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ORIGINAL ARTICLE

Meta-analysis of genome-wide association studies of anxiety
disorders
T Otowa1,2,35, K Hek3,4,35, M Lee1,35, EM Byrne5,6,35, SS Mirza3,35, MG Nivard7, T Bigdeli1, SH Aggen1, D Adkins8, A Wolen9, A Fanous10,11,
MC Keller12,13, E Castelao14, Z Kutalik15,16,17, SV der Auwera18, G Homuth19, M Nauck20, A Teumer21, Y Milaneschi22,23, J-J Hottenga22,23,
N Direk3, A Hofman3, A Uitterlinden3,24, CL Mulder25, AK Henders5,6, SE Medland5, S Gordon5, AC Heath26, PAF Madden26,
ML Pergadia26,27, PJ van der Most28, IM Nolte28, FVA van Oort29, CA Hartman30, AJ Oldehinkel30, M Preisig14, HJ Grabe18,31,
CM Middeldorp7,32, BWJH Penninx22,23, D Boomsma7,23, NG Martin5, G Montgomery5, BS Maher33, EJ van den Oord8, NR Wray5,6,
H Tiemeier3,25,34 and JM Hettema1

Anxiety disorders (ADs), namely generalized AD, panic disorder and phobias, are common, etiologically complex conditions with
a partially genetic basis. Despite differing on diagnostic definitions based on clinical presentation, ADs likely represent various
expressions of an underlying common diathesis of abnormal regulation of basic threat–response systems. We conducted
genome-wide association analyses in nine samples of European ancestry from seven large, independent studies. To identify genetic
variants contributing to genetic susceptibility shared across interview-generated DSM-based ADs, we applied two phenotypic
approaches: (1) comparisons between categorical AD cases and supernormal controls, and (2) quantitative phenotypic factor scores
(FS) derived from a multivariate analysis combining information across the clinical phenotypes. We used logistic and linear
regression, respectively, to analyze the association between these phenotypes and genome-wide single nucleotide polymorphisms.
Meta-analysis for each phenotype combined results across the nine samples for over 18 000 unrelated individuals. Each
meta-analysis identified a different genome-wide significant region, with the following markers showing the strongest association:
for case–control contrasts, rs1709393 located in an uncharacterized non-coding RNA locus on chromosomal band 3q12.3
(P= 1.65 × 10− 8); for FS, rs1067327 within CAMKMT encoding the calmodulin-lysine N-methyltransferase on chromosomal band
2p21 (P= 2.86 × 10− 9). Independent replication and further exploration of these findings are needed to more fully understand the
role of these variants in risk and expression of ADs.
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INTRODUCTION
Anxiety disorders (ADs), namely generalized AD (GAD), panic
disorder (PD) and phobias, are relatively common, often disabling
conditions with lifetime prevalence of over 20%.1 Family and
twin studies suggest both genetic and environmental factors

underlying their etiology, with moderate levels of familial
aggregation (odds ratio 3–6) and heritability (30–50%).2 As with
most complex genetic traits, many linkage and candidate gene
association studies of ADs have been conducted, with little
success in robustly identifying their susceptibility genes.3,4
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Genome-wide association studies (GWAS) have proven to be a
successful method for the identification of common genetic
variants that increase susceptibility to complex disease. Recently,
GWAS of specific anxiety and related disorders such as PD,5,6 post-
traumatic stress disorder,7–9 obsessive compulsive disorder,10,11

and phobias12 have been published. However, these have been
limited by small sample sizes and resulting low overall power to
detect significant associations.
Despite differing on diagnostic definitions based on clinical

presentation, ADs likely represent various expressions of an
underlying common diathesis of abnormal regulation of basic
threat–response systems.13 ADs exhibit strong lifetime comorbid-
ity with each other,14 with genetic epidemiologic studies pointing
to shared genetic risk factors between them.15,16 Since clinical
descriptions do not reflect underlying genetic architecture,
traditional studies focused on individual ADs may not represent
an effective study design for such phenotypes. A more informative
approach would coordinate data from clusters of disorders with
shared genetic risk factors.17 One such strategy is to model a
latent anxiety liability factor indexing ADs with substantial genetic
overlap. Also, for common disorders like ADs, disease states can be
interpreted as extremes of continuous liability dimensions, as has
been done for somatic illnesses like obesity and hypertension.
Therefore, quantitative trait approaches, assuming a continuous
liability distribution, can be used to construct informative latent
psychiatric phenotypes.18 Analyzing AD phenotypes in a coordi-
nated manner may represent a powerful approach for identifying
susceptibility genes for ADs. This strategy has yielded some
success, as demonstrated by prior reports from our group.19

In the current study, we conducted genome-wide association
analyses in nine large, independent samples. To identify genetic
variants contributing to genetic susceptibility shared across the
ADs, we applied two phenotypic approaches: (1) categorical case–
control (CC) comparisons based on having any AD diagnosis, and
(2) quantitative phenotypic factor scores (FS) derived from a
multivariate analysis combining information across the clinical
phenotypes. We performed a meta-analysis for each phenotype
across the 9 samples for over 18 000 unrelated individuals using
~ 6.5 million imputed single nucleotide polymorphisms (SNPs).
This represents the largest genetic study to date of any of the
ADs and the first of this magnitude to explicitly incorporate
comorbidity structure directly into prediction of SNP effects.

MATERIALS AND METHODS
Overview
We conducted parallel GWAS in nine samples of European ancestry and
combined the results via meta-analysis. We applied two phenotypic
strategies aimed at capturing common (pleiotropic) genetic effects shared
across the five core ADs: GAD, PD, social phobia, agoraphobia and specific

phobias. We conducted two types of analyses in each sample based on
complementary approaches to modeling the comorbidity and common
genetic risk across the ADs: (1) CC comparisons, in which cases were
designated as having ‘any AD’ versus supernormal controls, and (2)
quantitative FS estimated for every subject in the sample using
confirmatory factor analysis.

Samples
Nine samples containing AD phenotypes from seven independent studies
participating in the Anxiety NeuroGenetics STudy (ANGST) Consortium
were included in the meta-analysis. Standardized assessment instruments
were used to generate DSM-based AD diagnoses, with some exceptions.
The samples were genotyped on various SNP arrays according to their
original study designs. Genotype calling, quality control, imputation and
association analyses were performed at each site under similar standard
protocols. SNP imputation was conducted within each sample using
IMPUTE2 (ref. 20) or MACH21 software utilizing the full 1000 Genomes
Project reference data (March 2012, release v3). Genomic locations were
based on NCBI build 37/UCSC hg 19 data. After imputation, SNPs with
minor allele frequency (MAF)o0.01, poor imputation quality o0.30 and
Hardy–Weinberg equilibrium P-valueo10− 6 were removed. See
Supplement for study descriptions and Supplementary Table S1 for details
of genotyping and quality control procedures. Table 1 summarizes basic
statistics by cohort.

Genome-wide association analyses
To identify genetic variants contributing to genetic susceptibility shared
across the ADs, we applied and compared two complementary phenotypic
approaches: (1) categorical CC comparisons, and (2) quantitative pheno-
typic FS. For CC comparisons, AD cases were assigned to subjects meeting
criteria for any lifetime AD (ANX= 2) while control subjects were ‘super-
normal’, that is, having few or no clinical anxiety symptoms (ANX= 0);
those with subsyndromal ADs (ANX= 1) were excluded from the CC
analyses. For FS analyses, first exploratory factor analyses were conducted
using Mplus (version 4)22 separately in each sample, finding evidence for a
single common factor model by screen plots. This was followed by
confirmatory factor analyses that estimated a single FS for each subject
from this common AD liability factor. (See Supplement for details of
phenotype construction.) Association analyses were then performed in
each study independently with imputed SNP dosages under an additive
genetic model using logistic regression for CC phenotype and linear
regression for quantitative FS phenotype. As covariates, we used sex and
age at interview, as they were significant predictors of the phenotypes.
Ancestry principal components were estimated for each sample and
included on a sample-by-sample basis depending on their correlation with
the outcome phenotypes. The quantile–quantile plot was used to evaluate
overall significance of the association test results and the genomic control
factor λ.

Meta-analysis of GWAS
We performed an inverse-variance weighted, fixed-effects meta-analysis
with all GWAS samples using METAL23 (nine samples using CC phenotypes
and eight using FS phenotypes). For each SNP, a pooled effect size, s.e. and

Table 1. Contributing cohorts

Cohort Country Mean age (s.d.) at interview N phenotyped N cases (ANX= 2) N controls (ANX= 0) N analyzed (FS/CC)

MGS controls45 USA 50.0 (16.4) 2659 757 1059 2009/1336
PsyCoLaus46 Switzerland 50.9 (8.8) 3575 1044 1351 2887/1955
RS47 Netherlands 66.5 (10.8) 9686 1112 5459 7832/5379
SHIP48 Germany 55.4 (13.9) 2279 581 890 2026/1379
QIMR49 Australia 41.3 (11.5) 6147 1611 2544 2277/2156
TRAILS50 Netherlands 18.7 (0.7) 1584 390 472 1155/614
NESDA51/NTR52,53 Netherlands 45.6 (14.2)/44.6 (12.7) 4491 1521 2970 NA/4491
Total 31 060 7016 14 745 18 186/17 310

Abbreviations: ANX, anxiety scoring variable; CC, case–control; FS, factor score; MGS, molecular genetics of Schizophrenia; NESDA/NTR, The Netherlands study
of depression and anxiety/Netherlands twin registry; QIMR, Queensland institute of medical research; RS, Rotterdam Study; SHIP, study of health in pomerania;
TRAILS, tracking adolescents' individual lives survey.
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P-value were computed. SNPs with low minor allele frequency (o0.05)
were excluded, resulting in a final meta-analytic data set of ~ 6.5M SNPs.
Cochran’s Q statistics and corresponding I2 statistics were used as
heterogeneity metrics. Cochran’s Q statistic was computed by summing
the squared deviations of each study’s estimate by weighting each study’s
contribution in the same manner as in the meta-analyses. I2 measured the
amount of heterogeneity that is not due to chance.
Quantile–quantile and Manhattan plots were examined, and false

discovery rate q-values were calculated based on the P-values from the
meta-analyses. Q-values provide a balance between type I and Type II
errors and can be interpreted as the probability that a marker identified as
significant is a false discovery.24

Cross-validation
To examine overall consistency of association between datasets, we
employed a leave-one-out procedure for internal cross-validation. At each
step, we meta-analyzed eight of the nine CC GWAS samples as the
‘training’ set (seven of the eight samples were used for FS), the results of
which were then tested in the respective remaining target sample (‘testing’
set). The top associated SNPs in the training set (Ptrainingo1× 10− 5,
pruned to r2o0.4 within a 500-kb window) were used to test the
replicability (Ptestingo0.05) and consistency of the direction of their effects
with the top associated SNPs identified in each testing set. One thousand
random permutations of phenotype allocation to an individual’s genome-
wide genotypes were performed in each training–testing set pair, totaling
9,000 and 8,000 permutations in CC and FS, respectively. Across all sets, we
compared the aggregate numbers of replicated SNPs and SNPs with the
same direction of effect against the numbers expected by chance.

Gene-based tests
The SNP-based P-values derived from the meta-analyses were applied to
gene-based association testing using KGG software (http://statgenpro.
psychiatry.hku.hk/limx/kgg/).25 No prioritization or pre-selection of genes
was performed. Gene-based tests in KGG combine univariate association
statistics to evaluate the cumulative evidence of association in a gene
using extended Simes test (GATES).26 SNPs were mapped onto 23 931
genes according to the gene coordinate information from NCBI, and SNPs
within 10 kb of each gene were assigned to that gene. We considered
genes with Po2× 10− 6 ( = .05/23 931) as significant and those with
q-value o0.1 as interesting.27

Secondary analyses
We conducted several secondary analyses, the details of which are
described in the Supplement.

1. SNP-based heritability: Genomic-relatedness-matrix restricted maximum
likelihood (GREML), as implemented in the software program GCTA,28

was conducted in our largest cohort (RS) to estimate the total amount
of variance explained by all analyzed SNPs. This was supplemented by a
similar procedure in the full meta-analytic sample using linkage
disequilibrium (LD) score regression.29

2. Polygenic risk profile analyses: Given the observed high comorbidity
between ADs and other psychiatric syndromes, genomic profile risk
scores30 were estimated to test the additive joint effects of multiple
variants between our AD GWAS data as target samples and summary
data from Psychiatric Genomics Consortium phase 1 schizophrenia
(SCZ), bipolar disorder (BIP) and major depressive disorder as discovery
samples.

RESULTS
GWAS meta-analysis
We performed an inverse-variance weighted, fixed-effects meta-
analysis with all discovery GWAS data including ~ 6.5M common
SNPs after applying post-imputation quality control to each study.
The genomic inflation factor λ ranged from 0.990 to 1.038 for all
studies. The quantile–quantile plots of the meta-analyses for the
CC and FS phenotypes are presented in Figure 1. Meta-analytic
inflation factors were 1.03 and 1.02, suggesting little effect of
population stratification. Manhattan plots are presented in

Figure 2. Table 2 lists the LD-independent, genome-wide
significant SNPs and associated regions. For the CC model, the
strongest association was observed at rs1709393 located in an
intron of an uncharacterized non-coding RNA locus LOC152225 on
chromosome 3q12.3 (P= 1.65 × 10− 8; Q= 0.027). Allelic frequen-
cies were very similar across studies and ranged between 0.55 and
0.60. The most significant SNP in the FS model was rs1067327 on
chromosome 2p21 within CAMKMT encoding the calmodulin-
lysine N-methyltransferase (P= 2.86 × 10− 9; Q= 0.0017) with LD
extending into several adjacent genes. Allelic frequencies were
consistent across studies, ranging from 0.32 to 0.36. Both of these
SNPs were imputed with very high quality across studies
(R240.93). As indicted in the forest plots (Supplementary Figure
S1), no heterogeneity of effects was observed for either SNP.
Figure 3 displays the regional SNP plots for these two genome-
wide significant loci.

Figure 1. Quantile–quantile plots of meta-analysis results for (a)
case–control and (b) factor score phenotypes. Observed association
results of –log10P, after LD pruning at r2 of 0.4, are plotted against
the expected distribution under the null hypothesis of no
association. LD, linkage disequilibrium.
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Given that the CC and FS phenotypic approaches provide
conceptually different but otherwise complementary information,
we estimated the overlap in their association signals. These
phenotypes were highly correlated in the different cohorts (0.88–
0.94). Overall rank-based correlations between the CC and FS
association effects were 0.61. The degree of correlation increased
with decreasing P-value threshold, ranging from 0.275 to 0.899
(Supplementary Table S3). The most significant SNPs all have the
same direction of effect (top 1000 SNPs in CC and top 1500 SNPs
in FS); indeed, among the ~ 30% of total SNPs with opposite sign,
none had even suggestively significant association (Po1 × 10− 5).
However, among ~ 1.4M independent SNPS (pruned at r2 = 0.4),

significantly more with Po10− 5 were identified for the FS
phenotype than for the CC phenotype: 42 verses 18 (test P-
value = 0.0034).

Cross-validation
In the leave-one-out cross-validation analyses, the replication rate
was significantly higher than expected by chance (Table 3). In CC,
18 of 173 tested SNPs across all leave-one out analyses replicated
in the left-out testing sets (permutation P= 0.001) and the
proportion of SNPs with the same direction of effect was 59.5%
(sign test P= 0.005). Of 315 tested SNPs in FS, 43 SNPs replicated

Figure 2. Manhattan plots of meta-analysis results for (a) case–control and (b) factor score phenotypes. Red horizontal line indicates the
genome-wide significant P-value 5× 10− 8; blue line indicates the suggestive P-value= 1× 10− 5.
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(permutation Po0.001) and 77.8% had the same direction of
effect (sign test Po0.001). Supplementary Figure S2 displays
Manhattan plots of the training set meta-analyses conducted after
leaving out each sample.

Gene-based tests
In the CC model, LOC152225 on 3q12.3 surpassed genome-wide
significance (P= 1.19 × 10− 6; Q= 0.028). In the FS model, three
genes exceeded genome-wide significance: PREPL, CAMKMT and
SLC3A1 on chromosome 2 (Table 4). Supplementary Figure S3
depicts the Manhattan plots for these gene-based analyses.

Secondary analyses
SNP-based heritability. This was estimated by GREML using GCTA
in the Rotterdam sample as 0.106 (s.e. = 0.06, P= 0.05) for FS
phenotype and 0.138 (s.e. = 0.18, P= 0.2) for CC phenotype on the
liability scale assuming 10% AD population prevalence. Within the
margin of error, these were consistent with LD score regression
using summary statistics in the full meta-analysis sample, with SNP
heritability estimated as 0.072 (s.e. = 0.028) for FS phenotype and
0.095 (s.e. = 0.037) for CC phenotype (see Supplement for details).

Polygenic risk profile analyses. Genomic profile risk score from
PGC-MDD explained a small but significant proportion of variance
in CC ADs in QIMR (0.5–0.7%), while SCZ and BIP each explained a
somewhat smaller proportion of this variance varying by sample.
These results were supported by LD score regression performed in
the meta-analysis sample, estimating significant genetic correla-
tion between ADs and MDD (r= 0.68) but not between ADs and
BIP or SCZ (see Supplement for details).

DISCUSSION
We conducted the largest and most comprehensive genetic study
of the primary ADs to date. Specifically, we integrated phenotypic
information on GAD, PD, agoraphobia, social phobia and specific
phobias and combined this with genome-wide SNP data from 9
large samples totaling over 18 000 subjects. We conducted parallel
GWAS in these samples and statistically combined the results via
meta-analysis, with the aim of detecting common variants that
play a role in shared AD susceptibility.
While only an approximate representation of the underlying

complexity of AD genetic mechanisms, our integrated phenotypic
approaches successfully identified novel genetic variants that
significantly associate with these composite AD phenotypes. The
results were generally the same whether analyzing individual SNPs

or genes. In the CC model, we identified a novel genome-wide
association within an uncharacterized non-coding RNA locus
LOC152225 on chromosome 3q12.3. We found no extant reports
for this locus in PubMed or the NHGRI Catalogue of Published
GWAS (www.genome.gov/gwastudies/). In the FS model, we
detected genome-wide significant associations at SNPs in three
genes within a large LD block on chromosome 2p21, each of
which has reported expression in brain: (1) SLC3A1 encoding the
large subunit of a heterodimeric dibasic/neutral amino acid
transporter (solute carrier family 3 (amino acid transporter heavy
chain), member 1); (2) PREPL encoding a putative prolyl
endopeptidase belonging to the prolyl oligopeptidase family;
and (3) CAMKMT encoding a calmodulin-lysine N-methyltransfer-
ase. This region is well-known for two contiguous gene-deletion
syndromes, the hypotonia–cystinuria syndrome and the more
severe 2p21 deletion syndrome.31 Deletion of SLC3A1 results in
the autosomal-recessive form of cystinuria,32 while PREPL deletion
causes hypotonia at birth, failure to thrive and growth hormone
deficiency.33 The evolutionarily conserved class I protein methyl-
transferase encoded by CAMKMT acts in the formation of
trimethyllysine in calmodulin, which is involved in calcium-
dependent signaling.34 Interestingly, GWAS of SCZ and BIP have
highlighted other genes encoding proteins involved in calcium-
dependent signaling.35 Although the most significant SNP,
rs1067327, is located in an intron of CAMKMT, in silico analyses
(Supplement) suggest rs698775 is the most likely functional
candidate with a cis regulatory effect possibly specific to PREPL.
There is substantial phenotypic overlap between the CC and FS

models used to capture the comorbidity and shared genetic risk
among the ADs, and as expected there was a high degree of
concordance in the association signals genome wide
(Supplementary Table S3). The most significantly associated SNPs
(Po .0.05) have very high correlation of association effects,
suggesting they are tapping into strongly related AD risk factors.
We note that, overall, the FS phenotype identified a larger number
of associated SNPs than the CC model. This is likely due to several
reasons: (1) this approach combines disorder information to
capture individual differences on an underlying latent AD liability;
(2) for high prevalence disorders, quantitative variables generally
have greater power for genetic association than categorical
variables;36,37 (3) the FS models generally involve larger sample
sizes since they also include the subjects with subthreshold ADs
(score = 1); and (4) the FS model produces a phenotype that
incorporates the observed relationship information (covariance)
between the individual ADs. These findings support the use of
quantitative phenotypic factor scores in future GWAS of comorbid
psychiatric disorders assessed in the same individuals.

Table 2. Top association results for meta-analysis of SNP main effects for case–control and factor score phenotypes

SNP A12a Frqmean Chr Positionb Association with original phenotype Cross phenotypee

Effectc (95% CI) P-value Q-value Directiond P-value Effectc

Case–control
rs1709393 TC 0.58 3 101684480–101692234 0.860 (0.816–0.906) 1.65e-8 0.027 −−−−−−− 0.0342 − 0.010

Factor score
rs1067327 CG 0.34 2 44588941–44678648 0.028 (0.019–0.038) 2.86e-9 0.0017 ++++++++ 0.0002 1.123

Abbreviations: Chr, chromosome; CI, 95% confidence interval; Frq, frequency of allele 1; SNP, single nucleotide polymorphism. aFirst allele is the reference
allele, for which the effect is reported. bPosition denotes the associated region surrounding the top SNP containing one or more genome-wide significant
SNPs in LD (r240.4) with the top SNP. cEffect size represents odds ratio for case–control and regression coefficient for factor score. dDirection of association is
provided for each study in the following order: RS1, RS2, RS3, NTR/NESDA, MGS, PsyColaus, SHIP, QIMR and TRAILS for case–control; RS1, RS2, RS3, MGS,
PsyColaus, SHIP, QIMR and TRAILS for factor score. Plus (+) indicates the association between the SNP and the corresponding anxiety phenotype is positive.
Minus (− ) indicates a negative direction of association. eShown are the association results of the top SNPs in the other phenotype, that is, factor score results
of rs1709393 and case–control results of rs1067327.
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Several secondary analyses support our findings. First, we
applied cross-validation in the nine samples to examine the
internal consistency of the results. We created sub-samples by
iteratively removing the data of each of the individual samples
and conducting meta-analysis with the remaining datasets. A
highly significant proportion of the top results were consistently
identified across these sub-analyses, suggesting the stability and
validity of our findings. Next we estimated the genome-wide
contribution via GREML and the complementary LD score
regression approach, producing generally consistent estimates
of SNP heritability across samples included and methods applied.
Similar to GWAS studies of many phenotypes,38 these estimates

are substantially smaller than those predicted by twin studies of
ADs. Finally, we tested the polygenic association between our
results and those from other psychiatric disorders using GRPS,
finding significant correlation of genetic risk between ADs and
MDD but not between ADs and BIP or SCZ. The former result is
consistent with large epidemiologic studies that report correlated
genetic risk between ADs and MDD (see ref. 16 for review), as well
as a prior overlap seen for depression and anxiety scales.39

A strength of this study is that we applied phenotypic strategies
aimed at detecting genetic variants that play a central but non-
specific role in AD susceptibility. This is counter to the approach
taken in most psychiatric genetic studies, which generally apply

Figure 3. Regional plots around most significant SNPs in (a) case–control and (b) factor score model.

Meta-analysis of GWAS of anxiety disorders
T Otowa et al

1396

Molecular Psychiatry (2016), 1391 – 1399 © 2016 Macmillan Publishers Limited, part of Springer Nature.



CC comparisons for specific clinical diagnoses, sometimes
followed by adjunct cross-disorder analyses. However, it has long
been recognized that clinical nosology poorly reflects etiological
mechanisms, with both genetic and environmental risk factors
showing non-specific effects across disorders. ADs, despite their
heterogeneous clinical presentations, likely represent various
expressions of an underlying common diathesis of abnormal
regulation of basic threat–response systems.13 Given the value of
fear and anxiety for survival, there are likely sets of evolutionarily
conserved genes that regulate these basic biological responses.
This is supported by twin studies that identify factors of common
genetic risk across ADs in addition to disorder-specific genetic
factors. With this in mind, we applied and compared two
strategies for combining information across clinical phenotypes.
The first is a simple CC approach, comparing cases defined as
having ‘any AD’ against supernormal controls. The second applied
multivariate modeling of the covariation among the ADs using the
common factor model to define a single continuous dimension of
liability for which quantitative scores can be estimated for each
subject. Our group has applied this approach in prior candidate
gene association studies19 and in a pilot GWAS in the MGS
sample,40 but this is the first such application in a large GWAS
meta-analysis. We note that this strategy is consistent with NIMH’s
Research Domain Criteria (RDoC) initiative, which aims to serve as
a framework for new approaches to research on mental disorders

based on fundamental dimensions that cut across traditional
disorder categories and more closely align with mechanisms that
underlie psychopathology at various biological levels from genes
to neural circuits.41 Also important to note is that ADs not only
share genetic risk factors among themselves but also with other
internalizing phenotypes like MDD,16 obsessive compulsive
disorder42 and personality traits like neuroticism and
extroversion.43 It will be important for future studies to examine
this broader pleiotropic spectrum either through cross-disorder
GWAS as previously conducted for other psychiatric conditions44

or by including these additional traits directly in the phenotypic
construction with the ADs. It is possible that, by including AD
cases with comorbid MDD, the genetic overlap between these
conditions has influenced our results.
Several potential limitations of this study should be noted. First,

although the total sample size far exceeds those from prior AD
genetic studies, it is still relatively underpowered to detect
common genetic variants of small effect expected for the genetic
architecture of such complex phenotypes.37 Second, not all
samples provided the same level of phenotypic coverage; in
particular, some subjects in QIMR were missing diagnostic data for
GAD or specific phobia. While this can produce bias, our forest
plots, tests for heterogeneity, and internal validation analyses
suggest that this likely did not bias our results. Third, consent
agreements for some of the sites did not allow for sharing of

Table 3. Results of leave-one-out cross-validation analyses

Testing sample Case–control Factor score

NSNP
a Ptrainingo10−5 NSNP

b Ptestingo0.05 NSNP (same direction) NSNP
a Ptrainingo10− 5 NSNP

b Ptestingo0.05 NSNP (same direction)

MGS 19 3 10 39 0 25
GSK 26 3 12 22 4 11
RS1 24 0 13 42 6 36
RS2 15 3 9 45 0 33
RS3 22 0 10 46 21 35
SHIP 24 0 14 40 10 32
NTR/NESDAc 14 3 13 — — —

QIMR 13 3 9 35 0 32
TRAILS 16 3 13 46 2 41
OVERALL 173 18d (P= 0.001) 103d (P= 0.005) 315 43d (Po0.001) 245d (Po0.001)

aThe number of SNPs associated at Ptrainingo1x10−5 with r2o0.4 in the leave-one-out meta-analysis using N-1 training samples after removing one testing
sample at a time. bOf the SNPs with Ptrainingo1x10−5 in the meta-analysis of the N-1 training samples, the number of replicated SNPs with one-sided
Ptestingo0.05 in the left-out (testing) sample. cOnly case–control phenotype is available for NTR/NESDA sample. dPo0.05 thresholds applied for replication
and sign tests; Replication and sign tests are conducted based on permutations with 9,000 iterations in case–control and 8,000 iterations in factor score
phenotype under the null hypothesis of no association (1,000 iteration for each pair of training and testing sets).

Table 4. Top associated genes (Qo0.1) using gene-based tests

Gene P-valuea Q-value SNPb with lowest P Lowest Pc Chr Gene feature

Case–control
LOC152225 1.19E−06 0.028 rs1709393 1.65E− 08 3 ncRNA

Factor score
PREPL 5.61E−08 0.001 rs786618 6.99E− 09 2 Intronic
CAMKMT 3.15E−07 0.004 rs1067327 2.86E− 09 2 Intronic
SLC3A1 1.45E−06 0.012 rs1142523 1.44E− 07 2 3′ UTR
LBX1 7.50E− 06 0.045 rs11190870 9.79E− 07 10 Downstream
LBX1-AS1 1.33E− 05 0.064 rs594791 1.05E− 06 10 Upstream

Abbreviations: ncRNA, non-coding RNA; UTR, untranslated region. aGene-based P-value (bolded genome-wide significant Po2 × 10− 6). bMost significant SNP
within the corresponding gene. cSNP-based P-value for the most significant SNP We used LD pruning at r2 of 0.4 for gene-based tests. Boldface indicates
genome-wide Po2 × 10−6.
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subject data, so GWAS analyses had to be conducted separately
using a standardized procedure and combined via meta-analysis.
While this has been shown to approximate the power obtained
when using raw data via mega-analysis, we were limited in our
ability to conduct additional post hoc analyses such as genomic
profile risk score and GREML that require the use of raw GWAS
data. Reassuringly, results obtained by applying LD score
regression to summary statistics from the total meta-analysis
sample were consistent with those using raw data from select
individual samples. Fourth, the results apply only to subjects of
European ancestry and might not generalize to individuals of
other genetic and cultural backgrounds. Finally, we combined all
data available at the time of this study into a single meta-analysis
rather than divide into discovery and replication samples. This was
necessary due to the large sample sizes required to detect small
effects of genes involved in complex traits like ADs. Internal cross-
validation supported the robustness of our results but do not
substitute for replication in well-powered, independent samples.
At this time, we are unaware of other large datasets that could be
used for replication of our results.
In summary, this study has identified several potentially novel

susceptibility loci that increase shared risk across the primary ADs.
Future studies are needed to (1) further confirm these findings via
independent replication, (2) increase the total sample size to
enhance power to detect additional loci and (3) identify loci
associated specifically with each particular AD not accounted for
by the pleiotropic effects targeted in this study.
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