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method,” by Cornelius A. Rietveld, Tõnu Esko, Gail Davies,
Tune H. Pers, Patrick Turley, Beben Benyamin, Christopher F.
Chabris, Valur Emilsson, Andrew D. Johnson, James J. Lee,
Christiaan de Leeuw, Riccardo E. Marioni, Sarah E. Medland,
Michael B. Miller, Olga Rostapshova, Sven J. van der Lee,
Anna A. E. Vinkhuyzen, Najaf Amin, Dalton Conley, Jaime
Derringer, Cornelia M. van Duijn, Rudolf Fehrmann, Lude Franke,
Edward L. Glaeser, Narelle K. Hansell, Caroline Hayward,
William G. Iacono, Carla Ibrahim-Verbaas, Vincent Jaddoe, Juha
Karjalainen, David Laibson, Paul Lichtenstein, David C.
Liewald, Patrik K. E. Magnusson, Nicholas G. Martin, Matt
McGue, George McMahon, Nancy L. Pedersen, Steven Pinker,
David J. Porteous, Danielle Posthuma, Fernando Rivadeneira,
Blair H. Smith, John M. Starr, Henning Tiemeier, Nicholas J.
Timpson, Maciej Trzaskowski, André G. Uitterlinden, Frank C.
Verhulst, Mary E. Ward, Margaret J. Wright, George Davey
Smith, Ian J.Deary,Magnus Johannesson,RobertPlomin,PeterM.
Visscher, Daniel J. Benjamin, David Cesarini, and Philipp D.
Koellinger, which appeared in issue 38, September 23, 2014,
of Proc Natl Acad Sci USA (111:13790–13794; first published
September 8, 2014; 10.1073/pnas.1404623111).
The authors note that on page 13790, in the Abstract, line 15,

“KNCMA1, NRXN1, POU2F3, and SCRT” should instead appear
as “KCNMA1,NRXN1, POU3F2, and SCRT.”Also, on page 13793,
left column, first full paragraph, lines 8–9, “KNCMA1, NRXN1,
POU2F3, and SCRT” should instead appear as “KCNMA1,
NRXN1, POU3F2, and SCRT.”
The authors also note that on page 13792, left column, first

full paragraph, line 8, the following sentences should be added
after “analyses in ref. 11”: “However, one of the SNPs that
is significantly associated with cognitive performance after
Bonferroni correction (rs1487441) is in linkage disequilibrium
with rs9320913, which is one of the genome-wide significant SNPs
reported in ref. 11 in their GWAS of educational attainment.
The distance between the two SNPs is 30,839 base pairs and the
R2 = 0.905 according to the 1,000 Genomes Pilot 1 CEU refer-
ence panel (25).”

25. Johnson AD, et al. (2008) SNAP: A web-based tool for identification and annotation
of proxy SNPs using HapMap. Bioinformatics 24(24):2938–2939.
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We identify common genetic variants associated with cognitive
performance using a two-stage approach, which we call the proxy-
phenotype method. First, we conduct a genome-wide association
study of educational attainment in a large sample (n = 106,736),
which produces a set of 69 education-associated SNPs. Second,
using independent samples (n = 24,189), we measure the asso-
ciation of these education-associated SNPs with cognitive per-
formance. Three SNPs (rs1487441, rs7923609, and rs2721173) are
significantly associated with cognitive performance after correc-
tion for multiple hypothesis testing. In an independent sample
of older Americans (n = 8,652), we also show that a polygenic
score derived from the education-associated SNPs is associated
with memory and absence of dementia. Convergent evidence
from a set of bioinformatics analyses implicates four specific genes
(KNCMA1, NRXN1, POU2F3, and SCRT). All of these genes are associ-
ated with a particular neurotransmitter pathway involved in synaptic
plasticity, the main cellular mechanism for learning and memory.

Twin and family studies have shown that at least a moderate
share of variation in most facets of cognitive performance (i.e.,

performance by healthy individuals on cognitive tests) is associ-
ated with genetic factors (1, 2). However, despite considerable
interest and effort, research to date has largely failed to identify

common genetic variants associated with cognitive performance
phenotypes (3–5) with the exception of APOE, which predicts
cognitive decline in older individuals (6–8). Existing studies have
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relied on one of two research strategies. The first strategy is
a candidate gene design, in which researchers test a small
number of genetic variants for association with the phenotype of
interest, typically based on hypotheses derived from the known
biological functions of the candidate genes. The candidate gene
associations that have been reported with cognitive performance
(9), however, fail to replicate when larger samples are used (3). The
second research strategy is a genome-wide association study
(GWAS), in which researchers atheoretically test hundreds of
thousands of SNPs for association with the phenotype and
apply a threshold for genome-wide statistical significance—typically
5 × 10−8—to account for multiple hypothesis testing. For physical
and medical phenotypes, GWASs have identified many novel
associations that replicate (10). GWASs on cognitive perfor-
mance, however, have not yet identified any genome-wide signif-
icant associations (4, 5).
Here, we apply an alternative two-stage research strategy,

which we call the proxy-phenotype method. In the first stage, we
conduct a GWAS on a proxy phenotype to identify a relatively
small set of SNPs that are associated with the proxy phenotype.
In the second stage, these SNPs serve as candidates that are
tested in independent samples for association with the phenotype
of interest at a significance threshold corrected for the number of
proxy-associated SNPs. In the study reported here, our phenotype
of interest is cognitive performance, for which we use Spearman’s
measure of general cognitive ability (usually abbreviated as g; it
is the general factor measured by a battery of diverse cognitive
tests) (4). Our proxy phenotype is educational attainment mea-
sured by self-reported years of schooling.
Rietveld et al. (11) had suggested the strategy of using SNPs

associated with educational attainment as “empirically-based can-
didate genes” for association with cognitive performance (11); here,
we conduct that analysis and further develop the methodology
for doing so. SI Appendix contains our formal framework, which
builds on that in ref. 11, as well as power calculations under a
range of assumptions. According to the framework, educational
attainment is a good proxy phenotype for cognitive performance,
because cognitive performance is strongly genetically influenced
and causally affects educational attainment; also, much larger
samples are available for GWASs on educational attainment.
The high genetic correlation (estimated to be roughly 0.65 or
higher) (12–14) between the two traits does not have straight-
forward implications for the statistical power to identify specific
SNPs influencing cognitive performance. It does, however, imply
that a polygenic score associated with educational attainment
will be associated with cognitive performance; thus, it may be
viewed as providing an additional suggestive justification for the
approach to identifying specific SNPs.

Results
In our first stage, we conducted a GWAS of educational at-
tainment in a pooled Education Sample of 106,736 individuals.
We used the same data, analysis protocol, and quantitative years
of schooling measure as in ref. 11, except that we omit cohorts
with high-quality measures of cognitive performance; we, in-
stead, include these cohorts in the subsequent Cognitive Per-
formance Sample. We chose our inclusion threshold of P < 10−5

for selecting candidate SNPs based on ex ante power calcu-
lations, with a goal to maximize the number of true positives
among the candidates (SI Appendix). Pruning for linkage dis-
equilibrium the 927 SNPs that reach this threshold resulted in
69 approximately independent SNPs (SI Appendix).
In our second stage, we tested these 69 education-associated

SNPs for association with cognitive performance in the Cognitive
Performance Sample, which comprises 24,189 genotyped subjects
from 11 cohorts (SI Appendix). The specific cognitive tests differ
across cohorts, but the cognitive performance measure in every
cohort is calculated as Spearman’s g (SI Appendix); previous
research has found that g values from different test batteries are
highly correlated, especially if the batteries have many tests or if
the test is specifically constructed to measure g (15–17). We
tested each SNP individually for association with cognitive per-
formance using ordinary least squares, controlling for sex, age,
and (depending on the cohort) at least four principal components
of the genome-wide data (to reduce confounding from pop-
ulation stratification). At the cohort level, the analyses were
conducted according to a prespecified plan that we preregistered
on the Open Science Framework (https://osf.io/z7fe2/). The cohorts’
results were then meta-analyzed using an inverse-variance weighting
scheme. Two independent teams of analysts cross-checked and
verified the results.
To confirm that the education-based first stage identifies rea-

sonable candidate SNPs for cognitive performance, Fig. 1 plots
the standardized regression coefficients from the regression of
years of schooling on the education-associated SNPs in the Ed-
ucation Sample (with the reference allele chosen to ensure that
the coefficient is positive) against the standardized coefficients
from the second-stage regression of cognitive performance on
the SNPs in the Cognitive Performance Sample. The direction of
the effect coincides in 53 of 69 cases (two-sided binomial test,
P = 9.10 × 10−6), indicating that this context is a good context for
applying the proxy-phenotype method. We were surprised that
the correlation between the effect size on educational attainment
and the effect size on cognitive performance is negative (ρ =
−0.25, P = 0.03), although not significantly after dropping a
possible outlier (the bottommost point of the figure; ρ = −0.14,
P = 0.26). If the population correlation is truly negative, within
our theoretical framework, it suggests that SNPs that affect
cognitive performance more strongly tend to affect other factors
that matter for educational attainment (such as personality traits)
less strongly and vice versa (SI Appendix).
To provide a benchmark for evaluating our list of education-

associated candidate SNPs, we generated (through a prespecified
algorithm) a list of theory-based candidate SNPs for cognitive
performance drawn from published findings in the candidate
gene literature (SI Appendix). (This list does not include the
SNPs comprising the APOE haplotype, because these SNPs were
not available in the cohort GWAS results.) After applying the
same pruning procedure as for the education-associated SNPs,
our list of theory-based SNPs contains 24 independent SNPs, of
which only one is in a genomic region close to an education-
associated SNP. Fig. 2 overlays Q–Q plots for the theory-based
and education-associated candidates. The education-associated
candidates taken altogether are more strongly associated with
cognitive performance than would be expected by chance (z =
5.98, P = 1.12 × 10−9). Whereas a visual inspection of the plot

Significance

We identify several common genetic variants associated with
cognitive performance using a two-stage approach: we con-
duct a genome-wide association study of educational attain-
ment to generate a set of candidates, and then we estimate the
association of these variants with cognitive performance. In
older Americans, we find that these variants are jointly asso-
ciated with cognitive health. Bioinformatics analyses implicate
a set of genes that is associated with a particular neurotrans-
mitter pathway involved in synaptic plasticity, the main cellular
mechanism for learning and memory. In addition to the sub-
stantive contribution, this work also serves to show a proxy-
phenotype approach to discovering common genetic variants
that is likely to be useful for many phenotypes of interest to
social scientists (such as personality traits).
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suggests that the theory-based candidates exhibit some associa-
tion with cognitive performance, we cannot reject the null hy-
pothesis for any SNP individually or all of them taken together
(z = 1.19, P = 0.12).
The top three education-associated SNPs—rs1487441, rs7923609,

and rs2721173—show clear separation from the others in Fig. 2
and are significantly associated with cognitive performance after
Bonferroni correction for multiple hypothesis testing (Table 1).
Consistent with the negative correlation in Fig. 1, these SNPs are
different from the three SNPs that reached genome-wide sig-
nificance for association with educational attainment in the
analyses in ref. 11. After adjusting the estimated effect sizes of
the SNPs (each R2 ∼ 0.0006) for the winner’s curse, we estimate
each as R2 ∼ 0.0002 (SI Appendix), or in terms of coefficient mag-
nitude, each additional reference allele for each SNP is associ-
ated with an ∼0.02 SD increase in cognitive performance [or 0.3
points on the typical intelligence quotient (IQ) scale]. R2 ∼
0.0002 is about the same as the R2 value for the known SNP
associations with educational attainment (11) but far smaller
than the largest effect sizes for complex physical traits, such as
height (R2 ∼ 0.004) and body mass index (R2 ∼ 0.003) (18, 19).
Power calculations that we report in SI Appendix help shed

light on why the proxy-phenotype method succeeded in identi-
fying SNPs, whereas GWASs to date on cognitive performance
have not. A GWAS in our Cognitive Performance Sample of n =
24,189—which is larger than the largest GWASs (n = 17,989 in
ref. 4 and n = 3,511 in ref. 5)—would have had power of 0.06%
to identify any given SNP with an association that has R2 =
0.0002. In contrast, our proxy-phenotype approach had power of
12%. Given this power and the rather stringent significance

threshold (0.05/69 ∼ 0.00072), Bayesian calculations using
reasonable assumptions regarding priors suggest that the pos-
terior probabilities that these three SNPs are associated with
cognitive performance are high (SI Appendix).
Turning from specific SNPs to the set of all 69 education-

associated SNPs, we assess the explanatory power of a linear
polygenic score that aggregates their coefficients (SI Appendix).
In pooled results from four family-based cohorts (4,463 indi-
viduals in total), we find that the score is significantly associated
with cognitive performance (P = 8.17 × 10−4), with R2 ranging
approximately from 0.2% to 0.4% across samples. Using only
within-family variation, the pooled coefficient has the same sign
but is smaller and has a larger SE (P = 0.36). Thus, we cannot
rule out that some of the score’s explanatory power is because of
population stratification, although even without stratification,
the nonsignificance of the within-family coefficient is not sur-
prising given the low power of this test (SI Appendix).
Next, we explore whether educational attainment might serve

as a proxy phenotype for cognitive health phenotypes (as
opposed to cognitive performance in the normal range). Our
sample comprises 8,652 European descent individuals over the
age of 50 y from the Health and Retirement Study (HRS) (SI
Appendix). We confirm that, for 60 of 69 SNPs available in the
HRS data, the direction of the effects on educational attainment
generally coincides with the direction of the effects on the two
cognitive health phenotypes that we study: total word recall,
which is a test for memory problems (two-sided binomial test,
P = 0.0067) and total mental status, which is a battery that
screens for early signs of dementia (P = 0.0775). We obtain the
weights for a polygenic score by conducting a de novo meta-
GWAS analysis of educational attainment just as in the first
stage described above, but this time, we exclude the HRS from
the Education Sample.
Fig. 3 shows that the score is associated with both of the

cognitive health phenotypes. The strength of the protective effect
is approximately constant across age categories from age 50–80 y
and becomes weaker for total word recall after age 80 y. These
associations are essentially unaffected when we control for up to

Fig. 1. The relationship between standardized coefficients from the first-
stage regression of years of schooling on the education-associated SNPs in
the Education Sample (x axis) and standardized coefficients from the second-
stage regression of cognitive performance on these SNPs in the Cognitive
Performance Sample (y axis). The reference allele is chosen such that the
coefficient on years of schooling is positive. Each point represents 1 of the 69
education-associated SNPs. (The cloud of points is bounded away from zero
effect on years of schooling, because the criterion for including an SNP was
reaching P < 10−5 in the GWAS on years of schooling in the Education
Sample.)BecausetheSDofyearsof schooling is∼3,acoefficientof0.03—atypical
size for a years of schooling standardized coefficient (before correcting for the
winner’s curse)—means that each reference allele is associated with an in-
crease of 0.03 × 3 ∼ 0.09 y of educational attainment. In conventional IQ units
that have an SD of 15, a standardized regression coefficient on cognitive
performance of 0.03 corresponds to ∼0.45 IQ points.

Fig. 2. A Q–Q plot for a regression of cognitive performance on the edu-
cation-associated SNPs (black circles) with a 95% confidence interval around
the null hypothesis (gray shaded region) and a Q–Q plot for a regression of
cognitive performance on the theory-based SNPs (red circles) with a 95%
confidence interval around the null hypothesis (orange shaded region).
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20 principal components of the genome-wide data, suggesting
that the associations are not driven by population stratification
(20). The R2 values of these associations range roughly from
0.2% to 0.4% (similar magnitudes as in the analysis of cognitive
performance in the family-based cohorts). When we control for
years of schooling, the estimated effect of the score falls roughly
in one-half but remains statistically significant (SI Appendix). The
score is not associated with cognitive decline (i.e., the change in
a cognitive phenotype across longitudinal survey waves), except
for total word recall after age 80 y.
Finally, we used 14 (of 69) education-associated SNPs that are

nominally significantly associated with cognitive performance
(P < 0.05) to explore possible biological pathways in a set of
bioinformatic analyses (SI Appendix); 2 of 14 SNPs are in gene
deserts, but the other 12 SNPs are in close vicinity to at least one
gene predicted (based on its expression profile) to be involved
in the nervous system (SI Appendix). Among the most prom-
ising genes across these loci are KNCMA1, NRXN1, POU2F3,
and SCRT, all of which are predicted to be involved in a glu-
tamate neurotransmission pathway [labeled in REACTOME as
“unblocking of NMDA receptor, glutamate binding, and acti-
vation” (21)] that is involved in synaptic plasticity, a cellular
mechanism for learning and memory. Using different methods
(but some overlapping data), this same pathway has previously
been implicated in human cognitive performance (21).

Discussion
This paper makes two contributions. The first contribution is
that we show that the proxy-phenotype method generates posi-
tive findings in a domain in which neither candidate gene nor
GWAS approaches have so far made substantial progress. Similar
approaches have sometimes been used in prior work (e.g., to find
rare structural variants associated with cognition) (22), and there is
existing work focused on the related idea of increasing statistical
power in GWAS by analyzing correlated phenotypes jointly (23, 24).
We propose that the proxy-phenotype method, if systemati-

cally applied in social science genetics, could be a useful com-
plement to traditional gene discovery methods (such as GWAS)
in cases where it affords greater statistical power. In this case, it
does so, because (i) much larger genotyped samples are available
for educational attainment than cognitive performance and (ii)
some genetic variants are likely to be associated with educational
attainment because of their more direct, stronger relationships
with cognitive performance. For the same reasons, educational
attainment might similarly serve as a proxy phenotype for per-
sonality traits, such as persistence and self-control. In other
contexts, the proxy-phenotype method may be better powered
for different reasons. For example, for behavioral phenotypes
with substantial measurement error—such as smoking, drinking,
exercise, or eating habits—the proxy phenotype could be a medical
outcome associated with the behavior (e.g., pulmonary disease for
smoking or cirrhosis for alcohol consumption). We also note that,
although our analysis plan specified that cohorts look up a relatively
small set of education-associated SNPs in their existing GWAS

results on cognitive performance, researchers with access to full
GWAS results on the phenotype of interest could implement a
more powerful version of the proxy-phenotype method. For ex-
ample, first-stage results on the proxy phenotype could inform
priors that are updated using GWAS results on the phenotype
of interest.
We caution that the proxy-phenotype method (like theory-

based candidate SNP approaches) could generate an unacceptably
high rate of false positives if it were applied when underpowered
and if results were reported selectively. To minimize this danger,
we propose a set of best practices that proxy-phenotype studies
should follow: researchers should (i) conduct power calculations
ex ante to justify the use of the method for a particular pheno-
type of interest and report these calculations in the supplemental
information, (ii) circulate an analysis plan to all cohorts before
conducting any analysis and register the plan in a public re-
pository, (iii) commit to publishing all findings from the study,
including null results, and (iv) conduct Bayesian calculations of
the credibility of any findings. We followed these procedures in
this paper. Although replication of findings in an independent
cohort would be ideal, we anticipate that it will often be in-
feasible given the unavailability of genotyped samples that may
motivate the proxy-phenotype approach in the first place.
The second contribution of this paper is to identify common

genetic variants associated with cognitive phenotypes. Knowing

Table 1. SNPs significantly associated with cognitive performance after Bonferroni correction (full results are in SI Appendix, Table S4)

SNP Chromosome
Base pair
position

Nearest
gene

Effective
allele

Allele
frequency

Years of schooling
(Education Sample)

Cognitive performance
(Cognitive Performance Sample)

Standardized
coefficient P value

Standardized
coefficient P value

rs1487441 6 98660615 LOC100129158 A 0.473 0.026 1.78 × 10−9 0.036 1.24 × 10−4

rs7923609 10 64803828 JMJD1C A 0.521 −0.021 1.06 × 10−6 −0.034 2.58 × 10−4

rs2721173 8 145715237 LRRC14 T 0.473 −0.020 8.61 × 10−6 −0.034 2.88 × 10−4

The chromosome and base pair position are from the National Center for Biotechnology Information genome annotation (build 36), and the nearest
gene is from the SCAN database (www.scandb.org/newinterface/about.html). Allele frequency refers to the Cognitive Performance Sample.

Fig. 3. Coefficients from regression of standardized cognitive phenotype
(total word recall or total mental status) on standardized polygenic score
within age category controlling for sex and clustering SEs by individual
(details in SI Appendix, section 14). Error bars show ±1 SE.
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the three significant SNPs is not useful for predicting any par-
ticular individual’s cognitive performance because the effect
sizes are far too small, but it does enable follow-up research (e.g.,
pinpointing the causal variants and then conducting KO experi-
ments in animals) that may ultimately shed light on biological
pathways underlying cognitive variation. The polygenic scores
constructed from our results may prove useful for studying
gene–environment interactions. In future work, the magnitude of
explained variance will increase as researchers gain access to
datasets with even larger first-stage samples. Our results suggest
that such scores hold promise for eventually identifying indi-
viduals whose cognitive health at older ages is at greatest risk,
which could allow for appropriate preparation and (if possible)
preventative intervention.

Materials and Methods
The first stage of our two-stage procedure consisted of conducting a GWAS
meta-analysis on years of schooling in a pooled Education Sample (n =
106,736) using the same analysis plan as in the work by Rietveld et al. (11)
and the same cohorts, except for omitting the individuals who we include in
the second stage. To obtain our set of education-associated SNPs, we se-
lected all SNPs with P value < 10−5 from the first-stage meta-analysis results
and then pruned for linkage disequilibrium. The second stage of our two-
stage procedure consisted of conducting a meta-analysis of these 69 SNPs
on high-quality measures of cognitive performance in the independent
Cognitive Performance Sample, which included 11 cohorts (n = 24,189). We

constructed linear polygenic scores from the meta-analysis results of the
second stage and tested them for association with cognitive performance in
four family-based cohorts (pooled n = 4,463), with the meta-analysis sample
excluding the respective validation sample. Analyses on cognitive health
phenotypes were conducted in an independent cohort of older Americans,
the HRS, using the two measures that are available in more than one wave in
that sample: total word recall and total mental status (n = 8,652 and n =
8,539, respectively). We tested the association between these two pheno-
types and a linear polygenic score that was constructed using the coefficient
estimates from the GWAS meta-analysis of years of schooling (as in the first
stage, excluding only HRS; n = 98,110). SI Appendix includes all of the details
on the samples and methods.
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