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ABSTRACT

Background and aims Cannabis is one of the most commonly used substances among adolescents and young adults.
Earlier age at cannabis initiation is linked to adverse life outcomes, including multi-substance use and dependence. This
study estimated the heritability of age at first cannabis use and identified associations with genetic variants.Methods A
twin-based heritability analysis using 8055 twins from three cohorts was performed. We then carried out a genome-wide
association meta-analysis of age at first cannabis use in a discovery sample of 24953 individuals from nine European,
North American and Australian cohorts, and a replication sample of 3735 individuals. Results The twin-based herita-
bility for age at first cannabis use was 38% [95% confidence interval (CI) = 19–60%]. Shared and unique environmental
factors explained 39% (95% CI = 20–56%) and 22% (95% CI = 16–29%). The genome-wide association meta-analysis
identified five single nucleotide polymorphisms (SNPs) on chromosome 16 within the calcium-transporting ATPase gene
(ATP2C2) at P< 5E-08. All five SNPs are in high linkage disequilibrium (LD) (r2 > 0.8), with the strongest association at
the intronic variant rs1574587 (P = 4.09E-09). Gene-based tests of association identified the ATP2C2 gene on 16q24.1
(P = 1.33e-06). Although the five SNPs and ATP2C2 did not replicate, ATP2C2 has been associated with cocaine depen-
dence in a previous study. ATP2B2, which is a member of the same calcium signalling pathway, has been associated pre-
viously with opioid dependence. SNP-based heritability for age at first cannabis use was non-significant. Conclusion Age
at cannabis initiation appears to be moderately heritable in western countries, and individual differences in onset can be
explained by separate but correlated genetic liabilities. The significant association between age of initiation and ATP2C2 is
consistent with the role of calcium signalling mechanisms in substance use disorders.
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INTRODUCTION

Cannabis is one of the most commonly used substances
among adolescents and young adults [1]. Annually, ap-
proximately 147million people, or 2.5% of theworld’s pop-
ulation, consume cannabis. In the last decade, cannabis
use disorders have grownmore rapidly than either cocaine
or opiate use disorders, with the most rapid growth seen in
developed countries in North America, western Europe
and Australia [2]. Accompanying these changes, there
has also been a global trend towards decreasing age at first
cannabis use [3,4].

Globally, younger cohorts are more likely to engage in
substance use, including cannabis. In the United States,
the mean age at first cannabis use is 18 years, whereas
the mean age at first cannabis use among individuals
who initiate prior to age 21 is 16 years [1]. European data
suggest that age at first cannabis use is lower in countries
where prevalence of cannabis use is higher [5]. In addition,
the male–female gap observed commonly in older cohorts
is closing in more recent cohorts [6,7]. Overall, these
trends are due probably to lower risk perception [8] and
increased availability due to medicalization and
decriminalization.

Early cannabis initiation is linked to a number of
maladaptive behaviours. These include educational
under-achievement [9,10], possible cognitive decline
[11,12], negative life events [13], differences in brain
maturation in at-risk adolescents [14], conduct disorder
[15], risk-taking behaviours [16], psychosis and other
psychopathology [17–20]. Early age at onset of use is
also linked to more frequent progression to cannabis
misuse and increased likelihood of substance use disor-
ders [21–24].

Despite its widespread use, emerging trends in use and
associations with adverse outcomes, very little is known
about the genetic aetiology of age at first cannabis use. A
meta-analysis of twin studies [25] reported a heritability
(h2) of ~45% for life-time cannabis use (ever versus never).
In contrast, only a limited number of biometric genetic
studies have explored the heritability of age at first cannabis
use. In a population-based sample of life-time users,
Richmond-Rakerd et al. [26] estimated a non-significant
heritability of 19% for age at first cannabis use. Lynskey
et al. [27] reported a much larger heritability (h2 = 80%)
for early-onset use (≤ 16 years), whereas Sartor et al. [28]
reported a heritability of 52% when age at first cannabis
use was categorized as ‘never’, ‘late’ (≥ 17 years) or ‘early’
(≤ 16 years). These discrepancies might be due to differ-
ences in the biometrical genetic methods employed and
the inclusion versus exclusion of never users. To address
these limitations, we estimated heritability of age at first
cannabis use using three different models to determine if
cannabis initiation and age at initiation fall along the same

continuum, represent two independent liabilities or two
distinct but related liabilities [29].

We are aware of only one genome-wide association
study (GWAS) for age at first cannabis use. Minică et al.
[30] performed a genome-wide survival analysis in a sam-
ple comprising 5148 participants. This study found no sin-
gle nucleotide polymorphisms (SNPs) or genes associated
significantly with age at first cannabis use, due possibly to
a lack of statistical power [30]. Because age at first use is
likely to be highly polygenic (subjected to the influence of
many genetic variants with small effects), identifying ge-
netic variants will require much larger samples than
employed previously. The application of survival-based
methods [30] is expected to improve statistical power over
GWASs limited to cannabis users, or logistic regressions
based on samples of users and non-users [31–33].
Therefore, we applied a survival-based approach to nine
cohorts from the International Cannabis Consortium
(ICC [34]) to detect genetic variants associated with age
at first cannabis use.

The ICC was established to identify genetic variants un-
derlying individual differences in cannabis use phenotypes
by combining data from numerous cohorts and studies.
The ICC has previously identified four genes associated sig-
nificantly with life-time cannabis use: NCAM1; CADM2;
SCOC; and KCNT2 [34]. Interestingly, both NCAM1 and
KCNT2 have been linked previously to other substance
use phenotypes [34]. Also of note is our novel finding at
CADM2, which was associated recently with alcohol con-
sumption [35], personality [36], behavioural reproductive
outcomes and risk-taking behaviour [37].

Our aim was to explore the genetic aetiology of age at
first cannabis use. First, we performed a biometrical herita-
bility analysis in 8055 twins from three cohorts. Secondly,
we performed a GWAS meta-analysis of age at first canna-
bis use in a discovery sample of 24953 individuals from
nine cohorts from Europe, Australia and the United
States. The top findingswere tested for replication in a sam-
ple of 3735 individuals from three cohorts. The outline of
the analyses steps is illustrated in Fig. 1.

MATERIALS AND METHODS

Biometrical heritability

The heritability of age at first cannabis use was estimated
based on data from three cohorts: Netherlands Twin Regis-
ter (NTR), comprising 2027 monozygotic (MZ) and 1771
dizygotic (DZ) twin pairs; QIMR Berghofer Medical Re-
search Institute (QIMR), comprising 1282 MZ and 1969
DZ twin pairs; and Brisbane Longitudinal Twin Study
(BLTS), comprising 429 MZ and 577 DZ twin pairs [38].
We applied three models to determine if cannabis initiation
and age at initiation fall along the same continuum (single
liability), represent two independent liabilities
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(independent model) or two distinct but related liabilities
(combined model) [29].

For the best-fitting model, individual differences in lia-
bility to early age at initiation of cannabis use were
disentangled in additive genetic (A), shared environmental
(C) and unshared environmental variation (E) [39] (see
Supporting information, Files S2 and S4 for details).

Study samples

The current discoverymeta-analysiswas based ongenome-
wide summary statistics from nine European, North
American and Australian cohorts comprising n = 24953
individuals. The mean age ranged from 17.3 to 46.9 years
(Table 1). Females represented 53.3% of the sample and
44.4% of the observationswere uncensored, i.e. individuals

who acknowledged having initiated cannabis use
(see Supporting information, Table S1 for more details).

Phenotyping

Age at first cannabis use was assessed from questionnaires
or clinical interviews (see Supporting information, File S1
for information on the exact phrasing of the question).
For individuals who had not initiated cannabis use at the
time of the assessment, age at last survey or interview
was used. Depending on initiation status, individuals were
coded as uncensored (initiated) or censored (did not initiate
at the time of the last measurement). Given the young av-
erage age of the participating cohorts, we included all
available data to maximize sample size, i.e. censored and
uncensored observations without imposing age restriction.

Figure 1 The outline of the analysis steps, and references to the Supporting information relevant to each step. AFC = age at first cannabis use;
DE = density estimation; LDSR = linkage disequilibrium score regression

Table 1 Descriptive information on the participating discovery cohorts.

Cohort n % Females %Uncensored observations Mean age (SD) Mean age at first use (SD) (in users) Number of SNPs

ALSPAC 6147 51.9 38.4 17.3 (1.7) 14.8 (1.6) 6 284 747
BLTS 721 57.1 59.5 26.2 (3.3) 18.8(2.8) 4 093 835
FinnTwin 1029 51.7 27.5 22.8 (1.3) 18.0 (2.5) 4 362 100
HUVH 581 31.3 30.3 28.7 (12.5) 16.0 (3.0) 4 319 651
NTR 5148 62.3 16.6 46.9 (17.5) 18.9 (5.1) 4 773 834
QIMR 6758 53.8 51.3 45.2 (10.9) 19.9 (5.8) 5 953 917
TRAILS 1249 53.8 61.7 20.0 (1.6) 16.3 (2.0) 4 819 504
Utrecht 958 51.3 59 17.4 (3.2) 15.5 (2.1) 4 139 839
Yale-Penn 2362 41.2 92.6 38.2 (10.6) 17.0 (9.4) 5 732 659

n= Sample size, % uncensored observations (i.e. individuals who have initiated cannabis use). Mean age: age when completing survey or interview. Mean age
at first use: mean age at first cannabis use. SD = standard deviation; SNP = single nucleotide polymorphism; ALSPAC = Avon Longitudinal Study of Parents
and Children; BLTS = Brisbane Longitudinal Twin Study; FinnTwin = Finnish Twin Cohort Study; HUVH = Hospital Universitari Vall d’Hebron; NTR = Neth-
erlands Twin Register; QIMR = QIMR Berghofer Medical Research Institute; TRAILS = TRacking Adolescents’ Individual Lives Survey.
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Genotyping

Genotyping followed by extensive quality control (QC) was
performed by each participating cohort (see Supporting in-
formation, Table S2 for details). Generally, QC criteria in-
volved removal of SNPs with minor allele frequency
(MAF) below 1%, call rates < 90% and Hardy–Weinberg
equilibrium (HWE) P-values below 1E-04. SNPs with evi-
dence of poor clustering on visual inspection of intensity
plots were also discarded. At the subject level, additional
QC criteria involved removal of individuals with low overall
call rates, conflicting sex designation or excess autosomal
heterozygosity (indicative of genotyping errors). Duplicate
samples and unintended first- or second-degree relatives
(in samples of unrelated individuals) were removed. In
Supporting information, Table S2 the exact QC thresholds
used by each cohort can be found.

Imputation

All cohorts performed genotype imputation using the
1000 genomes Phase 1, March 2012 release as reference
[40] (see Supporting information, Table S2 for further im-
putation details). We used best-guess genotypes and re-
stricted analyses to autosomal SNPs.

Quality checks prior to meta-analysis

Prior to the meta-analysis, results for each cohort
underwent additional QC pertaining to imputation quality,
minor allele frequency and HWE, and only SNPs with high
imputation quality (> 0.8) were selected. The average im-
putation quality for the included SNPs ranged from 0.95 to
0.99 throughout all nine discovery cohorts. Secondly, we
retained SNPs with MAF greater than √(5/N), where N is
the sample size. This ensured that there were at least five
individuals in the least frequent genotype group. Thirdly,
genotyped SNPs were retained if HWE was not violated
(P-value > 1E-04). We also removed SNPs with invalid al-
leles, or allele frequencies mismatched with the 1000 ge-
nomes phase 1 European reference panel (i.e. if the allele
frequency difference exceeded |0.2|). The discovery
meta-analysis included 6163759 unique bi-allelic SNPs
that passed our QC criteria in at least two cohorts (see
Table 1 for the number of SNPs in each input file meeting
quality control criteria).

Statistical analysis of individual samples

Cohort-specific analyses were performed using a standard-
ized analysis protocol. Each site performed a Cox propor-
tional hazards regression analysis where age at first
cannabis use (or age at the last survey for censored obser-
vations) was regressed on the SNP (coded additively
codominant as 0, 1, 2) and the following covariates: sex,

birth-cohort (to correct for generation effects), the first
four principal components (to correct for possible popula-
tion stratification) and study-specific covariates (to correct
for chip and/or batch effects; see Supporting information,
Table S2 for details). To account for relatedness in family-
based cohorts we used the ‘cluster’ option in the R survival
package [41]. This ensured that standard errors were ro-
bust to possible misspecification of the familial covariance
matrix [42]. The survival package was accessed either
directly in R, or called from Plink [43] via the Rserve
package [44].

Meta-analysis

The discovery meta-analysis was performed in Metal [45],
using a fixed-effects model and the ‘SCHEME STDERR’ op-
tion, which weighs the beta coefficients by the inverse of
their associated standard errors. To ensure that the bulk
of the test statistic distribution follows the expectation un-
der a theoretical null model, we applied genomic control to
each cohort’s input file prior tometa-analysis. This ensured
that none of the input cohorts contributed disproportion-
ately to the meta-analysis results [46]. Similar to the
method applied by Furberg et al. [47] and Allen et al.
[48], we computed the standard error (and the corre-
sponding P-value) by multiplying the variance of the beta
by the lambdaGC (Genomic Control) estimate for each
sample (see Supporting information, Table S2). An alpha
of 5E-08 was used as the genome-wide significance thresh-
old. Statistical analyses were performed on the Lisa Genetic
Cluster computer (http://www.geneticcluster.org).

Gene-based tests of association

Results from the genome-wide meta-analysis were then
used to test for gene-based association. We employed the
Gene-based Association Test using the Extended Simes pro-
cedure (GATES) in the Knowledge-basedmining system for
Genome-wide Genetic studies (KGG) (version 3.5) [49,50].
GATES combines the P-values of the SNPswithin a gene by
taking into account the linkage disequilibrium (LD). The
SNPs were mapped onto (or within 5 kb) 25655 genes
based on NCBI gene coordinates. LD structure was inferred
based on the 1000 genomes haplotypes (version March,
2012). For this analysis, a false discovery rate (FDR) of
0.05 [51] was used as the genome-wide significance
threshold.

SNP-based heritability analysis

The proportion of phenotypic variance explained by the
retained SNPs was estimated using two different methods.
The density estimation (DE) method developed by So et al.
[52] estimates the genome-wide distribution of effect sizes
based on the difference between the observed distribution
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of test statistics in the meta-analysis and the correspond-
ing null distribution (for a detailed overview of the DE
method, see [53]). SNPs present in 25% or more of the
meta-analysis samples were selected and pruned for LD.
We used the r2 = 0.15 pruning level as the primary result
for consistency with other applications of this method. The
second method used LD score regression analysis [54].
Here, the SNP-based heritability estimate was based only
on SNPs present in all cohorts to avoid artefacts resulting
from differing ns per SNP. In both methods, SNP-based her-
itability depends upon the relationship between sample
size, effect size and the corresponding test statistic. Using
a Cox proportional hazards model and applying genomic
control affects that relationship. Therefore, we approxi-
mated the effective sample size (i.e. the sample size with
the intended statistical behaviour for heritability analysis)
of the current GWAS (for details see Supporting
information, File S3).

Replication analyses

Genes reaching significance and the top eight independent
signals in the discovery meta-analysis (present in at least
one of the replication samples)were taken forward for repli-
cation in a sample of 3735 individuals from three cohorts.
In addition, the top SNPs were analysed in the combined
discovery and replication samples. Furthermore, we tested
whether a polygenic risk score [55] based on the meta-
analysis results predicts age at first cannabis use in one of
the replication samples (see Supporting information, File
S5 for details on the replicationanalyses).Wealsoevaluated
the power to detect a significant association in the replica-
tion sample.

RESULTS

Biometrical heritability

The combinedmodel with separate but correlated liabilities
provided the best fit to the data (see Supporting informa-
tion, File S4 for model-fitting details and twin correlations).
In this model, the heritability (A) of age at first cannabis
use was 38% [95% confidence interval (CI) = 19–60%].
Shared (C) and unique (E) environmental factors explained
39% (95% CI = 20–56%) and 22% (95% CI = 16–29%) of
the variance, respectively. A, C and E explained 48% (95%
CI = 30–65%), 37% (95% CI = 21–52%) and 15% (95%
CI = 11–20%), respectively, of the variance in risk of can-
nabis initiation. We found no evidence for qualitative or
quantitative sex differences.

GWAS meta-analysis

The quantile-quantile plot for the fixed effects genome-
wide discovery meta-analysis is shown in Supporting

information, Fig. S1a. Note that the bulk of the test statistic
distribution follows the expectation under a null hypothesis
of no association (lambdaGC = 1). The test statistic behaved
similarly when no genomic control was applied (see
Supporting information, Fig. S1b). These results indicate
that the meta-analysis is robust to slight deviations of the
test statistic distribution from the theoretical null model
observed in some of the cohorts. Supporting information,
Figs S2a–i and S3a–i show cohort-specific lambda-
corrected Manhattan and quantile–quantile plots.

The Manhattan plot in Fig. 2a displays the genome-
wide association results. One region on chromosome 16
passed the significance threshold of P < 5E-08, with other
suggestive signals on chromosomes 6, 10 and 14. Table 2
includes association results and details on the top eight
independent SNPs. The top 100 SNPs in the discovery
sample are shown in Supporting information, Table S3.
Regional association plots and forest plots for the top
SNPs are shown in Supporting information, Figs S4a–l,
and S5a–k.

The genome-wide significant signals come from a set
of six highly correlated SNPs on chromosome 16
(r2 > 0.8) located within the calcium-transporting ATPase
(ATP2C2) gene. The strongest predictor of age at onset of
cannabis use was rs1574587 (yielding the lowest P-value,
P = 4.09E-09). rs1574587 reached statistical significance
regardless of whether or not GC was applied
(P = 1.08e-08). This SNP has a MAF ranging from
0.105 to 0.185 throughout the discovery samples
(commensurate with MAFs reported for European
ancestry populations by Ensemble) and an imputation
quality ≥ 0.89 (see Supporting information, Table S4a
for more details on this SNP).

The I2 statistic for the top SNPwas 32.6% (χ2(7) =10.38,
P = 0.16), indicating no evidence of between-cohort het-
erogeneity in the observed effect. Indeed, the top SNP
showed the same direction of the effect in all but one of
the discovery cohorts (Fig. 2b).

Gene-based tests of association

Figure 3 provides an overview of the gene-based results.
The quantile–quantile plot (Supporting information,
Fig. S6) shows that the bulk of the test statistic distribution
follows the expectation under the null hypothesis and that
several genomic regions are enriched for small P-values.
Coding genic regions, and not non-coding regions, were
enriched for SNPs that yielded strong association signals
in the single variant analysis (Supporting information,
Fig. S6).

As shown in the Manhattan plot in Fig. 3a, the
calcium-transporting ATPase (ATP2C2) gene on chromo-
some 16 reached the FDR threshold of 0.05 in the gene-
based tests of association (nominal P = 1.33E-06,
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corrected P = 0.034). See Supporting information, Table
S5 for the top 100 genes identified in the discovery
meta-analysis and Fig. 3b for the zoom plot of the signif-
icant gene.

ATP2C2 is located at 16q24.1 (Fig. 3b) in the vicinity of
KCNG4 and COTL1. This gene was also identified in the
SNP-based analysis and the top SNP rs1574587 is located
in this gene. According to the Gene Ontology annotations
[56,57] the ATP2C2 gene is involved in calcium-

transporting ATPase activity, calcium ion transmembrane
transport, ATP binding and metal ion binding.

SNP-based heritability analyses

The selected SNPs did not contribute significantly to the
variance in age at first cannabis use according to either
the density estimation method (h2 = 0.056; P = 0.29) or
the LD score regression analysis (h2 = 0.036; P = 0.22).

a

b

Figure 2 The Manhattan plot of the meta-analysis results for the discovery sample (a) In the Manhattan plot, the y-axis shows the strength of as-
sociation [�log10(P)] and the x-axis indicates the chromosomal position. The blue line indicates suggestive significance level (P < 1E-05), while the
red line indicates genome-wide significance level (P< 5E-08); (b) forest plot of the top SNP (rs1574587) on chromosome 16 in eight discovery co-
horts [Colour figure can be viewed at wileyonlinelibrary.com]
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Replication analyses

The power to replicate the top 8 SNPs was low, ranging
from 0.04 to 0.10 (see Supporting information, File S5
Table 2-S5). We refer to Supporting information, File
S5 for results of the replication analyses.

DISCUSSION

To our knowledge, this is the largest biometrical and mo-
lecular genetic study investigating the genetic aetiology of
age at first cannabis use. The biometrical twin analysis of
8055 twin pairs showed that genetic factors explain 38%
of the variance in age at first cannabis use (95%
CI = 19–60). The discovery genome-wide meta-analysis
identified significant associations with five highly corre-
lated SNPs within the calcium-transporting ATPase gene
(ATP2C2) on chromosome 16. The strongest association
was observed for the intronic variant rs1574587. The
gene-based tests provided further evidence linking ATP2C2
to age at first cannabis use. The failure of the smaller inde-
pendent replication sample to replicate the discovery find-
ings was caused probably by insufficient statistical power.

The top associated ATP2C2 gene is expressed in the
brain [58] and is involved in calcium homeostasis [59]
which, in turn, regulates synaptic plasticity, memory and
learning [60]. Several studies showed that variation in
the ATP2C2 gene is associated with language impairment
(e.g. [61]). ATP2C2 has also been linked to cocaine depen-
dence. Gelernter et al. [62] found that the highest ranked
gene networks associated significantly with cocaine depen-
dence include ATP2C2 along with ATPase, Ca2+-
transporting and the plasma membrane gene (ATP2B2).
Noteworthy is that calcium signalling pathways have also
been implicated in opioid dependence [63]. These findings

are consistent with observed associations between
early-onset of cannabis use and experimentation with
other drugs [64] and progression to escalated
use/dependence [27]. It is therefore highly plausible that
some of the same genetic factors increase the probability
of early initiation of substance use and progression to
substance use disorders (see, e.g. [65,66]). Taken together,
the effects of ATP2C2 are likely to be general rather than
substance-specific.

Early age at first cannabis use may be a predictor for
more severe phenotypes, such as substance use disorder,
and externalizing behaviours, such as conduct disorder. In-
deed, we know from previous work that there is high co-
morbidity between conduct disorder and use of cannabis
and other substances (e.g. [67]) and twin studies have
shown that part of the covariation is due to overlapping ge-
netic influences [68–70]. It is therefore plausible that genes
for age at first cannabis use also play a role in the broader
spectrum of externalizing behaviour. Unfortunately,
existing GWASs of conduct and antisocial behaviour have
not been powered sufficiently to identify genes associated
robustly with these behaviours [71,72]. However, using
the combined effect of all SNPs, Tielbeek et al. [72] showed
a significant genetic correlation between antisocial behav-
iour and lifetime cannabis use (rg = 0.69, P = 0.016).

The SNP-based heritability for age at first cannabis use
was non-significant. Moreover, the polygenic risk score
based on a small selection of genotyped SNPs present in
at least seven cohorts provided no evidence of association
with age at first use of cannabis in the replication sample
(n = 2082, P > 0.10). These null findings suggest that
common SNPs explain a relatively small proportion of total
heritability in age at first cannabis use. The difference be-
tween the biometric ‘family-based’ and the ‘SNP-based’
heritability estimates suggests that a large proportion of

Table 2 Top eight independent single nucleotide polymorphisms (SNPs) in the meta-analysis of the discovery samples (present in at least
one replication sample). SNPs are displayed when not in linkage disequilibrium (r2 < 0.1. For SNPs with R2

> = 0.1, only the most
significant SNP is shown in the top eight).

SNP Chr BP (hg19) A1 A2 Freq A1 beta (SE) P Directiona

rs1574587 16 84453 056 T C 0.1415 0.09 (0.016) 4.0 × 10�9 +?+++++� +
rs4935127 10 56654 986 C G 0.7741 �0.06 (0.013) 4.6 × 10�7 --� +� -� +�
rs2249437 6 1 595 216 T C 0.4595 0.07 (0.014) 5.1 × 10�7 ++++? +?++
rs9266245 6 31325 702 A G 0.2655 �0.07 (0.015) 1.6 × 10�6 ----?--?-
rs28622199 8 5 392 103 T C 0.8012 0.07 (0.015) 2.7 × 10�6 +++� +++++
rs215069 16 16091 237 T C 0.0685 �0.11 (0.025) 3.8 × 10�6 -?-?--??-
rs4924506 15 41129 467 A C 0.7318 0.06 (0.013) 5.5 × 10�6 ++++++��+
rs7773177 6 139 143 088 A G 0.7383 �0.06 (0.013) 8.5 × 10�6 ------� +�

Chr = chromosome; BP (hg19)= location in base pairs in human genome version 19, A1 = allele 1, A2 = allele 2, Freq A1 = frequency of allele 1, SE = stan-
dard error, P = P-value. aDirection per sample: allele A1 increases (+) or decreases (�) liability for cannabis use, or sample did not contribute to this SNP be-
cause it did not pass the post-imputation quality control (?). Only SNPs present in at least two samples were included in the meta-analysis. Order of samples in
the discovery: Avon Longitudinal Study of Parents and Children (ALSPAC), Brisbane Longitudinal Twin Study (BLTS), Finnish Twin Cohort Study (FinnTwin),
Hospital Universitari Vall d’Hebron (HUVH), Netherlands Twin Register (NTR), QIMR Berghofer Medical Research Institute (QIMR), TRacking Adolescents’
Individual Lives Survey (TRAILS), Utrecht, Yale Penn EA. Sample information can be found in Table 1.
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genetic variation in age at first use of cannabis cannot be
captured by current GWAS arrays (e.g. rare genetic vari-
ants having a MAF < 0.05) at current sample sizes. Addi-
tional sources of discrepancy may be attributable to
interactions between genetic loci and environmental fac-
tors [73]. Detecting interaction effects also requires larger
sample sizes and measures of environmental exposures
harmonized across cohorts.

Strengths and limitations

Strengths

To our knowledge, this is the largest genome-wide study of
age at first cannabis. This meta-analytical sample identified

ATP2C2 as a risk gene, which is commensurate with the
hypothetical role of calcium signalling mechanisms in sub-
stance use. We are unaware of any similarly sized meta-
analysis that has fitted a survival-based method to identify
genetic loci associated with addiction phenotypes. This ap-
proach allowed us to exploit all available information in the
participating cohorts, while accounting for the censored
nature of observations. Using information from both cen-
sored (i.e. individuals who reported not to have initiated
cannabis use at the last interview) and uncensored obser-
vations for parameter estimation reduces the likelihood of
misclassification (i.e. misclassification due to young partic-
ipants becoming users at later ages), thereby increasing
statistical power.

a

b

Figure 3 Results of the gene-based tests: (a) Manhattan plot for the gene-based tests; and (b) regional plot around the significantly associated gene
[Colour figure can be viewed at wileyonlinelibrary.com]
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Limitations

Our results should be interpreted in the context of five po-
tential limitations. First, the replication sample was much
smaller than the discovery sample. The size of the replica-
tion sample was somewhat modest in the context of stan-
dard GWAS of highly polygenic traits [74], making it
difficult to distinguish false negatives from null effects. Rep-
lication sample sizes varied across the loci. The top
genome-wide significant SNP rs1574587 met our quality
control criteria in only one of the replication samples com-
prising 593 individuals. We conjecture that the lack of rep-
lication was due most probably to lack of statistical power.
Secondly, we imposed stringent selection criteria on the
SNPs comprising the polygenic scores by selecting only var-
iants present in at least seven discovery samples and geno-
typed in the NTR2/Research into Antipsychotic
Discontinuation and Reduction (RADAR) replication sam-
ple (i.e. we removed imputed SNPs). Although this was per-
formed to maximize the prediction accuracy of the
polygenic scores, it is possible that SNPs in imperfect link-
age disequilibrium with the causal variants were retained,
as SNPs GWASs do not tag all causal variants perfectly, in
particular those with low frequency and rare variants
(see [75]). Rare genetic variants have been shown to ex-
plain part of the variation in addiction phenotypes [76].
However, sequencing of much larger samples is required
to locate rare variants reliably. For example, we would need
to include 80000 individuals in the discovery sample to de-
tect rare SNPs (MAF = 0.001) with a hazard ratio of 2 and
an alpha threshold of 5E-08. Thirdly, because our sample
comprised retrospective and longitudinal cohorts, longer
intervals between initiation and assessment may result in
recall bias. However, when stratified by design, differences
inmean age of initiation between retrospective (16.9 years)
and longitudinal (17.1 years) studies were minor. Also, the
mean age at initiation and the degree of censoring varied
between cohorts, due probably to differences in sampling,
assessment, drug policy, legality and availability. To the ex-
tent to which these discrepancies were driven by age-
related differences, the survival analyses were adjusted for
the effects of birth cohort if variation in date of assessment
spanned 20 or more years. Moreover, despite these differ-
ences, the top SNPs generally had an effect in the same di-
rection throughout the samples and there was no evidence
of significant between-cohort heterogeneity in the esti-
mated effects (Fig. 2b, Supporting information, Fig. S5 and
Table S3 for I2 heterogeneity statistic). Furthermore, the
forest plots indicate that the 95% confidence intervals sur-
rounding the effect for each cohort mostly overlap and con-
tain the meta-analytic effect. Fourthly, the sample was
limited to individuals of European ancestry. Whether or
not our conclusions generalize to populations of other eth-
nicities remains subject to further investigation. Fifthly, we

did not collect information on cannabis use opportunities.
Recent findings suggest that drug use opportunity should
be taken into account when investigating genetic influ-
ences on drug use as high genetic risk for drug use may
not lead to initiation of use when there is a lack of opportu-
nity to do so.

CONCLUSION

To date, this study is the largest GWASmeta-analysis of age
at first cannabis use. Our SNP-based findings support the
involvement of theATP2C2 gene. The gene-based tests also
identified the ATP2C2 gene as a significant predictor of age
at onset. Our findings are commensurate with the role of
calcium signalling mechanisms in substance use disorders.
The failure to replicate is probably attributable to lack of
statistical power. Further investigation of these signals in
larger samples is warranted, and may yield valuable
insights into the genetic aetiology of substance use
initiation.
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