsa

Structures Parameters

Height Time to peak Width Onsets

L-MFG 0.6** (1.23, 1.56; 1.03, 1.26) 0.53** (3.57, 4.09; 3.73, 4.21) 0.56** (3.49, 4.08; 3.84, 4.27) 0.22 (1.17, 1.5; 1.21, 1.49)
R-MFG 0.52** (1.21, 1.52; 1.05, 1.28) 0.5* (3.7, 4.29; 3.94, 4.52) 0.45* (3.75, 4.39; 4.26, 5.08) 0 (1.22, 1.54; 1.23, 1.59)
L-AG 0.74** (1.28, 1.56; 1.02, 1.29) 0.7** (3.66, 4.19; 3.78, 4.35) 0.48* (3.75, 4.27; 3.91, 4.74) 0.25 (1.18. 1.49; 1.24, 1.57)
R-AG 0.6** (1.12, 1.37; 1.02, 1.26) 0.45** (3.68, 4.29; 3.8, 4.43) 0.33* (4.02, 4.74; 4.28, 4.91) 0.42* (1.12, 1.47; 1.15, 1.59)

AG, angular gyrus; HRF, hemodynamic response function; L, left, MFG: middle frontal gyrus, R, right. a*Pp0.05 and **Po0.001. The numbers in the parentheses
are the 95% confidence interval of the parameters (session 1 lower bound, session 1 upper bound; session 2 lower bound, session 2 upper bound).
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conditional probabilities for each model. For example, an AIC
weight of 0.41 for Model III with real data in our study indicates
that this model has a 41% probability of being the best model of
those tested. The AIC values of different models are consistent
between the simulations and real fMRI data. The results suggest
that the sum of two gamma functions with six parameters is the
best HRF model when it is known that there is signal present.
With a typical fMRI SNR of 100, a two-gamma-function, six-
parameter model can discern 15% HRF feature variation without
misattributing variation in one parameter to another. Inter-and
intra-subject variability of the HRF has been studied previously in
event-related fMRI experiments.1,3,19,34–36 In the present exami-
nation of a block design study, H, T, and W were reproducible
between two experimental sessions, supporting the validity of
these HRF parameters as biologic measures. The repeatability
results may also provide insight into neural responses and
neurovascular coupling. For example, the reproducibility of H
between trials implies that the neural firing rate as well as the
vascular response induced by the same task across different
sessions for each individual was very similar. In previous
studies,5,37,38 the height of the BOLD response to visual
stimulation was negatively correlated with resting GABA concen-
tration in the visual cortex. If this relationship is widespread in the
brain, our results suggest that endogenous factors, such as
neurotransmitter concentration, which regulate the balance
between excitation and inhibition in the individual brain may
also remain relatively stable. The reproducibility of T and low
reproducibility of O has implications for the ability to infer
synchrony and directional influence among neural populations
during task performance and in the resting state from block
design fMRI data. Our findings on HRF test–retest reliability,
particularly for temporal parameters, are in broad agreement with
results from studies optimized for HRF estimation by the use of
event-related designs and long baseline periods,1,36 in which time
to peak had the greatest test–retest reliability and time when the
BOLD response begins to rise steeply from baseline (similar to O in
this study) had the largest test–retest variation.

In this study, we represented neural activity by the stimulus
time course, an assumption underlying commonly used methods
for statistical parametric mapping. To the extent that this
assumption is violated, it is likely that the HRF model parameters
estimated here contain a component of neural activity in addition
to vascular reactivity. Several techniques have been recently
proposed to dynamically filter fMRI time courses to estimate
neural activity as well as the vascular response explicitly.39,40

Application of these techniques in future studies may allow the
reproducibility of the HRF to be estimated more specifically.

Many HRF models have been proposed in the literature. Our
study was restricted to five models that are commonly used or
have been shown in prior studies to be less susceptible to mis-
specification errors (sum of inverse logit functions) or parameter
bias (sum of two gamma functions). In this study, we examined
vascular responses to neural activity evoked by a single cognitive
function in four brain structures that demonstrated robust
activation. Further studies using other activation tasks are needed
to assess generalizability of our findings to other brain regions and
brain functions.

Block designs are not optimal for HRF estimation and random
event-related designs and m-sequence designs have been shown
to have higher estimation efficiency.9 Nonetheless, our data on
model selection and on the reliability of HRF estimation should
increase the utility of existing block design fMRI data. Indeed, the
methodology presented in this paper will be used to analyze the
heritability of HRF parameters in a large twin cohort using block
design fMRI data that were originally collected to address
heritability of spatial patterns of functional activation with a
working memory task.11 In our tests of the effects of varying the
attributes of the block design paradigm, we found that at least six

blocks are required to model the HRF accurately. The simulations
showed that prolonging the length of blocks does not affect the
trueness of the parameter estimation but decreases precision.
This result is in keeping with HRF modeling being more sensitive
to the initial increase and the final decrease of the signal than the
plateau stages in the middle of block. Prolonging the block
introduces additional noise reducing precision. Decreasing the
frequency of stimuli in each block by increasing the gap between
stimuli increases the accuracy of parameter estimation. This
finding agrees with a previous theoretical model describing the
tradeoff between estimation efficiency and detection power8 in
the sense that block designs with decreasing stimulus frequency
in each block bear a greater resemblance to event-related designs.

In conclusion, we investigated trueness, precision, model
identifiability, and test–retest reproducibility of parameter esti-
mates for HRF models with a block design paradigm using
simulated and real fMRI data. The HRF features of height, time to
peak, and width were reproducible between test sessions and may
be useful as measures to characterize the coupled vascular
response to neural activity in individual subjects.
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