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Animal research supports a central role for corticotropin-releasing factor (CRF) in actions of ethanol on brain function.
An examination of alcohol consumption in adolescents reported a significant genotype ¥ environment (G ¥ E) inter-
action involving rs1876831, a corticotropin-releasing hormone receptor 1 (CRHR1) polymorphism, and negative
events. CRHR1 and at least four other genes are located at 17q21.31 in an extremely large block of high linkage
disequilibrium resulting from a local chromosomal inversion; the minor allele of rs1876831 is contained within the
H2 haplotype. Here, we examine whether G ¥ E interactions involving this haplotype and childhood sexual abuse (CSA)
are associated with risk for alcohol consumption and dependence in Australian participants (n = 1128 respondents
from 476 families) of the Nicotine Addiction Genetics project. Telephone interviews provided data on DSM-IV alcohol
dependence diagnosis and CSA and enabled calculation of lifetime alcohol consumption factor score (ACFS) from four
indices of alcohol consumption. Individuals reporting a history of CSA had significantly higher ACFS and increased
risk for alcohol dependence. A significant G ¥ E interaction was found for ACFS involving the H2 haplotype and CSA
(P < 0.017). A similar G ¥ E interaction was associated with protective effects against alcohol dependence risk (odds
ratio 0.42; 95% confidence interval 0.20–0.89). For each outcome, no significant CSA-associated risk was observed in
H2 haplotype carriers. These findings support conducting further investigation of the H2 haplotype to determine the
gene(s) responsible. Our results also suggest that severe early trauma may prove to be an important clinical covariate
in the treatment of alcohol dependence.
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INTRODUCTION

Alcohol use disorders are common illnesses that pro-
foundly impact the lives of affected individuals, their
families and those with whom they interact (World
Health Organization 2004; Hasin et al. 2007). The heri-
tability of alcohol dependence has been estimated to be at
least 50% by large twin studies (Heath et al. 1997; Pres-
cott & Kendler 1999; Tsuang et al. 2001; Knopik et al.
2004), with the remaining contribution to liability
attributed to individual-specific environmental sources.
Included among genes implicated in genetic studies are

those whose products are involved in the metabolism
[ADH clusters (Luo et al. 2005b, 2006; Edenberg et al.
2006; Macgregor et al. 2009)] and effects [GABRA2
(Covault et al. 2004; Edenberg et al. 2004; Lappalainen
et al. 2005; Fehr et al. 2006), CHRM2 (Wang et al. 2004;
Luo et al. 2005a)] of ethanol; however, replicated find-
ings to date explain only a minority of the overall genetic
risk.

Caspi et al. (2002, 2003) influential examinations of
other psychiatric disorders have stimulated more recent
investigations of genotype ¥ environment (G ¥ E) inter-
actions targeting alcohol-related phenotypes (Covault
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et al. 2007; Kaufman et al. 2007; Armeli et al. 2008;
Blomeyer et al. 2008; Ducci et al. 2008; van der Zwaluw
et al. 2009). These studies have focused on environmen-
tal covariates occurring during important periods of
brain development [physical abuse, childhood sexual
abuse (CSA) (Kaufman et al. 2007; Ducci et al. 2008)] or
acquisition of risky drinking patterns [parental rule-
setting (van der Zwaluw et al. 2009), negative life events
during adolescence (Blomeyer et al. 2008) or college
(Covault et al. 2007; Armeli et al. 2008)].

One longitudinal investigation (Blomeyer et al. 2008)
recruited as infants a high-risk sample enriched for those
whose births involved severe obstetric problems or whose
families experienced substantial psychosocial adversity.
At age 15, these individuals (n = 280) completed an
assessment that included measures of alcohol consump-
tion and severe stressors experienced during the past 3
years. The authors found evidence of a significant G ¥ E
interaction involving a corticotropin-releasing hormone
receptor 1 (CRHR1) polymorphism, rs1876831, and
negative life events. Specifically, one or more copies of the
minor allele was associated with reduced risk for (any)
lifetime history of binge drinking and maximum amount
of alcohol consumed per occasion in those who had expe-
rienced severe stressors. No evidence of a similar G ¥ E
interaction was seen for a second CRHR1 polymorphism,
rs242938. A prior examination (Treutlein et al. 2006) of
their sample reported significant main effects on alcohol
consumption for both of these CRHR1 polymorphisms
with confirmation in an older alcohol-dependent clinical
sample. The potential importance of these findings is
underscored by an extensive animal literature (Le et al.
2000; Hansson et al. 2006; Heilig & Koob 2007; Pastor
et al. 2008; Sommer et al. 2008) supporting CRF1 recep-
tor involvement in diverse effects of ethanol including
sensitization (Pastor et al. 2008), consumption (Hansson
et al. 2006), withdrawal (Sommer et al. 2008) and stress-
induced relapse (Le et al. 2000).

CRHR1 is located in a region, 17q21.31, which was
recently described (Pennisi 2008) as ‘one of the most
structurally complex and evolutionarily dynamic regions
of the genome’. A nearby gene, microtubule-associated
protein tau (MAPT), first (Hutton et al. 1998) drew
research attention to this area as a result of accumulat-
ing evidence (Pastor et al. 2004; Pittman, Fung & de Silva
2006) for association with risk of progressive supra-
nuclear palsy (PSP), a neurodegenerative disease in
which tau-positive neurofibrillary tangles are present.
Additional examination (Pastor et al. 2004; Stefansson
et al. 2005) revealed the existence of an extremely large
linkage disequilibrium (LD) block spanning ~1.5 Mb
extending across five adjacent genes (including MAPT
and CRHR1). Two haplotypes, termed H1 and H2, have
been described; the H2 haplotype contains a ~970 kb

inversion that prevents recombination in H1/H2 het-
erozygotes (Stefansson et al. 2005). The H1 haplotype,
present in all populations [H2 is found predominately in
those of European ancestry (Stefansson et al. 2005)], is
associated with increased risk for PSP and other neuro-
logical disorders (Pastor et al. 2004; Skipper et al. 2004;
Cruts et al. 2005; Pittman et al. 2006; Sundar et al.
2007; Webb et al. 2008). Evidence of positive selection
for the H2 haplotype was observed in a large Icelandic
sample (Stefansson et al. 2005); however, a predisposi-
tion to a microdeletion syndrome resulting in mental
retardation and neurological symptoms has also been
associated with the H2 haplotype (Koolen et al. 2006).

A recent study (Tantisira et al. 2008) found an asso-
ciation with inhaled corticosteroid response in asthma for
four single nucleotide polymorphisms (SNPs) that tag the
H2 haplotype in samples from populations in which a
similar association had been previously attributed (Tan-
tisira et al. 2004) to rs1876828, a CRHR1 SNP. Similarly,
the minor allele of rs1876831, the CRHR1 polymor-
phism for which a significant G ¥ E interaction associated
with risk for alcohol consumption was previously
reported (Blomeyer et al. 2008), is also contained within
the H2 haplotype. Research on this region has also not
yet been integrated into the psychiatric literature.

The current report examines whether a similar G ¥ E
interaction is observed involving the H2 haplotype and
history of CSA that is protective against alcohol con-
sumption and DSM-IV alcohol dependence in the Austra-
lian sample of the Nicotine Addiction Genetics (NAG)
project (Saccone et al. 2007; Agrawal et al. 2008). Our
large sample, drawn from a heavy-drinking population,
enriched for regular smokers [rates of regular smoking in
clinical samples of alcoholics approach 90% (Hurt et al.
1996)] and having largely survived the period of greatest
risk for the onset of alcohol dependence, is particularly
well suited for this investigation.

MATERIALS AND METHODS

Sample ascertainment and recruitment

The Australian component of the NAG project (Saccone
et al. 2007), a collaboration between Queensland Insti-
tute of Medical Research and Washington University
School of Medicine investigators, used data collection
procedures approved by both institutions’ institutional
review boards. Detailed descriptions of study methods
have been reported (Saccone et al. 2007; Agrawal et al.
2008). In brief, prior reports by index cases of smoking
status and family structure (in surveys of two large Aus-
tralian Twin Panel cohorts and of spouses of the older
twin cohort) were used to ascertain families with a sib
pair [containing at most one monozygotic (MZ) twin]
concordant for heavy smoking. Index cases were con-
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tacted to confirm smoking history and to obtain permis-
sion to contact family members. Families with two
available parents were prioritized. When both parents
were not available, at least one unaffected sibling was
targeted for recruitment. After confirmation of family eli-
gibility, study materials (including consent form) were
mailed and telephone interviews scheduled with indi-
vidual family members. Interviewing was conducted
from 2001 to 2006. Data from only one member of any
MZ twin pair, the designated index case, were included in
analyses.

Assessment

All participants first provided verbal consent. A
computer-assisted telephone interview adapted from the
Semi-Structured Assessment for the Genetics of Alcohol-
ism (Bucholz et al. 1994) was then administered. Data
collected included demographic information, DSM-IV
diagnoses of psychiatric and substance dependence dis-
orders, and other non-diagnostic sections. To reduce
respondent time commitment, younger cohort twins
(born 1964–1975) and spouses of older cohort twins
were not re-administered some interview items identical
to their prior assessment.

Two primary outcome measures are used in analyses
reported here: (1) a quantitative alcohol consumption
factor score (ACFS) (Agrawal et al. 2009; Grant et al.
2009); and (2) a binary DSM-IV diagnosis of alcohol
dependence. Individuals who denied any lifetime alcohol
use were coded as missing for the alcohol consumption
measure and for alcohol dependence. Respondents who
endorsed at least three of seven diagnostic criteria in a
single year were given a DSM-IV alcohol dependence
diagnosis. The ACFS was created from four indices of
alcohol consumption queried in the alcohol use disorders
section: (1) lifetime maximum 24-hour alcohol con-
sumption (log-transformed to adjust for skewness); and
for the heaviest drinking period of at least 1 year’s dura-
tion, (2) weekly alcohol consumption (log-transformed);
(3) frequency of drinking to intoxication; and (4) fre-
quency of drinking = 5 drinks per day. Because the NAG
sample is enriched for heavy smokers, data from BigSib, a
general community sample ascertained from the Austra-
lian Twin Registry on the basis of large sibship size [see
Saccone et al. (2007) for more information] were used to
generate scoring coefficients more representative of the
general population. An option in the Factor Procedure of
SAS (SAS Institute 2004) enabled separate scoring coef-
ficients to be calculated for women and men using BigSib
sample data. The SAS Score Procedure was then used to
apply these scoring coefficients to data from NAG project
participants to obtain factor scores. Consistently high
factor loadings for all component items were found for
women (0.68–0.85) and men (0.63–0.92).

The primary covariate, CSA, is derived from a ques-
tion in the conduct disorder section of the interview
(not administered to parents, for whom data were thus
not included in the current analyses): ‘Before age 18,
were you ever forced into sexual intercourse or any
other form of sexual activity?’ A follow-up question
determined the age at which forced sexual activity first
occurred. Two respondents (n = 2) who endorsed the
forced sex question, but reported its first occurrence at
an age = 18, were excluded from analyses (Nelson et al.
2002, 2006). Seven individuals whose responses to this
item at subsequent assessment were inconsistent (three
endorsed and then denied; four denied and then
endorsed) were also excluded from further analyses. As
we have done previously (Nelson et al. 2002, 2006),
those reporting forced sexual activity with first occur-
rence before age 18 (n = 151) or who did not report
(n = 5) age of first occurrence were coded as having a
history of CSA.

SNP genotyping and haplotype assignment

DNA was extracted from blood samples by salting out.
MassARRAY iPLEX technology (Sequenom, San Diego,
CA, USA) was used for SNP genotyping. Polymerase
chain reaction (PCR) primers, extension primers and
multiplexing capabilities were determined with the
Sequenom MassARRAY Assay Designer software
v3.1.2.2 (Sequenom, San Diego, CA, USA). Standard pro-
cedures were used to amplify PCR products; unincorpo-
rated nucleotides were deactivated with shrimp alkaline
phosphatase. A single base pair extension step was com-
pleted with the mass extension primer and the terminator
(iPLEX). The primer extension products were cleaned
with resin and spotted onto a silicon SpectroChip (Seque-
nom, San Diego, CA, USA). The chip was scanned with a
mass spectrometry workstation (Bruker AXS, Karlsruhe,
Germany). The resulting genotype spectra were analyzed
with the SpectroTYPER software v3.4 (Sequenom, San
Diego, CA, USA).

The 13 genotyped CRHR1 SNPs included those from
prior reports (Treutlein et al. 2006; Blomeyer et al. 2008;
Bradley et al. 2008) and nearby SNPs identified from
dbSNP. Hardy-Weinberg equilibrium (HWE) P-values
were > 0.1 for all SNPs; no evidence of substantial Men-
delian errors was found. The call rate for rs3029044, an
insertion/deletion polymorphism, was 94%; call rates for
the SNPs otherwise ranged from 0.95 to 0.98 (Table 1).
We examined the LD relationships of the 13 SNPs (shown
in Fig. 1 as pairwise r2 values) and recognized that the
large block of eight SNPs (including rs1876831) in very
strong LD with minor allele frequencies ranging from
0.21 to 0.22 (Table 1) are part of the H2 haplotype. The
other five SNPs forming two small additional LD blocks
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apart from the H2 haplotype are not included in the
current analyses. Data were coded consistent with the
prior report (Blomeyer et al. 2008) to enable comparison
of individuals with one or more copy of the H2 haplotype
to individuals homozygous for the H1 haplotype (i.e. con-
sistent with a dominant mode of inheritance).

Genotyping results were entirely consistent for 1119
participants: for 671, no minor alleles were detected at
any successfully genotyped locus (H2 haplotype absent);
for 448, a minor allele was detected at each locus (H2
haplotype present). For another nine individuals, geno-
typing results included minor inconsistencies that prima-
rily involved the more difficult to genotype rs3029044
insertion/deletion: six who were homozygous for the
major allele at all but one successfully genotyped locus
were coded as H2 haplotype absent; three others who
were homozygous for the major allele at a single locus
(with minor alleles present at the other successfully geno-
typed loci) were coded as H2 haplotype present. Finally,
three individuals who had intermediate genotypic results
were coded as indeterminate for H2 haplotype and
excluded from subsequent analyses. Haplotypes were
similarly assigned for all additional family members
(including parents) with genotypic data available, and
PedCheck (O’Connell & Weeks 1998) was used to look for
Mendelian errors (total n = 1814). No Mendelian errors
in haplotype assignment were identified. The final sample
(n = 1128 individuals from 476 families) consisting of all
those with data available for H2 haplotype, CSA and
outcome measures included 565 women [mean age
41.0 (SD 8.6)] and 563 men [mean age 43.1 (SD 9.4)].
These individuals almost exclusively report Anglo-Celtic
or other European ancestry.

Statistical analyses

Analyses were performed using the SAS statistical soft-
ware package v9.1 (SAS Institute 2004). The primary
analyses examine whether G ¥ E interactions involving
the H2 haplotype and a history of CSA are protective
against alcohol consumption and DSM-IV alcohol depen-
dence. For linear regression analyses, the SurveyReg Pro-
cedure was used to control for inclusion of data from
multiple members of families. For logistic regression
analyses, the SurveyLogistic Procedure provided similar
control. We performed t-tests to determine if mean ACFS
differed by CSA status when controlling for gender and
genotype. A significance threshold of alpha = 0.05 was
used for all analyses.

RESULTS

Descriptive analyses

One hundred twenty-one women (21.4%) and 35 men
(6.2%) reported a history of CSA; mean age at first CSA
occurrence was 11.0 years (SD 4.3). A lifetime DSM-IV
diagnosis of alcohol dependence was more common in
men (40.7%) than women (21.2%). The mean ACFS
values for women and men were 0.42 (SD 1.01) and
0.43 (SD 0.91), respectively. ACFS were correlated (P <
0.0001) with lifetime alcohol dependence diagnoses in
both women (r = 0.54) and men (r = 0.45). Those with a
history of CSA had significantly higher ACFS [mean
values: CSA+ 0.67 (SD 1.10); CSA- 0.39 (SD 0.94);
P < 0.0031].

Linear regression analyses examining ACFS

In linear regression analyses with ACFS as the dependent
variable, we first confirmed that a history of CSA is asso-
ciated with higher lifetime alcohol consumption (main
effect for CSA, P < 0.003). We performed a similar analy-
sis and found no significant main effect for H2 haplotype
(P > 0.77). We then examined whether a G ¥ E interac-
tion involving CSA and H2 haplotype was observed in
analyses that also included terms for main effects of CSA,
gender and H2 haplotype. We found a significant G ¥ E
interaction with the H2 haplotype protecting against
CSA-associated effects on alcohol consumption (see
Table 2). To demonstrate the protective effects of the
G ¥ E interaction more clearly, we compared mean ACFS
by CSA and H2 haplotype status. We initially confirmed
that mean ACFS did not vary by gender for either H1
homozygotes (P > 0.69) or individuals with the H2 hap-
lotype (P > 0.88). We then found that significantly higher
(P = 0.0006) mean ACFS was associated with a history of
CSA only in H1 homozygotes; in individuals with the H2
haplotype, the mean ACFS varied minimally (P = 0.77)
with CSA status (Fig. 2).

Table 1 Genotyped CRHR1 SNPs, minor alleles, MAFs and call
rates.

CRHR1 SNP Minor allele MAF Call rate

rs1876830 T 0.22 0.98
rs16940674 T 0.22 0.98
rs1876831 T 0.22 0.97
rs3029044 Insert 0.22 0.94
rs1396862 A 0.22 0.98
rs1912151 T 0.21 0.97
rs242938 A 0.06 0.98
rs2316764 G 0.22 0.98
rs242939 C 0.06 0.98
rs2316763 T 0.22 0.98
rs242924 T 0.42 0.98
rs110402 A 0.41 0.95
rs7209436 T 0.40 0.95

White (in bold) = H2 haplotype SNPs; grey = SNPs in two LD blocks (light
and dark) outside of H2 not included in analyses.
CRHR1 = corticotropin-releasing hormone receptor 1; LD = linkage dis-
equilibrium; MAF = minor allele frequency.
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Logistic regression analyses examining
alcohol dependence

We conducted a series of logistic regression analyses,
controlling for gender, with alcohol dependence diagno-
sis as the dependent variable. We first confirmed that a

history of CSA is associated with lifetime alcohol depen-
dence risk [odds ratio (OR) 2.03; 95% confidence inter-
val (CI) 1.40–2.92]; we again found no evidence of a
significant main effect for H2 haplotype on risk for
alcohol dependence (OR 0.92; 95% CI 0.70–1.21). We
next included a term for the G ¥ E interaction involving
CSA and the H2 haplotype in a model that also con-
tained terms for main effects of CSA history, gender and
H2 haplotype. We found evidence of a significant G ¥ E
interaction for the H2 haplotype protecting against CSA-
associated effects on alcohol dependence risk (OR 0.42;
95% CI 0.20–0.89; P = 0.023). We calculated alcohol
dependence risk by CSA status, controlling for gender,
separately for individuals with and without the H2
haplotype. For H1 homozygotes (n = 677), significant
alcohol dependence risk was associated with CSA (OR
3.37; 95% CI 2.03–5.59). For those with the H2
haplotype (n = 451), no evidence was found of CSA-
associated risk (OR 1.04; 95% CI 0.57–1.90).

41225913 41235818 41241147 41251717 41258778 41263526 41267133

Figure 1 Linkage disequilibrium pattern (r2 values shown) and physical location of genotyped CRHR1 SNPs

Table 2 Contribution to ACFS of H2 haplotype, CSA and inter-
action controlling for gender (n = 1128).

Parameter
Beta (95% confidence
interval)

Intercept 0.33 (0.23 to 0.43)
Male 0.06 (-0.06 to 0.17)
H2 haplotype 0.07 (-0.05 to 0.20)
CSA 0.47 (0.22 to 0.71)
CSA ¥ H2 haplotype -0.41* (-0.75 to -0.08)

Significant results are in bold; *P < 0.017.
ACFS = alcohol consumption factor score; CSA = childhood sexual abuse.
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DISCUSSION

Our results provide evidence that CSA-associated risk for
alcohol-related outcomes is moderated by the H2 haplo-
type. We first confirmed that a history of CSA is associ-
ated with significant risk for alcohol consumption and
lifetime DSM-IV alcohol dependence in our sample; the
H2 haplotype was not associated with risk for either of
these outcomes. We found that, for both alcohol con-
sumption and dependence, a G ¥ E interaction involving
CSA and the H2 haplotype is associated with significant
protective effects. In those with the H2 haplotype, we
observed no significant CSA-associated risk for either
higher alcohol consumption or alcohol dependence.

Our results extend and clarify a prior report (Blomeyer
et al. 2008) in which a significant G ¥ E interaction
involving severe stressors over the prior 3 years and the
minor allele of rs1876831, a CRHR1 SNP, led to protec-
tion against alcohol consumption in adolescents. We
found evidence of a similar interaction and demonstrated
that it involves the ~1.5 Mb H2 haplotype spanning
several genes in this region of chromosome 17.
rs1876831 is one of many informative markers that can
be used to tag this haplotype. Another important feature
that distinguishes our study from the prior report is that
our larger, substantially older sample has already passed
through the period of greatest risk for problematic
alcohol use, enabling an examination of lifetime
measures—peak ACFS and DSM-IV alcohol dependence
diagnosis—that characterize respondents’ mature drink-
ing patterns. Both of these measures have excellent psy-
chometric properties and have been shown to be at least
moderately heritable (Bucholz et al. 1994; Heath et al.

1997; Agrawal et al. 2009; Grant et al. 2009). Our find-
ings demonstrate that the protection against CSA-
associated risk for problematic alcohol use associated
with the H2 haplotype is persistent into adulthood.
Overall, our results suggest that one or more of the five
adjacent genes within the H2 haplotype play a major role
in the risk for alcohol-related outcomes associated with
severe life stressors.

Additional research will be necessary to clarify which
gene or genes are responsible for these protective effects.
Animal studies (Le et al. 2000; Shaham, Erb & Stewart
2000; Funk, Shaham & Lê et al. 2003; Hansson et al.
2006; Heilig & Koob 2007; Pastor et al. 2008; Sommer
et al. 2008) published to date provide evidence that alter-
ations in CRHR1 expression are involved in important
facets of alcohol consumption, dependence and relapse.
Marchigian-Sardinian Preferring (msP) rats, selectively
bred for high alcohol preference, have a CRHR1 promoter
polymorphism that results in increased CRHR1 expres-
sion in limbic regions (Hansson et al. 2006). Alcohol self-
administration by non-dependent msP rats is suppressed
by CRF1 antagonists; similar effects are not seen in unse-
lected Wistar (control) rats. msP rats also display greater
sensitivity to inhibition of foot-shock-induced ethanol
reinstatement by a CRF1 antagonist than do control
rats. (Hansson et al. 2006). Rodents (not limited to those
bred for ethanol preference) experience a prolonged
period of increased anxiety and stress responsivity when
withdrawn from ethanol after having been made depen-
dent, symptoms that can be blocked by administration of
a CRF1 antagonist (Sommer et al. 2008). In these
animals, up-regulation of CRHR1 expression has been
found in the basolateral and medial amygdalar nuclei
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(Sommer et al. 2008) as have elevated corticotropin-
releasing factor (CRF) levels in their central amygdalar
nucleus. In rats previously dependent on ethanol (similar
findings have been reported with heroin and cocaine)
(Shaham et al. 2000), relapse can be induced by foot-
shock stress. For each drug, this reinstatement can be
blocked by intracerebroventricular infusion of CRF1

antagonists (Le et al. 2000; Shaham et al. 2000). Direct
CRF administration into involved brain regions also
induces relapse in these animals (Le et al. 2000) and has
been shown to block the increase in c-fos expression in the
central nucleus of the amygdala that follows foot shock
(Funk et al. 2003).

A recent report (Barr et al. 2009) provides evidence
that findings from the rodent literature are also applicable
to non-human primates. The authors describe a func-
tional CRH promoter polymorphism in rhesus macaques
that is associated with greater stress responsivity and
report interactions between genotype and rearing con-
dition with significantly greater adrenocorticotropic
hormone (ACTH) and cortisol responses to social stress
observed in peer-reared carriers of this polymorphism.
Most importantly, they report a G ¥ E interaction in
which significantly greater alcohol consumption was
found only for carriers of this polymorphism who had
experienced early life stress (peer-rearing). This interac-
tion, involving a CRH promoter polymorphism and a
severe early life stressor associated with greater alcohol
consumption in the absence of a significant main effect, is
strikingly similar to the findings of the current report.

Other studies in rodents have demonstrated that expo-
sure to severe, early life stressors results in epigenetically
mediated alterations in gene expression (Weaver et al.
2004, 2005, 2007; Champagne et al. 2006). Although
admittedly speculative at present, it is possible that the
protective effect that we observed could result from one or
more functional polymorphisms limiting CSA-related epi-
genetically mediated changes. Epigenetic modifications of
gene expression due to ethanol are known to occur
through a variety of different mechanisms (Pandey et al.
2008; Pietrzykowski et al. 2008; Shukla et al. 2008), and
thus might not be susceptible to a similar protective effect
(consistent with the lack of a significant main effect for
H2 haplotype in our sample).

Our failure to confirm the earlier report (Treutlein
et al. 2006) of a significant main effect for rs1876831 on
lifetime prevalence of (any) binge drinking and drunken-
ness in their adolescent sample and on alcohol intake in
clinically ascertained alcoholic adults may have resulted
from a disparity in the two studies’ outcome measures.
The ACFS (Agrawal et al. 2009; Grant et al. 2009) used in
this study is an estimate of consumption that is primarily
based on the period of heaviest lifetime use. The main
effects reported in the adolescent sample (Treutlein et al.

2006) were for two very early drinking career milestones,
any episode of binge drinking or drunkenness. In their
clinical sample, the significant main effect was for con-
sumption of > 250 g of ethanol daily prior to admission,
a binary measure of daily consumption much later in the
course of the disorder that could be affected by various
covariates (e.g. gender, ADH genotype, alcoholic liver
disease). Another study (Dahl et al. 2005) that examined
whether CRHR1 polymorphisms were associated with
alcohol dependence risk in European American alcohol-
ics found no association for any SNPs, including those
informative for the H2 haplotype.

Several additional issues should be considered when
interpreting our results. We substituted CSA for the
measure of multiple severe stressors in adolescence used
in the prior report (Blomeyer et al. 2008). Previous
reports of G ¥ E interactions have included either mul-
tiple classes of stressors (Caspi et al. 2003) or substituted
stressors for which data were available in replication
studies (Kaufman et al. 2004; Gillespie et al. 2005;
Kendler et al. 2005; Surtees et al. 2006). Additional study
will be necessary to delineate whether our findings will
generalize to different types of stressors or those occur-
ring during other developmental periods. CSA is also
associated (Nelson et al. 2002) with risk for subsequent
stressors further complicating definitive attribution.
Although use of binary outcome variables for examina-
tion of G ¥ E interactions may predispose to spurious
positive findings (Eaves 2006), the association we
observed with ACFS, a continuous measure, is less sus-
ceptible to this source of error. Given concerns about
the sensitivity of inferences from G ¥ E interactions to
scaling, we ran an additional analysis using Huber robust
regression, which down-weights outlier observations: the
G ¥ E interaction term remained significant (P = 0.026)
with a modest reduction in effect size (beta = -0.37
versus beta = -0.41 in the linear regression analyses).
The association with alcohol-related phenotypes could be
bidirectional; however, the mean age (11.0 years) of first
CSA occurrence suggests that CSA typically precedes
alcohol problems. The use of a binary variable for CSA
combines diverse abuse experiences encompassing a wide
range of severity; a stronger association might have been
observed if a quantitative covariate incorporating infor-
mation on abuse severity and duration were available.
Retrospective assessment of CSA in adults may raise con-
cerns regarding the introduction of bias. The CSA
measure used in this study has been found to have rea-
sonable concordance within female like-sex twin pairs
and significant association with psychiatric sequelae and
parental risk factors (Dinwiddie et al. 2000; McLaughlin
et al. 2000). Examination of discordant pairs found no
evidence for retrospective bias in the association of CSA
with parental rejection (McLaughlin et al. 2000). The
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prevalence of CSA in our sample is higher than is typical
for community samples, a likely result of enrichment for
heavy smoking. Because of this enrichment, additional
studies will be necessary to determine whether our
results will generalize to samples representative of the
general population. Post hoc analyses of genetically infor-
mative data on ancestry from a partially overlapping
genome-wide association study (GWAS) revealed that
two families (n = 4 individuals in total) are outliers on the
basis of ancestry. The ACFS of these families does not
differ significantly from the remainder of the sample;
dropping these four individuals has very minimal effect
on either interaction term point estimates or P-values.

Our data suggest that the H2 haplotype is protective
against CSA-associated risk for higher lifetime alcohol
consumption and alcohol dependence. The extent of
these protective effects suggests that one or more of the
genes within the H2 haplotype are playing an important
role in stress-associated risk for alcohol consumption and
dependence. Although the evidence (Le et al. 2000;
Hansson et al. 2006; Heilig & Koob 2007; Pastor et al.
2008; Sommer et al. 2008) from animal research is quite
strong, it is premature to conclude that these protective
effects are due to a CRHR1 polymorphism. Additional
research is needed to determine definitively the gene or
genes responsible for these protective effects. Gene expres-
sion studies have provided strong evidence in favor of
MAPT (Caffrey et al. 2006; Caffrey, Joachim & Wade-
Martins 2008) versus CRHR1 (Campdelacreu et al.
2006) involvement in PSP risk, although other research
(Cruchaga et al. 2009) suggests that multiple genes may
be involved. However, since our finding involves a G ¥ E
interaction rather than a main effect, it will be consider-
ably more difficult to conduct this type of investigation. If
the effects that we observe are a consequence of a CRHR1
polymorphism, our results may have immediate clinical
relevance. Researchers have recently developed (Gehlert
et al. 2007) improved CRF1 antagonist drugs that are
already scheduled for pharmaceutical company-
sponsored clinical trials of alcohol dependence treat-
ment. Our findings would predict that H1 homozygotes
with a history of severe early trauma exposure will pref-
erentially respond to these agents. More generally, our
findings emphasize the potential utility of screening for
severe early trauma exposure in individuals presenting
for alcohol dependence treatment.
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