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We introduce a framework for population analysis of white matter tracts based on diffusion-weighted images of
the brain. The framework enables extraction of fibers from high angular resolution diffusion images (HARDI);
clustering of the fibers based partly on prior knowledge from an atlas; representation of the fiber bundles
compactly using a path following points of highest density (maximum density path; MDP); and registration of
these paths together using geodesic curve matching to find local correspondences across a population. We
demonstrate our method on 4-Tesla HARDI scans from 565 young adults to compute localized statistics across
50 white matter tracts based on fractional anisotropy (FA). Experimental results show increased sensitivity in
the determination of genetic influences on principal fiber tracts compared to the tract-based spatial statistics
(TBSS) method. Our results show that the MDP representation reveals important parts of the white matter
structure and considerably reduces the dimensionality over comparable fiber matching approaches.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Diffusion weighted imaging (DWI) measures the directional diffu-
sion of water through the brain in vivo. By following the dominant
directions of diffusion across the brain, whole-brain tractography
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algorithms can reconstruct the brain's major white matter pathways,
extracting a vast number of fibers that are amenable to statistical
analysis. We can then study these white matter regions in individuals
and populations to better understand disease effects (Daianu et al.,
2013; Jahanshad et al., 2012b; Takahashi et al., 2002), changes in brain
microstructure and connectivity with age (Abe et al., 2002; Dennis
et al., 2012), hemispheric differences (Jahanshad et al., 2010), sex differ-
ences (Peled et al., 1998), and genetic influences (Jahanshad et al.,
2013a; Kochunov et al., 2010).

High angular resolution diffusion imaging (HARDI) enables a
more accurate representation of fiber directions compared to the
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more standard single-tensor model (Basser and Pierpaoli, 1996). The
single-tensor model does not account for fiber crossing or mixing, but
the orientation distribution function (ODF) (Tuch, 2004) can be derived
from HARDI images to discriminate multiple fibers with different
orientations passing through a voxel (Leow et al., 2009; Zhan et al.,
2010).

The large number of fibers generated by the tractography algorithms
first needs to be clustered according to known anatomical pathways
before comparing them across subjects. A wealth of clusteringmethods
has been applied to tractography results including fuzzy clustering
(Shimony et al., 2002), normalized cuts (Brun et al., 2004), k-means
(O'Donnell and Westin, 2005), spectral clustering (O'Donnell et al.,
2006), Dirichlet distributions (Maddah et al., 2008), hierarchical cluster-
ing (Visser et al., 2011), a Gaussian process framework (Wassermann
et al., 2010b), and median filtering (Prasad et al., 2011a). Some of
these methods readily benefit from prior anatomical information pro-
vided by an atlas of likely locations of the tracts in the brain (Yendiki
et al., 2011), suggesting when to split or combine clusters to conform
to known anatomy. In one approach (Jin et al., 2011a,b, 2013), several
labeled atlases are deformed onto a fiber set extracted from a new
subject, and a fibermatching and voting process are used to help decide
the anatomical bundles to which the fibers belong.

Following clustering, several methods can be used for fiber bundle
matching. (Colby et al., 2011) use a parametric curve-based method to
resample fibers in a bundle based on shared seed points and then com-
pute correspondences from the resampling to create a representative
path for an individual or group. A similar re-sampling approach is
used in a method (Yeatman et al., 2012) that filters fiber bundles to
match a probabilistic atlas. (Corouge et al., 2006) analyze fiber bundles
by resampling and then aligning them across subjects using Procrustes
analysis (Goodall, 1991) to generate a mean shape. (Roberts et al.,
2005) apply a density measure derived from tractography results.
Their measure (fiber density index; FDi) quantifies the average number
of detected fiber paths passing through voxels in a ROI. (Wassermann
et al., 2010a) use Gaussian processes to create voxel-wise probability
maps of white matter structure. The fiber locations in high density
regions of the image space are used by O'Donnell et al. (2009) as a tem-
plate to align other fibers and compute correspondences. Yushkevich
et al. (2008) analyze white matter tracts using deformable geometric
medial models that allow for integration of nearby tensor-based
features to reduce the dimensionality and improve registration. (Patel
et al., 2010) use a fast-marching algorithm to encapsulate white matter
tracts in voxel based boundaries, which are then matched using
variational techniques.

In contrast to the parameterized methods mentioned above, white
matter analysis can also be performed using a voxel-based approach.
A popular method known as tract based spatial statistics (TBSS)
(Smith et al., 2006), uses a skeletonized representation of white matter
and uses nonlinear registration for matching the skeletons. Although it
is a very popular approach, TBSS does not explicitly represent tracts
that would be recognized by anatomists, and therefore is not guaran-
teed to produce a consistent labeling of tracts from one brain to another
(Schwarz et al., 2013). Although voxel-based methods can also be used
to analyze DWI, they are often sensitive to the image registration
(Tustison et al., 2012). Most existing white matter analysis techniques
focus on nonlinear registration of fractional anisotropy (FA) images as
in TBSS (Smith et al., 2006) and voxel-based morphometry (VBM),
which can be applied to DWI-derived maps such as FA (Jones et al.,
2005). Other approaches that focus on diffusion tensor correspon-
dences are usually based on a global image registration, but a high-
dimensional registration of tensor fields may also be used, as can
tensor-based statistics (Chiang et al., 2008; Lee et al., 2009; Lepore
et al., 2008; Yeo et al., 2009; Zhang et al., 2006). Given the richness of
information provided by tractography, it seems advantageous to directly
study the fiber tract bundles rather than simply analyzing voxel-based
representation.
Approach

Our work adopts a parameterized approach by refining the repre-
sentation of white matter structure into compact and localized paths,
represented as 3D curves. These paths represent themost influential re-
gions in tractography and are used as compact dimensional representa-
tions of the fiber bundle. Our method uses an additional local
registration of specific white matter regions to fix biases (Tustison
et al., 2012) in voxel-based analysis and many of the problems of regis-
tration algorithms (Klein et al., 2009) thatwork on the entire image. Ad-
ditionally, our approachmay offer increased statistical power as it finds
shape homologies across different white matter tracts.

Termed themaximumdensity path (MDP) approach, it incorporates
information from tractography-derived fibers by selecting a subset of
fiber bundles from a white matter atlas in the same space. We generate
a density image from the fiber bundles and use it to create a graphwith
voxel locations as nodes and fiber density measures as edges. We
implement a widely used graph search algorithm to find the MDP
between two pre-specified regions of interest (ROI) in the atlas. The
MDPs represent fiber bundles that characterize a tract using points of
highest density. These compact descriptions of a tract's scale, location,
and high-level geometric information are computed for all subjects in
a population. We find correspondences across the paths by bringing
them into the same space using geodesic curve registration. Finally,
the average MDP for a given population is computed using a nonlinear
iterative method. As an example, we use our method to determine
genetic influences on white matter tracts based on a large cohort of
over 565 twin subjects scanned using HARDI at 4-Tesla. We compare
the results to those obtained by the more standard TBSS method.

MDPs have been used as one tool for pilot studies of sex differences
and a variety of diseases (Nir et al., 2012; Prasad et al., 2011b). In the
current study we explicate the technical details of the method, validate
its repeatability, compare it to the widely used TBSS, and use MDPs to
study heritability along with genetic associations. The main contribu-
tions of this work are as follows:

• Fiber tract bundles are represented by compact reduced dimensional
representations known as maximum density paths (MDPs).

• MDPs are represented by vector valued functions and are analyzed in
an intrinsic and invariant manner.

• Shape matching between MDPs is achieved using geodesic curve
registration that not only yields smooth deformations between
MDPs, but also provides shape distances between them.

• Group analysis of MDPs is conveniently performed using an intrinsic
statistical framework that enables the computation of shape averages
and their first order variations.

• Fiber bundle analysis via MDPs is used to identify highly heritable
regions in the white matter tissues in twin subjects and is also used
to show genetic associations.

Materials and methods

This section describes important steps starting with the extraction
of fibers using HARDI tractography, clustering of fibers using a white
matter ROI atlas, representation and matching of fiber bundles using
MDPs, and finally, statistical analysis of MDPs in a population. The sche-
matic pipeline outlining the extraction and representation of MDPs is
shown in Fig. 1, whereas the workflow for statistical group analysis is
shown in Fig. 2.

HARDI tractography using the Hough transform

We use a global tractography algorithm (Aganj et al., 2011) to
extract fibers from HARDI images.

The algorithm uses extensive information provided by HARDI at
each voxel, parametrized by the orientation distribution function (ODF).



Fig. 1. Schematic of the pipeline for extraction, clustering, and representation ofmaximumdensity paths (MDPs) for a single subject. Thefirst panel shows thefibers fromourHARDI global
tractrography method. The co-registered region of interest (ROI) atlas is used to select a fiber bundle representing a particular white matter tract. The resulting fiber bundle is then
converted to a volumetric density image, which is transformed into a graph. Selected seed points in the image form the nodes of the graph, that are used to compute maximum density
paths. The maximum density path compactly summarizes a given white matter structure and enables specific matching of these regions across subjects using curve registration.

Fig. 2. Schematic of the pipeline for performing statistical analysis of populations of MDPs. The first panel represents MDPs for a population of subjects for a given white matter tract. A
nonlinear iterative method that uses geodesic curve registrations is used to compute an average MDP representing the mean shape of the population. A correspondence is established
for all subject MDPs via the average MDP. Fractional anisotropy (FA) from each subject is resampled for the corresponding points and compared across the population.
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Our tractography method selects fibers in the diffusion image space
by generating scores for all possible curves at a seed point. These curves
are parameterized using 2nd order polynomials. An additional parame-
ter controls the maximum expected curve length and is set to a value
representing the largest dimension of the volume. In practice, the num-
ber of curves evaluated at each seed point is around one million based
on resolution and computational resources.

First, seed points are generated using a prior probability based on FA
from the single-tensor model of diffusion (Basser and Pierpaoli, 1996),
defined as

ffiffiffi
1
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1−λ2ð Þ2 þ λ2−λ3ð Þ2 þ λ3−λ1ð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2
1 þ λ2

2 þ λ2
3

q ; ð1Þ

where λ1, λ2, and λ3 are the eigenvalues of the diffusion tensor. These
seed points are used to generate curves that receive a score estimating
the probability of their existence, computed from the voxels the curve
passes through.

The ODFs at each voxel from our HARDI images were computed
using a normalized and dimensionless estimator derived from Q-ball
imaging (QBI) (Aganj et al., 2010). This method uses the Jacobian factor
r2 for the constant solid angle (CSA) ODF as

1
4π

þ 1
16π2 FRT ▽2

bln −ln
S ûð Þ
S0

� �� �
: ð2Þ

In this equation, S(û) is the diffusion signal, S0 is the baseline image,
FRT is the Funk–Radon transform, and ▽b

2 is the Laplace–Beltrami
operator. This estimate outperforms the original definition (Tuch,
2004) with superior resolution for detecting multiple fiber orientations
(Aganj et al., 2010; Descoteaux and Bore, 2012; Fritzsche et al., 2010;
Ghosh et al., 2013).

The Hough transform tractography chooses fibers from all possible
curves generated in the image at a certain space and parameter resolu-
tion. These curves are parametrized by their arc length, s, ranging in
value from L− to L+ and approximated using simple polynomials. The
scores for each possible curve, s, derive from the ODF and FA values

∫Lþ
L−

log ODF x! sð Þ t̂ sð Þ� �
FA x! sð Þ

	 
h i
þ λ

	 

ds; ð3Þ

where ODF x! sð Þ t̂ sð Þ� �
is the value from the ODF at the 3D location x! sð Þ

and direction specified by the unit tangent vector t̂ sð Þ. The method
scores as many fibers as possible arising from a seed point and uses
the voting process provided by the Hough transform to select the best
fitting curve. These filtered curves comprise the final set of fibers
produced by the method for a single subject, which we refer to as F.

The method is probabilistic in its selection of a fiber at a certain seed
point but does not generate volumetric data giving a distribution of
fibers in the white matter. It chooses seed points (voxel locations)
randomly throughout the white matter tissue with a probability propor-
tional to their fractional anisotropy. Once a seed point is chosen, the algo-
rithmscores all possiblefibers that pass through this point. Thenumber of
fibers is restricted by the parameterization and range of the variables in-
volved, but is close to one million candidate fibers. For each fiber this
score represents the probability of that fiber existing and is constructed
by integrating the orientation distribution function over the span of the
fiber combined with the probability of the corresponding seed point.
The method then uses the Hough transform to select the fiber with the
highest probability or highest score as the final fiber for that seed point.

The tractography algorithm was run on each subject image and
generated around 10,000 fibers (Fig. 1 shows a representative example
with our data), which represents a good balance between computation-
al efficiency and sampling enough of the image space (Prasad et al.,
2013c). We subsequently clustered these fibers using a white matter
atlas.
Fiber clustering with white matter ROI atlas

Fibers extracted using the Hough transform-based tractography
method are clustered using a ROI atlas to incorporate prior anatomical
information. We use the Johns Hopkins University (JHU) atlas
(Wakana et al., 2004), which delineates 50 white matter regions of
interest (ROI). This ROI atlas is first registered to our subject space
using an affine transformprovided by FMRIB's Linear Image Registration
Tool (FLIRT) (Jenkinson and Smith, 2001). This is then followed by a
nonlinear transform from the Automatic Registration Toolbox (ART)
(Ardekani et al., 2005; Klein et al., 2009) to refine the registration
further.

We then cluster the fiber bundles by measuring the intersection
of fibers with the ROI atlas as follows. A fiber intersection score is com-
puted by counting the number of ROI voxels that intersectwith thefiber
tract. This score is used to select fibers that belong to an ROI and thus a
white matter tract. Spuriously intersecting fibers are eliminated by
applying an experimentally determined threshold that is dependent
on the number and the type of fibers obtained from the tractography
algorithm. Formally, if F is the set of fibers for a subject and r is a specific
whitematter ROI label in the atlas, then the subset of selected fibers in a
bundle is given by,

B ¼ f j f∈F;∫
f
A s; rð Þds N t

n o
; ð4Þ

where t is the intersection threshold and A is an indicator function
defined to be

A s; rð Þ ¼ 1 if s ∈ region r
0 otherwise:

�
ð5Þ

Bundle representation using the maximum density path

The fiber bundle B representing a white matter tract is reduced to a
compact representation also referred to as the maximum density path
as follows. We first compute a density volume of our fiber bundle to
characterize our search space, and denote it as

Id x!
	 


¼
X
b∈B

Q b; x!
	 


; ð6Þ

where x! represents a 3D voxel location and Q is the indicator function

Q b; x!
	 


¼ 1 if b intersects x!
0 otherwise:

�
ð7Þ

This value specifies the number of fibers that intersects each voxel.
We then construct a graph that represents the voxel-wise fiber density
in our fiber bundle. The above voxels are used as nodes in a graph, G=
{N, E} (a set of nodes and undirected edges connecting them)with those
of positive value connected to their 26 neighbors by undirected edges.
In our formulation, the weight of an edge between nodes i and j is
calculated as the sum of the voxel densities it connected as

Id x! ið Þ
	 


þ Id x! jð Þ
	 


; ð8Þ

with Id x! kð Þ
	 


as the density for the voxel location x! kð Þ corresponding
to node k. These edge weights are then modified by subtracting each
from the maximum initial edge cost, em, such that edges in high density
regions have weights close to zero. These edge weights are designed to
allow the shortest path algorithm to go through edges in high density
regions. We use Dijkstra's algorithm (Dijkstra, 1959) to compute the
path through this graph following the nodes with highest density.
Dijkstra's algorithm is a graph search method that finds the shortest
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path from a source node to every other node. However, the number of
nodes in the graph may be large and when the algorithm is used for a
single destination node, it may be stopped once that path is found. To
find the shortest path to represent a white matter region, we require
the graph to have start and end nodes to constrain the path to a specific
region of the graph. These nodes are specified by an expert in the ROI
atlas. The ROI points for the start and end locations may not always
correspond to the positive density values derived from our bundle.
Thus, we find the closest voxels in the density volume as the corre-
sponding start and end nodes in subsequent computation with
Euclidean distance used as the metric.

In our implementation,we usedDijkstra's algorithm (Dijkstra, 1959)
to find only the shortest path between the start and the end nodes
selected in the graph. If Dijkstra's algorithm is unable to find the path
between the start and end nodes our method automatically identifies
this situation and takes steps to remedy the graph and finds the shortest
path. The algorithm will be incapable of finding a connection between
the two nodes if the structure of the graph is such that there are no
edges from the subgraph containing the start node with the subgraph
containing the end node. This can be caused by scanner artifacts or
suboptimal solutions due to the fiber tractrography algorithm. In this
situation,we add extra edges and nodes to the graph so all voxels within
our ROI are fully connectedwith their neighbors. Theedges areweighted
by the largest edge cost in the current graph. This allows gaps between
the start and end nodes to be filled in and use as few edges as possible
in regions with unknown data. The nodes in the path correspond to a
set of voxel locations in our image space. We smooth the path so it is
better conditioned for subsequent processing. We convolve the 3D
coordinates of our path with a Gaussian kernel to achieve this, though
fitting these points to a spline would also have sufficed. A summary of
these steps is presented in Algorithm 1. We represent the maximum
density path
by the coordinate function of the parameterized curve, and denote it to
be β such that β:[0, 1] → ℝ3. Fig. 3 shows an example of a maximum
density path computed for a fiber bundle. Additionally, we show the
density and the FA images that correspond to thefibers. For comparison,
we also show a representative mean fiber by applying Procrustes anal-
ysis to align the fibers in the bundle to their mean. We then compute
a newmean (shown in blue) of the fibers after alignment. This example
shows that even if the bundle includes a few spurious fibers, it can dras-
tically change the appearance of themean fiber derived from Procrustes
analysis, while the MDP remains stable.

Fig. 5 shows an example of MDPs for a population of subjects
overlaid on each other. Some of these paths are short because the
corresponding regions of interest in the white matter atlas are small.
This means the seed points specified in the atlas are not very far apart
and even if the fibers are much larger they are summarized by the
structure within the white matter region and points with the highest
density. An alternative could be to use a probabilistic white matter
atlas and threshold the regions so they encompass a larger fraction of
the fiber lengths in the white matter region.

Shape analysis of maximum density paths

This section outlines the method for shape representation and anal-
ysis for maximum density paths. The maximum density paths denoting
tracts are modeled as continuous open curves inℝ3 but they can also be
considered as points in an infinite-dimensional space of curves. This
space is induced by a suitable Riemannianmetric defined on its tangent
space. Shapematching betweenMDPs is enabled bymeasuring shortest
length paths, also known as geodesics connecting two shapes in the
shape space. The geodesic not only measures the length of the path
and quantifies the geometric distance between two shapes, but also
represents an optimal geometric deformation that highlights the ana-
tomical differences between the shapes. Additionally geodesics are an
important ingredient for constructing intrinsic population averages for
shapes — an essential step in statistical analysis of shapes.

Representation of MDPs

We represent the shape of the coordinate function of the MDP
using a vector-valued function (Joshi et al., 2007a,b; Srivastava et al.,
2011) as

q sð Þ ¼ β̇ sð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̇ sð Þ�� ��q ∈ℝ3

: ð9Þ

Here, s∈ 0;1½ �; �k k ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi�; �ð Þℝ3

p
, and (·,·)ℝ3 is the standard Euclidean

inner product in ℝ3. Our goal is to achieve an elastic shape matching
between MDPs. We would also prefer that the shape matching is
invariant with respect to the orientation and scale of the MDPs.
Owing to the derivative, the function q is invariant to the translation
of the MDP coordinate curve. To impose scale-invariance, we
normalize the q functions by its magnitude. Thus we denote Q ≡

q q sð Þ : 0;1½ �→ℝ3 ∫
1

0
q sð Þ; q sð Þð Þℝ3ds ¼ 1

����
�����

�
as the space of all unit-

length curves. On account of scale invariance, the space Q becomes an
infinite-dimensional unit-sphere of functions, and represents all open
elastic curves invariant to translation and uniform scaling. The elasticity
of the representation is due to the presence of the square-root in the
denominator that allows the q function to have arbitrary speeds. To
define a metric on the space Q, we first define its tangent space which
is the set of all tangent vectors orthogonal to q. Formally, the tangent
space of Q is given by Tq(Q) = {w = (w1, w2,⋯, wn)|w(s): [0, 1] → ℝ3

,

∀s ∈ [0, 1] such that ∫0
1 (w(s), q(s))ℝ3 ds = 0}, where n = 3. Here

each wi represents a tangent vector in the tangent space of Q .
Now, the metric on the tangent space Tq(Q) is defined as follows.
Given a curve q ∈ Q, and the first order perturbations of q given by
u, v ∈ Tq(Q), respectively, the inner product between the tangent
vectors u, v to Q at q is defined as,

u; vh i ¼ ∫1

0
u sð Þ; v sð Þð Þℝ3ds: ð10Þ

Now given two shapes q1 and q2, the translation and scale-
invariant shape distance between them is simply found by
measuring the length of the geodesic, or the great circle connecting



Fig. 3. This figure shows the advantage of using themaximum density path method to represent fiber bundles. The first panel shows the tractography fibers that intersect a white matter
tract. The selected fibers all intersect the region of interest to the same degree, but the selection process includes spuriousfibers. In the context of fractional anisotropy, we can see that the
spurious fibers may be part of another adjacent tract. Our method represents the fiber bundle as a density image and searches for a representative path based on seed points from a
registered atlas. Thefinal slide shows the resultingmaximumdensity path compared to a path found by taking themean of thefibers and using Procrustes analysis to align and recompute
a representative mean. If only the fiber shape is used, the resulting representative path from Procrustes analysis may not effectively traverse the region of interest due to spuriously
included fibers. By leveraging the distribution of fibers the MDPs seek to build a representation of the white matter that is reflective of the underlying feature geometry of the most
important regions and help matching across subjects for subsequent population analysis.
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them on the sphere. Thus given a tangent vector f ∈ Tq1(Q) in the
direction of q2 given by f = q2 − b q1, q2 N q1, the geodesic (Joshi
et al., 2007a) on Q between the two points q1, q2 ∈ Q along f, for
an infinitesimal time t is given by

χt q1; fð Þ ¼ cos tcos−1 q1; q2h i
	 


q1 þ sin tcos−1 q1; q2h i
	 


f : ð11Þ

Then the geodesic distance between the two shapes q1 and q2 is
given by

d q1; q2ð Þ ¼ ∫1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ̇t ;χ̇t

 �q
dt: ð12Þ

The geodesic distance (Joshi et al., 2007a) given in Eq. (12) is only
invariant to translation and scale. To make it invariant to rotations, we
consider the shortest distance

dr q1; q2ð Þ ¼ argmin
O3∈SO 3ð Þ

d q1;O3q2ð Þ: ð13Þ
Eq. (13) can be minimized either using gradient descent over
the tangent space of SO(3) or by using singular value decomposition
(Rohlf and Slice, 1990). In this paper, we find the rotation invariant
distance as

dr q1; q2ð Þ ¼ d q1; Ô3q2
	 


; ð14Þ

where Ô3 ¼ ADBT ¼ ∫2π

0
q1 sð Þq2 sð ÞTds, A and B are left and right unitary

matrices, and D is a matrix given by D ¼ 1 0
0 Aj j Bj j

� �
. Finally, since we

are representing MDPs by parameterized curves, we would like the
shape matching to be invariant to reparameterizations. Following
(Joshi et al., 2007a), we denote the reparameterization of a MDP curve

using a group action by a diffeomorphism γ, given by q � γ ¼
ffiffi̇
γ

p
q γð Þ.

Then the optimal reparameterizationγ̂ is approximated by theminimizer

γ̂ ¼ arg min
γ

∫2π

0
q1−eq2 � γ�� ��2 þ eq2−q1 � γ−1

��� ���2� �
ds

� �
; ð15Þ



Fig. 4.To study the variability of themaximumdensity paths (MDPs),we used23 subjectswith repeat scans.We used theMDPalgorithm to represent 67whitematter regions froman ROI
atlas and find correspondences between the two acquisitions for a single subject. We used paired-sample t-tests to compare the fractional anisotropy (FA) values across corresponding
points.We found that there were no significant differences in theMDPswhen correcting formultiple comparisons using the false discovery rate (FDR) at the 0.05 level. This helps provide
support that the statistical analysis tools using MDPs will be able to investigate patterns of white matter structure and may be less affected by noisy or highly variable representation
inherent to the algorithm.
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where eq2 ¼ Ô3q2 . In this paper, we use dynamic programming to
obtain the solution to Eq. (15). The fully elastic, pose, scale, and
reparameterization invariant distance between MDPs is given by

de q1; q2ð Þ ¼ dr q1; q2 � γ̂ð Þ ¼ d q1; Ô3q2
	 


� γ̂
	 


: ð16Þ

The optimal geodesic path can also be denoted by a one-parameter
flow Ψ and the tangent vector α̇t , such that

Ψt : Ψ0 q1; α̇t

� � ¼ q1;Ψ1 q1; α̇t

� � ¼ Ô3q2
	 


� γ̂: ð17Þ

The optimal tangent vector can then be written from Eq. (17) as

ḃαt ¼ Ψ−1
1 q1; Ô3q2

	 

� γ̂

	 

: ð18Þ

Statistical analysis of MDPs across a population

To evaluate group-level effects of sex, age, disease or even genetic
influences on the MDP representations of white matter tracts,
we need a suitable mechanism for performing statistical analysis. As
MDPs are represented by parameterized functions defined on a shape
space, one natural approach is to use the inherent non-linearity of the
shape space, and define appropriate statistical measures under the
Riemannian metric in Eq. (10). This approach is also called an intrinsic
Fig. 5.We show here themaximumdensity paths (MDPs) computed for 238 subjects in 67 regi
This sample was used for our heritability analysis. The color represents the direction or orie
orientation is anterior to posterior it is colored green, if it is from left to right it is red, and if it
to a mean MDP to find correspondences using geodesic curve registration. We then sample F
analysis. A fewof these paths are relatively short because the corresponding region of interest in
the tractography fibers it represent may be much larger.
statistical analysis and leads to the definition of the Karcher mean (also
known as the Fréchet mean) (Joshi et al., 2013; Le, 1995; Srivastava
et al., 2005) in the shape space of all MDPs. Given a collection of MDP
shapes {qi}, i = 1,⋯, N, the Karcher mean is defined as

μ ¼ arg min
qμ

XN
i¼1

de qμ ; qi
	 
2

: ð19Þ

The computation of the Karchermean involves computing geodesics
at each step iteratively and proceeds as follows. For thefirst iteration, an
extrinsic mean (Euclidean average) is computed and projected on the
shape space. This is assumed to be the current estimate of the Karcher
mean. For the subsequent iterations, geodesics are computed between
all the individual shapes in the population to the current estimate. The

tangent vectors ḃα i
t ; i ¼ 1;…;N

	 

are then computed as a result of

minimizing Eq. (16) and averaged together. A geodesic flow is then
constructed using Eq. (17) to yield a new estimate of the mean shape.
This procedure is repeated until the geodesic variance given by the
sum of the squared geodesic distances to themean shape is minimized,
and the mean converges. The Karcher mean completely relies on the
geometry of the shape space and is useful in computing intrinsic statis-
tical estimates such as covariances of MDPs. Additionally, the geodesics
produce correspondences, making it easier to compare white matter
measures projected on theMDPs across a population. This is also useful
ons from thewhite matter atlas before they arematched together using curve registration.
ntation of the middle segment connecting two points at the middle of each MDP. If the
is superior to inferior it is colored blue. In each of the 67 areas, we register the 238 MDPs
A along corresponding points in each subject for our subsequent statistical and genetic
thewhitematter atlaswas small and thus theMDPwill cover a shorter range even though

image of Fig.�5
image of Fig.�4
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for studying differences in disease, sex, aging, or even heritability in a
population.

Results

Experiments

We show experimental results on a dataset ofN=565 young adults,
including healthy twins and their siblings. The participants were
scanned with a 4-Tesla Bruker Medspec MRI scanner, collecting 3D
105-gradient high angular resolution diffusion images (HARDI) and
standard structural T1-weighted magnetic resolution images (MRI).
The images consisted of 55 slices, 2-mm thick, with a 1.79 × 1.79 mm2

in-plane resolution. For each person, we collected 94 diffusion-
weighted images (b = 1159 s/mm2) using a uniform distribution of
gradient directions on the hemisphere. We also collected 11 b0 (non-
diffusion encoding) images and corrected all images for eddy current
distortions and motion with FSL (www.fmrib.ox.ax.uk/fsl). Our cohort
consisted of 367 women and 198 men, ranging from 20 to 29 years of
age. Study participants gave informed consent; institutional ethics com-
mittees at the Queensland Institute of Medical Research, the University
of Queensland, the Wesley Hospital, and at UCLA approved the study.

For each T1-weighted image, we manually removed non-brain
tissue and registered it to the Colin27 (Holmes et al., 1998) high
resolution brain template using a 9-parameter transformation. These
skull-stripped and registered T1-weighted images each has a corre-
sponding average b0 diffusion weighted image (DWI), combining all
the eleven images. These average images were masked using BET
(Smith, 2002) and this spacewas used to generate FAmaps. Additionally,
we used the FA images to compute a geometrically-centered study-
specific mean template (mean deformation template; MDT). We
registered the JHU ROI atlas to the MDT for the MDP analysis. Our ROI
atlas contained 50 different white matter regions, which were seeded
to extract 67 different MDPs. Our results based on all 565 subjects are
shown in Fig. 6.

Repeatability of MDPs

We examined the reliability of the MDP construction procedure by
analyzing subjects with repeat scans. Twenty-three subjects in the
total population used in our analysis had repeat scans, which were
used to test the stability of MDP construction across the two acquisi-
tions. We used the MDP algorithm to find corresponding points along
each MDP and used paired-sample t-tests to study if the FA values in
Fig. 6. Averagemaximumdensity paths (MDPs) for 67 fiber bundles in 565 twin images. The co
themiddle of eachMDP. If the orientation is anterior to posterior it is colored green, if it is from
from tractography fibers, clustered intowhitematter tracts, and then represented as paths that
paths come from regions in our white matter atlas that have been annotated with seed points
registration to find correspondences between the individual subjects and allow us to compactl
these white matter tract representations were significantly different.
Fig. 4 shows the collection of MDPs with 46 curves in eachwhite matter
region from the ROI atlas. Each of the 23 pairs is colored randomly with
the two MDPs in a single pair having matching coloring. We corrected
for multiple comparisons using the false discover rate (FDR)
(Benjamini andHochberg, 1995) at the 0.05 level and none of the values
were significantly different between scans. This provides an indication
of the stability of MDP representation and may help support a more
meaningful interpretation of the subsequent statistical analyses.

Genetic effects on white matter morphology using MDPs

The twin cohort in the data is made up of monozygotic (MZ) and
dizygotic (DZ) pairs, allowing us to estimate the relative contributions
of additive genetic factors (A), shared environment (C), and unshared
or unique environment (E) to the measures derived from the scans —
in our case, FA along the MDPs. This standard “A/C/E” model describes
the FA at each point on the MDP as a combination of latent variables,
FA = aA+ cC+ eE. In this formulation the total variance is var(FA) =
a2 + c2 + e2 with var(A) = a2, var(C) = c2, and var(E) = e2. We are
able to estimate the unobserved factor loadings as there is a difference
in the theoretical covariance of FA for a MZ twin pair, a2 + c2, and for
a DZ twin pair, (1/2)a2 + c2, which we solved using a maximum likeli-
hood fitting (Neale and Cardon, 1992) that estimated the parameters of
the model. These methods are detailed in (Chiang et al., 2009).

Several studies (Chiang et al., 2011; Jahanshad et al., 2013b; Patel
et al., 2010; Thompson et al., 2001) have shown evidence for heritability
of the white matter structure in the brain. Here, we use heritability as a
metric to understand how well MDPs were able to model and capture
the underlying morphology of the white matter structure in our data.
If the representation is able to effectively pick up heritability effects
then our hypothesis is that the MDP matching across subjects reflects
the underlying anatomical homology, and that the MDPmodel is better
able to describe white matter brain structure.

We fitted the “A/C/E”model to the FA values on the skeleton that fell
within the ROI atlas. In our experiments we compared the full “A/C/E”
model to the simpler formulation with two variables using minus two
times the log-likelihood ratio, which approximately follows a χ2

distribution, meaning that P N 0.05 indicates a good fit. We found that
the shared environment term (C component) did not have a significant
fit for either method, so we used a simplified “A/E”model instead. This
model selection procedure and selecting the “A/E” model instead of
the more complicated “A/C/E” is widely used (Geschwind et al., 2002)
and common with real data (Baaré et al., 2001). In the “A/E” model, a2
lor represents the direction or orientation of the middle segment connecting two points at
left to right it is red, and if it is superior to inferior it is colored blue. The paths are derived
follow points in thesewhitematter bundles ofmaximumdensity of fibers. The 67 different
, which become the endpoints of the paths. The mean MDPs provide a template for curve
y represent population statistics across the entire white matter.

http://www.fmrib.ox.ax.uk/fsl
image of Fig.�6
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represents the proportion of the variance due to additive genetic factors
and the other parameter in the model, e2, represents the proportion of
variance that is due to environmental factors including measurement
error. Thus we model the components of FA variance as simply
var(FA)= a2 + e2 and since we are interested in the relative proportion
of variance captured by each component we can normalize this equation
by var(FA) to interpret their relationship as 1 ¼ ea2 þ ee2 or 1−ea2 ¼ ee2.
The goal here is to use the model that best fits the data to understand
the genetic and environmental contributions to the variance.Maximizing
heritable estimates in this case may imply minimizing measurement
error and therefore may represent a stronger metric for measuring
white matter microstructure. In addition, these highly heritable regions
present good candidates for genetic associations and could be useful for
cutting down on the dimensionality of the image for these types of
analyses.

We also compared our method of analyzing white matter bundles
using MDPs and analyzing the white matter skeletons from TBSS
(Fig. 7) in our subjects. We used the genetic contribution due to FA
using both methods to compare heritability. We found that the density
and FA images smoothed with an isotropic Gaussian filter with full-
width at half maximum (FWHM) = 3 mm produced higher a2 values
(Chiang et al., 2012).We restricted the analysis to 238 (48monozygotic
and 71 dizygotic) of the 565 twins because of issues with the nonlinear
registration from TBSS in the omitted subjects.

We computed genetic associations with mixed-model regression
(Aulchenko et al., 2007; Jahanshad et al., 2012a) along the MDPs using
the genes NTRK1, CLU, and COMT. We found NTRK1 passed a local
false discovery rate (FDR) threshold (for a single MDP) in 20 regions
Fig. 7. Our twin data contained monozygotic (MZ) twins that share 100% of their genetic mate
data allows us to use structural equation models, particularly the A/E model, to estimate the a
genetic effects (heritability), or to unique environment factors and measurement error. In thi
density (MDP) path representation method compared with the white matter skeleton from tra
inwhitematter structure is determinedby genetic effectswhile a lowvalue (blue)means the va
of variance accounted for by heritability, an analogous figure of the environmental contribu
heritability of white matter tissue and we used the fraction of genetic determination as the me
in our data. The MDP method may have a better ability to pick up on the heritability because o
improves coherence of homologous points across subjects. We used a subset of 238 subjects f
matter regions with slices of the atlas overlaid. The TBSS results show orthogonal slices of the
across our white matter atlas represented as MDPs. In addition, we
found CLU passed local FDR at the anterior limb of internal capsule
right, posterior limb of internal capsule right, and anterior corona
radiata left, and COMT passed at the sagittal stratum right (including
inferior longitudinal fasciculus and inferior fronto-occipital fasciculus).
When we used a global FDR, by combining the 67 MDPs into one large
MDP, NTRK1 was the only SNP that survived in 600 of the total 1897
points in the global MDP. The results from NTRK1 and CLU agree with
earlier studies of this dataset using voxel-based maps (Braskie et al.,
2011, 2012).

Discussion and conclusion

We have presented a method for extracting, representing, and ana-
lyzing the geometry of white matter bundles using maximum density
paths. Our method enables population analysis of diffusion-weighted
images without relying exclusively on global registration of the images
into the same space. Image registration is performed only once to
transform the ROI white matter atlas to the subject space for the
purpose of initializing the seed points for clustering fibers from
tractography. Density image volumes are computed from the fiber
bundles, and MDPs are constructed using Dijkstra's algorithm by
imposing a graph structure on the images. The shapes of MDPs are
then brought into correspondence through geodesic curve registration,
allowingus to focus specifically on thewhitematter regionwe are inter-
ested in without involving the rest of the image. Further, our method
introduces a way to perform localized statistical analysis of white
matter tracts. The MDPs, use the start and end points from major
rial and dizygotic twins (DZ) that share 50% of their genetic material. This structure in our
mount of variance in a phenotype (in our case the white matter structure) that is due to
s figure we show the genetic contribution to white matter structure using our maximum
ct-based spatial statistics (TBSS). A high value (red) means a large fraction of the variance
riance in structurewas accounted formore by the environment. Since this is the proportion
tions would involve simply reversing the color bar. Previous studies have shown high
tric to evaluate how well our MDP representation summarized the white matter structure
f the curve registration that is computed for each white matter region individually, which
or this analysis (48 MZ pairs, 71 DZ pairs). The top panel shows the MDPs from 67 white
TBSS skeleton overlaid on the white matter atlas.

image of Fig.�7
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white matter pathways, and provide a compact representation so that
correspondences can be easily computed. The correspondences can be
directly visualized on the MDPs to reveal which part of a white matter
tract depends on an external parameter. These tools provide the foun-
dation for any study of white matter tracts or any type of population
analysis using diffusion weighted images. The complete procedure is
available as an end-to-end computational pipeline for white matter
tract-based analysis of diffusion images.

In the examples presented here, we used a global Hough transform
method for tractography, but theMDP representation is general enough
to be used with any type of tractographymethod. Our method relies on
density images from tractography, which could be computed using
streamlines (Basser et al., 2000), a deflection based algorithm (Lazar
et al., 2003), or any of the recent deterministic and probabilistic
methods (Zhan et al., 2013). In our case, we chose a tractography
method that could benefit from the information rich HARDI data, but
depending on the resources and data available, researchers may prefer
to use fibers from diffusion tensor imaging or diffusion spectrum
imaging (Wedeen et al., 2005) based algorithms. The graph-based rep-
resentation for the fiber density volume enabled us to conveniently in-
corporate the density information in the structure, and further led to an
efficient solution provided by Dijkstra’s algorithm. However we could
have formulated the problem using snakes (Kass et al., 1988) or splines
(Park and Lee, 2007) as well. Alternatively, other density representa-
tions such as those using surfaces (Zijdenbos et al., 1994) or using the
volumetric segmentations (Kubicki et al., 2005) directly would have
introduced a host of issues with registration and subsequent analysis
of correspondences. We chose to use an ROI atlas to select fibers for
analysis and representation with the MDP though alternative
approaches may work without relying on the registration of the atlas
into the image space. Futurework could incorporate automatic clustering
of tractography fibers using approaches such as a hierarchical Dirichlet
processes mixture model (Wang et al., 2011), a voxel based approach
(Guevara et al., 2011), a spectral approach (Guevara et al., 2011), or
even shape clustering (Joshi and Srivastava, 2003; Joshi et al., 2004).
Hierarchical approaches may enable a user to specify the resolution of
MDPs in the brain tissue. As an alternative to FA, any other type of
statistics on the density paths could be used instead.We could compute
mean diffusivity (Le Bihan et al., 2001), generalized FA (Barmpoutis
et al., 2009), or the tensor distribution function and interpolate them
along each MDP. Our white matter analysis framework could even be
scored by their capacity (Prasad et al., 2013b) and used as measures of
connectivity to complement (Prasad et al., 2013a) and optimize our
representation of brain connectivity networks (Prasad et al., 2014).

Preliminary studies have usedMDPs to study sex differences (Prasad
et al., 2011b), Alzheimer's disease (Nir et al., 2012, 2014), 22q11.2
deletion syndrome (Villalon-Reina et al., 2012), and depression (Sacchet
et al., 2014). Our results in the current study showed promise in our
new representation and agreed with voxelwise analyses of the entire
white matter tissue in diffusion images (Chiang et al., 2011; Jahanshad
et al., 2013b; Patel et al., 2010; Thompson et al., 2001) that showed a
pattern of highly heritable regions. In this work, we evaluated
MDPs by their ability to detect the effects of heritability in a cohort of
monozygotic and dizygotic twins. Heritability analysis of FA in 50
regions of interest delineated in an ROI atlas, suggested promise of the
method for detecting other factors that affect tracts, such as disease
and risk genes. When comparing the genetic contributions (Fig. 7) to
brain structure detected by our MDP method versus the TBSS method,
we showed that MDPs can represent and display the structure using
only one-tenth of the points in a TBSS skeleton. This reduction of the
structural image data, which contains millions of voxels, may prove
useful for genome-wise association studies (Cichon et al., 2009; Stein
et al., 2010), as an alternative to voxel-based morphometry, or instead
of group comparisons of statistics from segmentations. These data
reduction steps may reduce the computational expense of a genome-
wide search, and may also increase statistical power. In summary, we
find that using tractography and creatingMDPs give a similar skeleton-
ized, yet more neuroanatomically accurate estimate of white matter
microstructure than does TBSS as we found through improved herita-
bility measures in the same sample.
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