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Age at menarche is a marker of timing of puberty in females. It varies
widely between individuals, is a heritable trait and is associated with
risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer
and all-cause mortality1. Studies of rare human disorders of puberty and
animal models point to a complex hypothalamic-pituitary-hormonal
regulation2,3, but the mechanisms that determine pubertal timing and
underlie its links to disease risk remain unclear. Here, using genome-
wide and custom-genotyping arrays in up to 182,416 women of Euro-
pean descent from 57 studies, we found robust evidence (P , 5 3 1028)
for 123 signals at 106 genomic loci associated with age at menarche.
Many loci were associated with other pubertal traits in both sexes,
and there was substantial overlap with genes implicated in body mass
index and various diseases, including rare disorders of puberty. Men-
arche signals were enriched in imprinted regions, with three loci
(DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating
parent-of-origin-specific associations concordant with known par-
ental expression patterns. Pathway analyses implicated nuclear hor-
mone receptors, particularly retinoic acid and c-aminobutyric acid-B2
receptor signalling, among novel mechanisms that regulate pubertal
timing in humans. Our findings suggest a genetic architecture involv-
ing at least hundreds of common variants in the coordinated timing
of the pubertal transition.

Genome-wide array data were available from up to 132,989 women
of European descent from 57 studies. In a further 49,427 women, data
were available on up to approximately 25,000 single nucleotide polymor-
phisms (SNPs), or their proxy markers, that showed sub-genome-wide

significant associations (P , 0.0022) with age at menarche in our pre-
vious genome-wide association study (GWAS)4 (Supplementary Table 1).
Association statistics for 2,441,815 autosomal SNPs that passed quality
control measures (including minor allele frequency .1%) were com-
bined across all studies by meta-analysis.

3,915 SNPs reached the genome-wide significance threshold (P ,

5 3 1028) for association with age at menarche (Fig. 1). Using GCTA5,
which approximates a conditional analysis adjusted for the effects of neigh-
bouring SNPs (Extended Data Fig. 1 and Supplementary Table 2), we
identified 123 independent signals for age at menarche at 106 genomic
loci, including 11 loci containing multiple independent signals (Extended
Data Tables 1–4; plots of all loci are available at http://www.reprogen.org).
Of the 42 previously reported independent signals for age at menarche4,
all but one (gene SLC14A2, SNP variation rs2243803, P 5 2.3 3 1026)
remained significant genome-wide in the expanded data set.

To estimate their overall contribution to the variation in age at men-
arche, we analysed an additional sample of 8,689 women. 104/123 signals
showed directionally concordant associations or trends with menarche
timing (binomial sign test PSign 5 2.2 3 10215), of which 35 showed nom-
inal significance (PSign , 0.05) (Supplementary Table 3). In this inde-
pendent sample, the top 123 SNPs together explained 2.71% (P , 1 3

10220) of the variance in age at menarche, compared to 1.31% (P 5

2.3 3 10214) explained by the previously reported 42 SNPs. Consid-
eration of further SNPs with lower levels of significance resulted in
modest increases in the estimated variance explained with increasingly
larger SNP sets, until we included all autosomal SNPs (15.8%, s.e. 3.6%,
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Figure 1 | Manhattan and quantile–quantile plot of the GWAS for age at
menarche. Manhattan (main panel) and quantile–quantile (QQ) (embedded)
plots illustrating results of the genome-wide association study (GWAS)
meta-analysis for age at menarche in up to 182,416 women of European
descent. The Manhattan plot presents the association 2log10(P-values) for each
genome-wide SNP (y axis) by chromosomal position (x axis). The red line

indicates the threshold for genome-wide statistical significance (P 5 5 3 1028).
Blue dots represent SNPs whose nearest gene is the same as that of the
genome-wide significant signals. The QQ plot illustrates the deviation of
association test statistics (blue dots) from the distribution expected under the
null hypothesis (red line).
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P 5 2.2 3 1026), indicating a highly polygenic architecture (Extended
Data Fig. 2).

To test the relevance of menarche loci to the timing of related puber-
tal characteristics in both sexes, we examined their further associations
with refined pubertal stage assessments in an overlapping subset of 10-
to 12-year-old girls (n 5 6,147). A further independent sample of 3,769
boys had similar assessments at ages 12 to 15 years. 90/106 menarche
loci showed consistent directions of association with Tanner stage in boys
and girls combined (PSign 5 1.1 3 10213), 86/106 in girls only (PSign 5

6.2 3 10211) and 72/106 in boys only (PSign 5 0.0001), suggesting that
the menarche loci are highly enriched for variants that regulate puber-
tal timing more generally (Supplementary Table 4).

Six independent signals were located in imprinted gene regions6,
which is an enrichment when compared to all published genome-wide-
significant signals for any trait and/or disease7 (6/123, 4.8% vs 75/4332,
1.7%; Fisher’s exact test P 5 0.017). Departure from Mendelian inheri-
tance of pubertal timing has not been previously suspected, therefore we
sought evidence for parent-of-origin-specific allelic associations in the
deCODE Study, which included 35,377 women with parental origins of
alleles determined by a combination of genealogy and long-range phasing6.

Two independent signals (no. 85a and 85b; rs10144321 and rs7141210)
lie on chromosome 14q32 harbouring the reciprocally imprinted genes
DLK1 and MEG3, which exhibit paternal-specific or maternal-specific
expression, respectively, and may underlie the growth retardation and
precocious puberty phenotype of maternal uniparental disomy-148. In
deCODE, for both signals the paternally inherited alleles were assoc-
iated with age at menarche (rs10144321, Ppat 5 3.1 3 1025; rs7141210,
Ppat 5 2.1 3 1024), but the maternally inherited alleles were not (Pmat

5 0.47 and 0.12, respectively), and there was significant heterogeneity
between paternal and maternal effect estimates (rs10144321, Phet 5 0.02;
rs7141210, Phet 5 2.2 3 1024) (Fig. 2; Supplementary Table 5). Notably,
rs7141210 is reportedly a cis-acting methylation-quantitative trait locus

(QTL) in adipose tissue9 (Extended Data Table 5) and the menarche age-
raising allele was also associated with lower transcript levels of DLK1
(Supplementary Tables 6 and 7)10, which encodes a transmembrane pro-
tein involved in adipogenesis and neurogenesis. In deCODE data, the
maternally inherited rs7141210 allele was correlated with blood tran-
script levels of the maternally expressed genes MEG3 (Pmat,5.63 10253),
MEG8 (Pmat 5 4.9 3 10241) and MEG9 (Pmat 5 5.4 3 1025); however,
lack of any correlation with the paternally inherited alleles (Ppat 5 0.18,
Ppat 5 0.87 and Ppat 5 0.37, respectively) suggests that these genes do not
explain this paternal-specific menarche signal.

Signal no. 86 (rs12148769) lies in the imprinted critical region for
Prader–Willi syndrome, which is caused by paternal-specific deletions
of chromosome 15q11-13 and includes clinical features of hypogona-
dotropic hypogonadism and hypothalamic obesity11; conversely, a small
proportion of cases have precocious puberty. For rs12148769, only the
paternally inherited allele was associated with age at menarche (Ppat 5

2.4 3 1026), but the maternally inherited allele was not (Pmat 5 0.43;
Phet 5 5.6 3 1023) (Fig. 2). Recently, truncating mutations of MAGEL2
affecting the paternal alleles were reported in Prader–Willi syndrome;
all four reported cases had hypogonadism or delayed puberty11, whereas
paternally inherited deleterious mutations in MKRN3 were found in
patients with central precocious puberty3. It is as yet unclear which of
these paternally expressed genes explains this menarche signal.

Signal no. 57 (rs1469039) is intronic in KCNK9, which shows maternal-
specific expression in mouse and human brain12. Concordantly, only the
maternally inherited allele was associated with age at menarche (Pmat 5

5.6 3 1026), but the paternally inherited allele was not (Ppat 5 0.76;
Phet 5 3.7 3 1023) (Fig. 2). The menarche age-increasing allele was asso-
ciated with lower transcript levels of KCNK9 in deCODE’s blood expression
data when maternally inherited (Pmat 5 0.003), but not when patern-
ally inherited (Ppat 5 0.31). KCNK9 encodes TASK-3, which belongs to
a family of two-pore domain potassium channels that regulate neuronal
resting membrane potential and firing frequency.

The two remaining signals located within imprinted regions (rs2137289
and rs947552) did not demonstrate either paternal- or maternal-specific
association. We then systematically tested all 117 remaining indepen-
dent menarche signals for parent-of-origin-specific associations with
menarche timing and found only four (3.4%) with at least nominal asso-
ciations (Phet,0.05; Supplementary Table 5), which was proportionately
fewer than signals at imprinted regions (4/6 (67.0%), Wilcoxon rank
sum test P 5 0.009).

Three menarche signals were ingenesencoding JmjC-domain-containing
lysine-specific demethylases (enrichment P 5 0.006 for all genes in this
family); signal no. 1 (rs2274465) is intronic in KDM4A, signal no. 37
(rs17171818) is intronic in KDM3B, and signal no. 59b (rs913588) is a
missense variant in KDM4C. Notably, KDM3B, KDM4A and KDM4C
all encode activating demethylases for lysine 9 on histone H3, which
was recently identified as the chromatin methylation target that medi-
ates the remarkable long-range regulatory effects of IPW, a paternally
expressed long noncoding RNA in the imprinted Prader–Willi syndrome
region on chromosome 15q11-13, on maternally expressed genes at the
imprinted DLK1-MEG3 locus on chromosome 14q3213. Examination
of sub-genome-wide signals showed another potential locus intronic in
KDM4B (rs11085110, P 5 2.3 3 1026). Pubertal onset in female mice is
reportedly triggered by DNA methylation of the Polycomb group silenc-
ing complex of genes (including CBX7 near signal no. 105), leading to
enrichment of activating lysine modifications on histone H314. Speci-
fic histone demethylases could potentially regulate cross-links between
imprinted regions to influence pubertal timing.

Menarche signals also tended to be enriched in or near genes that
underlie rare Mendelian disorders of puberty (enrichment P 5 0.05)2,3. As
well as rs12148769 near MKRN3, signals were found near LEPR-LEPROT
(signal no. 2; rs10789181), which encodes the leptin receptor, and imme-
diately upstream of TACR3 (signal no. 32; rs3733631), which encodes the
receptor for neurokinin B. A further variant approximately 10 kilobases
(kb) from GNRH1 approached genome-wide significance (rs1506869,

Effect on age at menarche (years per allele)

S
N

P
 r

ef
er

en
ce

−0.10 −0.05 0.00 0.05 0.10 0.15

DLK − rs10144321 (Discovery)

DLK − rs10144321 (Paternal)

DLK − rs10144321 (Maternal)

DLK − rs7141210 (Discovery)

DLK − rs7141210 (Paternal)

DLK − rs7141210 (Maternal)

MKRN3 − rs12148769 (Discovery)

MKRN3 − rs12148769 (Paternal)

MKRN3 − rs12148769 (Maternal)

KCNK9 − rs1469039 (Discovery)

KCNK9 − rs1469039 (Paternal)

KCNK9 − rs1469039 (Maternal)

LIN28B − rs7759938 (Discovery)

Figure 2 | Forest plot of parent-of-origin-specific allelic associations at
three imprinted menarche loci. The forest plot illustrates the associations of
variants in four independent genomic signals for age at menarche that are
located in three imprinted gene regions. For each variant, squares (and error
bars) indicate the estimated per-allele effect sizes on age at menarche in years
(and 95% confidence intervals) from the standard additive models in the
combined ReproGen meta-analysis (grey), and separately for the paternally
inherited (blue) or maternally inherited allele (red) in up to 35,377 women from
the deCODE study. The association for the menarche locus with the largest
effect size at LIN28B is also shown for reference, illustrating the similar
magnitude of effect size at the MKRN3 locus when parent-of-origin is taken
into account.
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P 5 1.8 3 1026) and was also associated with GNRH1 expression in
adipose tissue (P 5 3.7 3 1025). Signals no. 34 (rs17086188) and 103
(rs852069) lie near PCSK1 and PCSK2, respectively, indicating a com-
mon function of the type 1 and 2 prohormone convertases in pubertal
regulation. Signals in or near several further genes with relevance to pitu-
itary development/function included: signal no. 20 (rs7642134) near
POU1F1, signal no. 39 (rs9647570) within TENM2, and signal no. 42
(rs2479724) near FRS3. Furthermore, signals no. 71 (rs7103411) and
no. 92 (rs1129700) are cis-expression QTLs (eQTLs) for LGR4 and TBX6,
respectively, both of which encode enhancers for the pituitary develop-
ment factor SOX2. Signals no. 52 (rs6964833 intronic in GTF2I) and
no. 104 (rs2836950 intronic in BRWD1) were found in critical regions
for complex conditions that include abnormal reproductive phenotypes,
Williams–Beuren syndrome (early puberty)15 and Down syndrome (hypo-
gonadism in boys), respectively16.

Including signals described above, we identified 29 menarche signals
in or near genes with possible roles in hormonal functions (Fig. 3, Sup-
plementary Table 8), many more than the three signals we described
previously (INHBA, PCSK2 and RXRG)4. Two signals were found in or
near genes related to steroidogenesis. Signal 35 (rs251130) was a cis-eQTL
for STARD4, which encodes a StAR-related lipid transfer protein involved
in the regulation of intra-cellular cholesterol trafficking. Signal no. 9
(rs6427782) is near NR5A2, which encodes a nuclear receptor with key
roles in steroidogenesis and oestrogen-dependent cell proliferation.

We observed that SNPs in or near a custom list of genes that encode
nuclear hormone receptors, co-activators or co-repressors were enriched
for associations with menarche timing (enrichment P 5 6 3 1025). Indi-
vidually, nine genome-wide significant signals mapped to within 500 kb
of these genes, including those encoding the nuclear receptors for oes-
trogen, progesterone, thyroid hormone and 1,25-dihydroxyvitamin D3.
Several nuclear hormone receptors are involved in retinoic acid signal-
ling. SNPs in or near RXRG and RORA reached genome-wide signifi-
cance, and three other genes contained sub-genome-wide signals (RXRA
(rs2520094, P 5 4 3 1027), RORB (rs4237264, P 5 9.4 3 1026), RXRB
(rs241438, P 5 7.1 3 1025)). Two other genome-wide significant signals
mapped to genes with roles in retinoic acid function (no. 67 CTBP2 and
no. 101 RDH8). The active metabolites of vitamin A, all-trans-retinoic
acid and 9-cis-retinoic acid, have differential effects on gonadotropin-
releasing hormone (GnRH) expression and secretion17. Other possible
mechanisms linking retinoic acid signalling to pubertal timing include
inhibition of embryonic GnRH neuron migration, and enhancement
of steroidogenesis and gonadotropin secretion18. The relevance of our
findings to observations of low circulating vitamin A levels and use of
dietary vitamin A in delayed puberty19 are yet unclear.

To identify other mechanisms that regulate pubertal timing, we tested
all SNPs genome-wide for collective enrichment across any biological
pathway defined in publicly available databases. The top ranked path-
way reaching study-wise significance (false discovery rate 5 0.009) was
gamma-aminobutyric acid (GABAB) receptor II signalling (Extended
Data Table 6); each of the nine genes in this pathway contained a SNP with
sub-genome-wide significant association with menarche (Extended Data
Table 7). Notably, GABAB receptor activation inhibits hypothalamic GnRH
secretion in animal models20.

Regarding the relevance of our findings to other traits, we confirmed4

and extended the overlap between genome-wide significant loci for men-
arche and adult body mass index (BMI)21. At all nine loci (in or near FTO,
SEC16B, TMEM18, NEGR1, TNNI3K, GNPDA2, BDNF, BCDIN3D and
GPRC5B) the menarche age-raising allele was also associated with lower
adult BMI (Supplementary Table 9). Three menarche signals overlapped
known loci for adult height22. The menarche age-raising alleles at sig-
nals no. 47c (rs7759938, LIN28B) and no. 83 (rs1254337, SIX6) were also
associated with taller adult height, which is directionally concordant with
epidemiological observations. Conversely, the menarche age-raising allele
at signal no. 48 (rs4895808, CENPW-NCOA7) was associated with shorter
adult height (Supplementary Table 9).

Further menarche signals overlapped reported GWAS loci for other
traits, but in each case at only a single locus, therefore possibly reflecting
small-scale pleiotropy rather than a broader shared genetic aetiology.
Signal no. 26 (rs900400) was a cis-eQTL for LEKR1, and is the same lead
SNP associated with birth weight23. The menarche age-raising allele was
also associated with higher birth weight, directionally concordant with
epidemiological observations24. Signal no. 48 (rs4895808, a cis-eQTL
for CENPW) is in linkage disequilibrium (LD) (r2 5 0.90) with the lead
SNP for the autoimmune disorder type 1 diabetes, rs938848925, which also
showed robust association with menarche timing (P 5 6.49 3 10212).
Signal no. 41 (rs16896742) is near HLA-A, which encodes the class I,
A major histocompatibility complex, and is a known locus for various
immunity or inflammation-related traits7. Signal no. 50 (rs6933660) is
near ESR1, which encodes the oestrogen receptor, a known locus for
breast cancer26 and bone mineral density27. Notably, the menarche age-
raising allele at rs6933660 was associated with higher femoral neck bone
mineral density (P 5 6 3 1025)27, which is directionally discordant with
the epidemiological association28. Signal no. 70 (rs11022756) is intronic
in ARNTL, a known locus for circulating plasminogen activator inhib-
itor type 1 (PAI-1) levels29; the reported lead SNP (rs6486122) for PAI-129

also showed robust association with menarche timing (P 5 9.3 3 10210).
Our findings indicate both BMI-related and BMI-independent mech-

anisms that could underlie the epidemiological associations between
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early menarche and higher risks of adult disease1.These include actions
of LIN28B on insulin sensitivity through the mTOR pathway, GABAB

receptor signalling on inhibition of oxidative stress-related b-cell apo-
ptosis, and SIRT3 (mitochondrial sirtuin 3), which could link early life
nutrition to metabolism and ageing. Finally, only few parent-of-origin-
specific allelic associations at imprinted loci have been described for
complex traits6. Our findings implicate differential pubertal timing, a
trait with putative selection advantages30, as a potential additional target
for the evolution of genomic imprinting.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
GWAS meta-analysis. We performed an expanded GWAS meta-analysis for self-
reported age at menarche in up to 182,416 women of European descent from 58
studies (Supplementary Table 1). All participants provided written informed con-
sent and the studies were approved by the respective Local Research Ethics commit-
tees or Institutional Review Boards. Consistent with our previous analysis protocol4,
women who reported their age at menarche as ,9 years or .17 years were excluded
from the analysis; birth year was included as the only covariate to allow for the secular
trends in menarche timing. Genome-wide SNP array data were available on up to
132,989 women from 57 studies. Each study imputed genotype data based on
HapMap Phase II CEU build 35 or 36. Data on an additional 49,427 women from
the Breast Cancer Association Consortium (BCAC) were generated on the Illumina
iSelect ‘‘iCOGS’’ array31. This array included up to ,25,000 SNPs, or their proxy
markers, that showed sub-genome-wide associations (P , 0.0022) with age at men-
arche in our earlier GWAS4. SNPs were excluded from individual study data sets if
they were poorly imputed or were rare (minor allele frequency , 1%). Test statistics
for each study were adjusted using study-specific genomic control inflation factors
and where appropriate individual studies performed additional adjustments for
relatedness (Supplementary Table 1). Association statistics for each of the 2,441,815
autosomal SNPs that passed QC in at least half of the studies were combined across
studies in a fixed effects inverse-variance meta-analysis implemented in METAL32.

On meta-analysis, 3,915 SNPs reached the genome-wide significance threshold
(P , 5 3 1028) for association with age at menarche (Fig. 1). The overall GC infla-
tion factor was 1.266, consistent with an expected high yield of true positive find-
ings in large-scale GWAS meta-analysis of highly polygenic traits33.
Selection of independent signals. Given the genome-wide results of the meta-
analysis, SNPs showing evidence for association at genome-wide significant P-values
were selected and clumped based on a physical (kb) threshold ,1 megabase. The
lead SNPs of the 105 clumps formed constitute the list of SNPs independently asso-
ciated with age at menarche (Extended Data Tables 1-4).

To augment this list we performed approximate conditional analysis using GCTA
software34, where the LD between variants was estimated from the Northern Finland
Birth Cohort (NFBC66) consisting of 5,402 individuals of European ancestry with
GWAS data imputed using CEU haplotypes from Hapmap Phase II. Assuming that
the LD correlations between SNPs more than 10 Mb away or on different chromo-
somes are zero, we performed the GCTA model selection to select SNPs indepen-
dently associated with age at menarche at genome-wide significant P-values. This
software selected as independently associated with age at menarche 115 SNPs at 98
loci, 11 of which had two or more signals of association (six loci contained two sig-
nals, four loci contained three signals, and one locus contained four signals). Plots
of all 106 loci are available at http://www.reprogen.org. SNPs with A/T or C/G alleles
were excluded from this analysis to prevent strand issues leading to false-positive results.

To summarize the information obtained from the single-SNP and GCTA ana-
lyses, the 105 SNPs selected from the uni-variate analysis and the 115 SNPs selected
from the GCTA model selection analysis were combined into a single list of signals
independently associated with age at menarche (Supplementary Table 2), using the
following selection process (Extended Data Fig. 1). For loci with no evidence of
allelic heterogeneity, if the uni-variate signal was genome-wide significant, the lead
uni-variate SNP was selected (94 independent association signals follow this crite-
rion); otherwise the lead GCTA SNP was selected instead (one independent signal).
For loci where evidence for allelic heterogeneity was found, all signals identified in
the GCTA joint model were selected if GCTA selected the uni-variate index SNP (21
independent signals at 8 loci) or a very good proxy (r2 . 0.8) (7 independent signals
at 3 loci). When instead GCTA selected a SNP independent from the uni-variate
index SNP, both the lead uni-variate SNP and all signals identified in the GCTA
joint model were selected (0 independent signals).

To determine likely causal genes at each locus, we used a combination of criteria.
The gene nearest to each top SNP was selected by default. This gene was replaced
or added to if the top SNP was (in high LD with) an expression quantitative-trait
locus (eQTL) or a non-synonymous variant in another gene, or if there was an alter-
native neighbouring biological candidate gene. 31/123 signals mapped as eQTLs in
data from Westra et al. (E)10, five were annotated as non-synonymous functional
(F), 60 as biological candidates (C), and four mapped to gene deserts (nearest gene
.500 kb) (Supplementary Tables 6–8). We also used publicly available whole blood
and adipose tissue methylation-QTL data to map 9/123 signals to cis-acting changes
in methylation level (Extended Data Table 5)9.
Follow up in the EPIC-InterAct study. We used an independent sample of 8689
women from the EPIC-InterAct study35 to follow up our menarche signals. To test
associations between each identified SNP and age at menarche with correction for
cryptic relatedness, we ran a linear mixed model association test implemented in
GCTA34 (--mlma-loco option), adjusting for birth year, disease status and research
centre. Given the relatively small sample size compared to our discovery set, direc-
tional consistency with results from the discovery-meta analysis was assessed using

a binomial sign test. Variance explained by menarche loci was estimated using restricted
maximum likelihood analysis in GCTA34. In addition to the 123 confirmed men-
arche loci, variance explained in subsets of menarche loci below the genome-wide
significance thresholds was also assessed.
eQTL analyses. In order to estimate the potential downstream regulatory effects of
age at menarche associated variants, we used publicly available blood eQTL data
(downloadable from http://genenetwork.nl/bloodeqtlbrowser/) from a recently pub-
lished paper by Westra et al.10. Westra et al. conducted cis-eQTL mapping by testing,
for a large set of genes, all SNPs (HapMap2 panel) within 250 kb of the transcription
start site of the gene for association with total RNA expression level of the gene. The
publicly available data contain, for each gene, a list of all SNPs that were found to be
significantly associated with gene expression using a false discovery rate (FDR) of
5%. For a detailed description of the quality control measures applied to the original
data, see Westra et al.10. Their meta-analysis was based on a pooled sample of 5,311
individuals from 7 population-based cohorts with gene expression levels measured
from full blood. We used the software tool SNAP (http://www.broadinstitute.org/
mpg/snap/) to identify variants in close linkage disequilibrium (r2 $ 0.8) with the
trait associated variants. All eQTL effects at FDR 5% and also lists of the strongest
SNP effect for all the significant genes are shown in Supplementary Table 7.

Index SNPs (or highly correlated proxies) were also interrogated against a col-
lected database of eQTL results from a range of tissues. Blood cell related eQTL studies
included fresh lymphocytes36, fresh leukocytes37, leukocyte samples in individuals
with Coeliac disease38, whole blood samples39–43, lymphoblastoid cell lines (LCL)
derived from asthmatic children44,45, HapMap LCL from 3 populations46, a sepa-
rate study on HapMap CEU LCL47, additional LCL population samples48–50 (and
Mangravite et al. (unpublished)), CD191 B cells51, primary PHA-stimulated T cells48,
CD41 T cells52, peripheral blood monocytes51,53,54, CD111 dendritic cells before
and after Mycobacterium tuberculosis infection55. Micro-RNA QTLs56 and DNase-
I QTLs57 were also queried for LCL. Non-blood cell tissue eQTLs searched included
omental and subcutaneous adipose39,50,58, stomach58, endometrial carcinomas59, ER1

and ER2 breast cancer tumour cells60, brain cortex53,61,62, pre-frontal cortex63,64, fron-
tal cortex65, temporal cortex62,65, pons65, cerebellum62,65, 3 additional large studies of
brain regions including prefrontal cortex, visual cortex and cerebellum, respectively66,
liver58,67–70, osteoblasts71, intestine72, lung73, skin50,74 and primary fibroblasts48. Micro-
RNA QTLs were also queried for gluteal and abdominal adipose75. Only results that
reach study-wise significance thresholds in their respective data sets were included
(Supplementary Table 6). Expression data was also available on adipose tissue and
whole blood samples from deCODE where parent-of-origin-specific analyses were
possible.
Parent-of-origin-specific associations. Evidence for parent-of-origin-specific allelic
associations at imprinted loci was sought in the deCODE Study, which included
35,377 women with parental origins of alleles determined by a combination of
genealogy and long-range phasing as previously described6. Briefly, using SNP chip
data in each proband, genome-wide, long range phasing was applied to overlapping
tiles, each 6 centimorgan (cM) in length, with 3 cM overlap between consecutive
tiles. For each tile, the parental origins of the two phased haplotypes were deter-
mined regardless of whether the parents of the proband were chip-typed. Using the
Icelandic genealogy database, for each of the two haplotypes of a proband, a search
was performed to identify, among those individuals also known to carry the same
haplotype, the closest relative on each of the paternal and maternal sides. Results
for the two haplotypes were combined into a robust single-tile score reflecting the
relative likelihood of the two possible parental origin assignments. Haplotypes from
consecutive tiles were then stitched together based on sharing at the overlapping
region. For haplotypes derived by stitching, a contig-score for parental origin was
computed by summing the individual single-tile scores. Similarly, parent-of-origin-
specific allelic associations at imprinted loci were also sought in the deCODE blood
cells and adipose tissue expression data sets.
Pathway analyses. Meta-Analysis Gene-set Enrichment of variaNT Associations
(MAGENTA) was used to explore pathway-based associations in the full GWAS data
set. MAGENTA implements a gene set enrichment analysis (GSEA) based approach,
as previously described76. Briefly, each gene in the genome is mapped to a single index
SNP with the lowest P-value within a 110 kb upstream, 40 kb downstream window.
This P-value, representing a gene score, is then corrected for confounding factors
such as gene size, SNP density and LD-related properties in a regression model. Genes
within the HLA-region were excluded from analysis due to difficulties in accounting
for gene density and LD patterns. Each mapped gene in the genome is then ranked by
its adjusted gene score. At a given significance threshold (95th and 75th percentiles of
all gene scores), the observed number of gene scores in a given pathway, with a ranked
score above the specified threshold percentile, is calculated. This observed statistic
is then compared to 1,000,000 randomly permuted pathways of identical size. This
generates an empirical GSEA P-value for each pathway. Significance was deter-
mined when an individual pathway reached a false discovery rate (FDR) , 0.05 in
either analysis. In total, 2529 pathways from Gene Ontology, PANTHER, KEGG
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and Ingenuity were tested for enrichment of multiple modest associations with age
at menarche. MAGENTA software was also used for enrichment testing of custom
gene sets.
Relevance of menarche loci to other traits. We assessed the relevance of iden-
tified menarche loci to other traits by comparing SNPs significantly associated
with age at menarche with published GWAS findings or by using publicly available
data from the Genetic Investigation of Anthropometric Traits (GIANT) consor-
tium21,22 and the GEnetic Factors for OS (GEFOS) consortium27. In addition, we
requested look-ups up the 123 menarche SNPs for association with puberty timing
assessed by Tanner staging in the Early Growth Genetics (EGG) consortium77.
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Extended Data Figure 1 | Flow chart illustrating the selection criteria used to identify independent signals for age at menarche.
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Extended Data Figure 2 | Estimates of genetic variance explained. Variance
in age at menarche in the EPIC-InterAct replication sample (N 5 8,689)

explained by combined sets of SNPs defined by their strength of association in
the discovery set.
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Extended Data Table 1 | Details of the 123 independent signals for menarche timing at 106 genomic loci—signals no. 1 to 30

1All positions mapped to Hapmap build 36.
2Novel indicates previously unidentified loci. If the locus was established, r-sq refers to the linkage disequilibrium between the reported SNP and the previous signal. Some regions with known associations and no
prior evidence for allelic heterogeneity now have multiple independent signals.
3Alleles/freq refers to the menarche age-increasing allele (from the uni-variate SNP discovery), and the decreasing allele/increasing allele frequencies from meta-analysis study estimates.
4Uni-variate models included only one SNP per model.
5Joint models were performed using GCTA software. These models approximate conditional analysis; that is, the effect estimates are adjusted for the effects of other neighbouring SNPs.
6Gene refers to the consensus gene(s) reported at that locus mapped using 4 approaches: N, nearest; C, biological candidate; F, 1000 Genomes missense variant in high LD (r2 . 0.8); E, gene expression linked by
eQTL. See Supplementary Tables 5, 7 and 8 for more information.
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Extended Data Table 2 | Details of the 123 independent signals for menarche timing at 106 genomic loci—signals no. 31 to 58

1All positions mapped to Hapmap build 36.
2Novel indicates previously unidentified loci. If the locus was established, r-sq refers to the linkage disequilibrium between the reported SNP and the previous signal. Some regions with known associations and no
prior evidence for allelic heterogeneity now have multiple independent signals.
3Alleles/freq refers to the menarche age-increasing allele (from the uni-variate SNP discovery), and the decreasing allele/increasing allele frequencies from meta-analysis study estimates.
4Uni-variate models included only one SNP per model.
5Joint models were performed using GCTA software. These models approximate conditional analysis; that is, the effect estimates are adjusted for the effects of other neighbouring SNPs.
6Gene refers to the consensus gene(s) reported at that locus mapped using 4 approaches: N, nearest; C, biological candidate; F, 1000 Genomes missense variant in high LD (r2 . 0.8); E, gene expression linked by
eQTL. See Supplementary Tables 5, 7 and 8 for more information.
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Extended Data Table 3 | Details of the 123 independent signals for menarche timing at 106 genomic loci—signals no. 59 to 87

1All positions mapped to Hapmap build 36.
2Novel indicates previously unidentified loci. If the locus was established, r-sq refers to the linkage disequilibrium between the reported SNP and the previous signal. Some regions with known associations and no
prior evidence for allelic heterogeneity now have multiple independent signals.
3Alleles/freq refers to the menarche age-increasing allele (from the uni-variate SNP discovery), and the decreasing allele/increasing allele frequencies from meta-analysis study estimates.
4Uni-variate models included only one SNP per model.
5Joint models were performed using GCTA software. These models approximate conditional analysis; that is, the effect estimates are adjusted for the effects of other neighbouring SNPs.
6Gene refers to the consensus gene(s) reported at that locus mapped using 4 approaches: N, nearest; C, biological candidate; F, 1000 Genomes missense variant in high LD (r2 . 0.8); E, gene expression linked by
eQTL. See Supplementary Tables 5, 7 and 8 for more information.
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Extended Data Table 4 | Details of the 123 independent signals for menarche timing at 106 genomic loci—signals no. 88 to 106

1All positions mapped to Hapmap build 36.
2Novel indicates previously unidentified loci. If the locus was established, r-sq refers to the linkage disequilibrium between the reported SNP and the previous signal. Some regions with known associations and no
prior evidence for allelic heterogeneity now have multiple independent signals.
3Alleles/freq refers to the menarche age-increasing allele (from the uni-variate SNP discovery), and the decreasing allele/increasing allele frequencies from meta-analysis study estimates.
4Uni-variate models included only one SNP per model.
5Joint models were performed using GCTA software. These models approximate conditional analysis; that is, the effect estimates are adjusted for the effects of other neighbouring SNPs.
6Gene refers to the consensus gene(s) reported at that locus mapped using 4 approaches: N, nearest; C, biological candidate; F, 1000 Genomes missense variant in high LD (r2 . 0.8); E, gene expression linked by
eQTL. See Supplementary Tables 5, 7 and 8 for more information.
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Extended Data Table 5 | Methylation QTLs based on Illumina 450K whole blood and adipose methylome data in 648 twins

1Methylation-QTLs were derived for associations between genotypes and methylation in 648 adipose samples from the MuTHER study using a 1% FDR level, corresponding to P , 8.6 3 10241. Significant
methylation-QTLs were also tested for replication in whole blood in 200 individuals.
2Methylation data available from ref. 9.
3Methylation betas are presented per menarche-age-increasing allele.
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Extended Data Table 6 | MAGENTA pathway analyses

Results are shown for database pathways and custom pathways that reached study-wise statistical significance (FDR ,0.05).
1Genes denotes number of genes in pathway (number of genes successfully mapped by MAGENTA).
2Enrichment denotes expected number of genes at enrichment threshold (observed number of genes).
3Genes for Mendelian pubertal disorders, as described in refs 2 and 3.
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Extended Data Table 7 | GABAB receptor II signalling pathway genes
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