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Abstract. Iron deposition in the brain is a prominent feature of Alzheimer’s disease (AD). Recently, peripheral iron measures
have also been shown to be associated with AD status. However, it is not known whether these associations are causal: do
elevated or depleted iron levels throughout life have an effect on AD risk? We evaluate the effects of peripheral iron on AD risk
using a genetic profile score approach by testing whether variants affecting iron, transferrin, or ferritin levels selected from
GWAS meta-analysis of approximately 24,000 individuals are also associated with AD risk in an independent case-control
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cohort (n∼10,000). Conversely, we test whether AD risk variants from a GWAS meta-analysis of approximately 54,000
account for any variance in iron measures (n∼9,000). We do not identify a genetic relationship, suggesting that peripheral
iron is not causal in the initiation of AD pathology.

Keywords: Alzheimer’s disease, apolipoproteins E, dementia, ferritin, genetic profile scores, genome-wide association study,
iron, population genetics, transferrin

INTRODUCTION

Iron is the most abundant metal in the brain, where
it is vital for neurotransmitter synthesis, myelination
of neurons, and energy generation by mitochondria
[1]. However excess iron contributes to the genera-
tion of reactive oxygen species, and consequent tissue
damage [2]. Dysfunctional brain iron homeostasis is
believed to play an important role in Alzheimer’s
disease (AD) [3]. Iron accumulation is seen in the
AD postmortem brain [4] and iron content corre-
lates with disease duration and Mini-Mental State
Examination (MMSE) score [5, 6]. Individuals with
mild cognitive impairment (MCI) with high risk of
AD, showed higher cortical iron in vivo using MRI
(measured using quantitative susceptibility mapping
techniques), which spatially co-localized with A�
plaques and correlated with higher plaque load [7].
In addition, transferrin (an iron transport protein)
and ferritin (an intracellular iron storage protein) are
both elevated in AD brain tissue in neurodegenera-
tive regions [8]. Ferritin levels in cerebrospinal fluid
(CSF) negatively correlated with cognitive perfor-
mance and predicted conversion from MCI to AD
[9]. Ferritin levels were also associated with CSF
apolipoprotein E levels and were elevated by the AD
risk allele, APOE ε4, suggesting that ferritin may
reflect the mechanism by which APOE ε4 is a risk
factor for AD.

Iron trafficking across the blood-brain barrier is
tightly regulated and early studies suggested that
the brain is protected from systemic fluctuations in
iron, with a lack of correlation between liver and
brain iron concentrations postmortem [10, 11]. Ani-
mal studies went on to challenge this view, showing
that excess dietary iron increased brain iron levels in
specific brain regions [12]. Quantitative MRI studies
measuring the proton transverse relaxation rate (R2)
now allow iron concentrations to be assessed in the
brain in vivo. One such study in cognitively normal
elderly men found that iron levels in basal ganglia
structures were correlated with serum iron mea-
sures [13]. In an investigation in the large Australian
Imaging Biomarker and Lifestyle (AIBL) cohort of

healthy controls, MCI and AD patients had disturbed
brain iron metabolism reflected in the periphery by a
decrease in plasma iron and hemoglobin [14], which
was due to a deficiency of iron-loading onto trans-
ferrin [15]. Several mechanisms have been suggested
to cause dysregulation of iron transport across the
blood-brain barrier in AD including the involve-
ment of amyloid-� protein precursor fragments and
chronic inflammation [11]. A deficit in brain iron
trafficking, which is essential for heme formation,
neurotransmitter synthesis, and myelination of axons,
could contribute to the pathophysiology of AD. But
results are inconsistent, with two meta-analyses hav-
ing differing conclusions on whether differences
in circulating iron levels can be detected between
AD cases and controls, and reporting heterogeneity
between studies [16, 17].

It is clear that iron dysregulation has a role in AD,
and that to a limited extent plasma iron might reflect
changes in brain iron levels, but there has been little
investigation of whether peripheral iron levels over
the long-term affect risk of AD. Apart from the lack of
suitable and adequately powered prospective studies,
a limitation of observational studies is the inability
to distinguish between causal associations and those
due to confounding and reverse causation. A sys-
tematic review found that, in a limited number of
trials, testing whether depletion or supplementation
of iron changed a person’s risk of AD provided no
conclusive evidence, and that additional studies are
necessary [18].

Drug development and randomized clinical trials
are expensive and take many years to reach fruition,
especially for a slowly progressive disease where
treatment needs to start early in the disease course. An
alternative approach, which overcomes the problem
of reverse causation, is Mendelian Randomization
(MR). Here the genetic variants affecting the puta-
tive causal variable are used as instrumental variables
to test for an effect on disease risk. A demonstra-
tion that genetic polymorphisms known to modify
the phenotype level also modify disease risk provides
indirect evidence of a causal association between phe-
notype and disease. MR analysis has the following
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assumptions: firstly, the genetic variant used is only
associated with the risk factor of interest; secondly,
it is independent of all confounding variables; and,
finally, there is no causal pathway leading from the
genetic variant to the disease except through the risk
factor of interest. For highly polygenic traits, a large
number of genetic polymorphisms can be combined
to explain a larger proportion of the variance of the
trait. The large numbers of variants included means
that some are likely to violate the assumptions for
a MR analysis. But a lack of association between
appropriate SNPs and the outcome, given a dataset
large enough to give reasonable power suggests that
there is no causal relationship. A shared genetic basis
indicates either, pleiotropy where a variant affects
multiple traits independently, or a causal relationship
between the two correlated traits; with the require-
ment that any potential confounders must be taken
into account. If a shared genetic basis is found, then
a quantitative MR approach would then be required
to compare direct and mediated paths between vari-
ants affecting the postulated causal variables and the
outcome. This method has been widely used, both
confirming and refuting suggested causal relation-
ships based on epidemiological findings [19]. For
example, this approach has had significant success
in clarifying relationships between lipid levels and
ischemic heart disease [20]. In addition, a recent study
compared 42 traits or diseases with available large
genome-wide association studies (GWAS) where,
among other findings, the authors found evidence
that an increased body mass index causally increases
triglyceride levels [21].

MR was recently used to test for an effect
of serum iron on Parkinson’s disease (PD) risk,
using three genetic variants influencing iron levels
(HFE rs1800562, HFE rs1799945, and TMPRSS6
rs855791) [22]. The combined MR estimate showed
a statistically significant protective effect of increased
serum iron in PD, suggesting that over the course
of a life time, alteration in tissue iron homeostasis
reflected by a decrease in serum iron levels is on the
causalpathway in thepathogenesisofPD.Twelve iron
associated SNPs identified though GWAS were also
used to investigate the role of iron in atherosclerosis,
and identified a potential causal role in women [23].

Single genetic variants that influence serum iron
levels have not been shown to have a large effect on
AD risk. The transferrin genetic variant C2 has been
investigated and shown to have a small but signifi-
cant association (OR = 1.11, 95% CI 1.05 to 1.17, in a
meta-analysis of 19 studies [24]). Several studies pre-

viously reported an increased frequency of the HFE
H63D (rs1799945) mutation in AD patients [25], but
these findings have not been replicated in the largest
AD GWAS meta-analysis [26]. There is evidence of
interaction effects, which would not be apparent in
GWAS meta-analyses, involving H63D and APOE
ε4 alleles where the combination appears to affect
age of onset and, to a lesser extent, risk [27–29].

Since several genes are well characterized for their
impact on peripheral iron variation, we sought to
determine their combined causal effect on AD risk.
We test the effect of a large number of genetic variants
affecting the iron-related measures of serum iron con-
centration, transferrin (the major iron transporter),
ferritin (which reflects iron storage in bone mar-
row), and transferrin saturation (ratio between serum
iron and total iron binding capacity) on AD risk,
in combination using a genetic profile score (GPS)
approach. Variants are selected from an iron GWAS
meta-analysis discovery cohort [30] (n = 23,986) and
tested in large independent target AD case-control
datasets (n = 9,251). In addition, we test for the con-
verse scenario, whether those at a high genetic risk
for AD have higher peripheral iron levels through-
out life, using SNPs identified by the AD GWAS
meta-analysis discovery cohort [26] (from the Inter-
national Genomics of Alzheimer’s Project, IGAP
n = 54,162) in an independent population-based tar-
get sample with available iron measures (n = 8,893).
Previously an AD polygenic score analysis has shown
that disease prediction accuracy is greatest including
SNPs with p value <0.5. Including the full polygenic
score significantly improved prediction over use of
APOE alone where including both APOE and PRS
gave AUC = 78.2% [31]. Examples of the AD PRS
based on the IGAP discovery analysis demonstrating
genetic overlap with other traits include neuroimag-
ing measures of subcortical brain volumes, plasma
C-reactive protein, and lipids [32, 33]. Finally, to
confirm our findings using an alternative method, we
used SNP effect concordance analysis (SECA) with
only the discovery datasets, to examine whether SNPs
found to be associated with the serum iron measures
are enriched within associated SNPs with AD risk,
and vice versa.

MATERIAL AND METHODS

Subjects

The AD case-control cohort comprises the datasets
shown in Table 1. All individuals were of European
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Table 1
Alzheimer’s disease case-control cohort data sets. The AD cohorts which contributed data to the assessment of the effect of iron genetic
profile scores to risk of AD. The APOE ε4 frequency is shown for the individuals where APOE genotype data was available, with the sample

size in brackets. AD, Alzheimer’s disease; CN, controls

Cohorts N AD cases N Controls Mean Age (range, SD) % Female APOE ε4 Frequency

Genetic and Environmental Risk for
Alzheimer’s disease (GERAD1) [43]

2,361 942 79.0 64.6 AD = 0.33 (n = 2,183)
(60–108, 7.7) CN = 0.13 (n = 906)

Innovative Medicines in Europe
(AddNeuroMed) [44]

223 280 77.5 59.8 AD = 0.33 (n = 217)
(60–98, 6.9) CN = 0.15 (n = 143)

Kings Health Partners- Dementia Case
Register (KPH-DCR) [45]

64 85 79.5 59.7 AD = 0.38 (n = 52)
(61–93, 6.8) CN = 0.14 (n = 65)

Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [46]

165 205 76.3 44.9 AD = 0.42 (n = 165)
(60–91, 6.0) CN = 0.14 (n = 204)

Wellcome Trust Case Control Consortium
1958 British Birth Cohort (WTCCC2) [47]

0 4,926 54 49.7 CN = 0.16 (n = 4,862)
(all 54)

descent and all AD case-control cohort individu-
als were age ≥60 years. Controls were screened
for dementia using either MMSE or ADAS-cog and
were determined to be free from characteristic AD
plaques at neuropathological examination or had a
Braak score ≤2.5. Individuals with AD met criteria
for either probable (NINCDS-ADRDA, DSM-IV) or
definite (CERAD) AD. Individuals classed as MCI
were excluded. The WTCCC2 1958 BC samples are
population samples aged 54 years at collection and
are included as unscreened controls in this analysis.

The population-based sample set comprises (a)
adult twins, their spouses, and first degree rela-
tives who volunteered for studies on risk factors
or biomarkers for physical or psychiatric con-
ditions (n = 8,380); (b) people with self-reported
endometriosis and unaffected relatives (n = 830) [34,
35]. The mean age is 47 years (ranged 15–92
years) with 62% female. Biochemical markers of
iron status were measured using standard clini-
cal methods on Roche/Hitachi 917 or Modular P
analyzers [30]. Serum iron was measured by col-
orimetry with Ferrozine reagent, serum transferrin
by immunoturbidimetry, and ferritin by latex parti-
cle immunoturbidimetry. Transferrin saturation was
calculated from the iron and transferrin results. The
values for ferritin were log transformed to produce a
normal distribution.

Genetic profile scores

GPS for serum iron, transferrin, transferrin sat-
uration, and ferritin (log) were calculated in target
AD case-control cohorts, using stage 1 summary data
from the discovery sample of a GWAS meta-analysis
combining 11 population-based studies of biochem-

ical markers of iron status, with a sample size of
23,986 [30] using the method previously described
([36] and Supplementary Methods). In brief, link-
age disequilibrium-based clumping was used to select
SNPs in the discovery data, providing the most sig-
nificantly associated SNP available in the target data
set. The total score is calculated by the number of
risk alleles weighted by the standardized per-allele
effects for p value thresholds of 1 × 10–6, 1 × 10–4,
1 × 10–3, 0.01, 0.05, 0.1, 0.5, and 1 (all SNPs)
(Supplementary Table 1).

The AD GPS was generated in the target
population-based cohort using summary data from
the AD GWAS meta-analysis from the IGAP discov-
ery sample consisting of 17,008 AD cases and 37,154
controls [26]. GPS were calculated as described
above, with the number of risk alleles weighted by
the effect on AD risk (log odds ratio). All APOE
associated signal was removed and APOE genotype
assessed separately.

APOE genotype

In the AD cohorts, a subset of samples have
available APOE genotypes (Table 1) inferred from
rs429358 and rs7412 SNPs genotyped using Taq-
Man SNP genotyping assays. In the Australian
dataset, APOE genotype was estimated from imputed
rs429358 and rs7412 SNP genotypes (Supplementary
Methods).

GPS association analysis

In the AD cohort data sets, we tested for an
association between iron, transferrin, transferrin sat-
uration, and ferritin GPS at each p value threshold
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with AD case-control status using logistic regression
(performed in STATA v11) controlling for age, sex,
and four ancestry principal components. Results for
each dataset were combined in a meta-analysis allow-
ing a test for between study heterogeneity (STATA
METAN specifying a random effects model). Finally,
all datasets were combined in a mega analysis also
controlling for study. In addition, we separately
assessed the effect of the three iron level influenc-
ing variants that have previously been shown to
associate with PD risk [22]. We tested for an associa-
tion with the following SNPs: HFE rs1800562, HFE
rs1799945, and TMPRSS6 rs855791 using logistic
regression under an additive model and then com-
bined the three variants in a GPS. To investigate any
potential interaction effect of APOE ε4 genotype, we
also repeated these analyses controlling for APOE ε4
carrier status and also in APOE ε4 positive and APOE
ε4 negative groups.

In the population-based dataset, we tested for an
association of AD GPS and number of APOE ε4 alle-
les with peripheral iron measures (iron, transferrin,
transferrin saturation, and ferritin) using Genome-
wide Efficient Mixed Model Association algorithm
(GEMMA) software [37]. The sample contains
related individuals including monozygotic and dizy-
gotic twin pairs, and other first degree relatives. We
used linear mixed model regression using the likeli-
hood ratio test, including sex, age, and four ancestry
principal components as covariates and controlling
for family structure using a genetic relatedness matrix
estimated from genome-wide genotypes.

SNP effect concordance analysis

We carried out SECA analysis of large scale GWAS
meta-analysis summary statistics to examine the
genetic overlap between AD and each iron measure
using the default approach [38]. SECA allows a larger
sample size to be examined without the need for indi-
vidual level genotype data. The GWAS meta-analysis
results for AD (meta-analysis n = 74,046) [26] and
iron measures (iron, transferrin, transferrin satura-
tion, and ferritin; meta-analysis n = 23,986) [30] were
used to test for an excess of SNPs associated in the AD
and iron phenotype data sets, and whether the SNP
effect directions are concordant. SNP effects across
the two GWAS summary results were aligned (AD
and iron) to the same effect allele and independent
SNPs were extracted via LD clumping identifying a
subset of independent SNPs with the most significant
p-values in the AD dataset. Restricting to SNPs asso-

ciated with p1 ≤ 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, and 1.0 in the AD dataset, exact binomial
statistical tests determine whether there is an excess
of SNPs associated in both datasets for the subset of
SNPs associated with p2 ≤ 0.01, 0.05, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 in the iron dataset.
Fisher’s exact test is then used to determine whether
there is an excess of SNPs where the effect directions
are concordant across the datasets for each p value
subset.

Due to the larger sample size the AD GWAS sum-
mary statistics were initially used as dataset 1, and
each of the iron measures as dataset 2, providing
the greatest possible power. Because the analysis
is restricted to those SNPs which are most highly
associated in dataset 1, we also repeated the analysis
with the iron GWAS summary statistics as dataset 1
(in case of a scenario where SNPs strongly affect-
ing iron phenotypes had an effect on AD risk, but
SNPs strongly affecting AD risk did not affect iron
phenotypes).

RESULTS

GPS analysis

The discovery GWAS meta-analysis datasets used
in the study contain large sample sizes (in total 54,162
for AD and 23,986 for serum iron status) and show
both AD and serum iron measures to have a strong
polygenic components [27, 31]. For serum iron mea-
sures using replication cohorts, the lead SNPs at the
11 significant loci explained 3.4, 7.2, 6.7, and 0.9%
of the phenotypic variance for iron, transferrin, sat-
uration, and (log-transformed) ferritin, respectively
[30]. There is large deviation from the expected dis-
tribution of association test statistics compared to
observed values, with association signals observed far
below the level of genome-wide significance (Fig. 1).
Therefore, using SNPs below genome-wide signifi-
cance will increase power to detect an association.

Association analysis conducted in each AD dis-
ease case-control data set identified no effect of any
serum iron status GPS (serum iron, transferrin, fer-
ritin, and transferrin saturation) on AD risk, and the
meta-analysis identified no significant between study
heterogeneity (Supplementary Figure 1). When com-
bined in a mega analysis no effect of any serum
iron status GPS (serum iron, transferrin, ferritin,
and transferrin saturation) on AD risk was identi-
fied with a sample size of 6,381 controls and 2,870
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Fig. 1. Q-Q plots of the association p-values from the discovery GWAS meta-analyses. Including the GWAS meta-analysis of biochemical
markers of iron status [30] and the International Genomics of Alzheimer’s Project [26]. SNPs in the APOE region (within 500 kb either side
of APOE locus) are excluded from the AD plot. The red line is the line of equivalence, observed = expected.

AD cases (Table 3). Controlling for APOE genotype
did not significantly affect the results, and no signif-
icant association was identified in separate APOE ε4
carrier and non-carrier groups (data not shown). Pre-
viously three iron level influencing genetic variants
(HFE rs1800562, HFE rs1799945, and TMPRSS6
rs855791) have been shown to be associated with PD
risk [22]. There was no association of these SNPs with
AD status in our dataset and no interaction identified
with APOE ε4 status (Supplementary Table 2). In
addition, the GPS constructed from these three SNPs
did not have an effect on AD risk (Supplementary
Table 2).

Table 2
Serum iron measures in the Australian data set

Serum measure N Mean Range SD

Iron (�mol/L) 8,751 19.54 0.10–50.50 6.74
Transferrin Saturation (%) 8,800 28.71 0.12–95.3 10.80
Transferrin (g/L) 8,891 2.82 1.40–5.19 0.44
Ferritin (log10) (�g/L) 8,892 2.00 0.00–3.26 0.50

There was no association of AD GPS or APOE ε4
with any peripheral iron measure (Table 4).

SNP effect concordance analysis

In agreement with the GPS analysis, we did not
identify any significant pleiotropy between datasets
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Table 3
The association of serum iron measure genetic profile score
(GPS) at different p value thresholds with AD risk. The associ-
ation analysis was carried out using logistic regression controlling
for sex, age, four ancestry principal components, and study. �,

standardized Beta

GPS Association with AD risk (n = 9,251)

� SE p

Iron p ≤ 1 0.04 0.03 0.278
p ≤ 0.5 0.03 0.03 0.365
p ≤ 0.1 0.01 0.03 0.868
p ≤ 0.05 0.02 0.03 0.638
p ≤ 0.01 –0.01 0.03 0.695
p ≤ 0.001 –0.01 0.03 0.839
p ≤ 0.0001 0.02 0.03 0.624
p ≤ 0.000001 0.02 0.33 0.632

Transferrin p ≤ 1 0.03 0.03 0.291
Saturation p ≤ 0.5 0.03 0.03 0.330

p ≤ 0.1 0.03 0.03 0.381
p ≤ 0.05 0.02 0.03 0.584
p ≤ 0.01 0.02 0.03 0.510
p ≤ 0.001 0.02 0.03 0.590
p ≤ 0.0001 0.02 0.03 0.628
p ≤ 0.000001 0.03 0.03 0.408

Transferrin p ≤ 1 0.00 0.03 0.933
p ≤ 0.5 0.00 0.03 0.950
p ≤ 0.1 0.02 0.03 0.589
p ≤ 0.05 0.01 0.03 0.797
p ≤ 0.01 –0.02 0.03 0.517
p ≤ 0.001 –0.03 0.03 0.299
p ≤ 0.0001 –0.03 0.03 0.404
p ≤ 0.000001 –0.02 0.03 0.467

Ferritin p ≤ 1 0.02 0.03 0.577
p ≤ 0.5 0.03 0.04 0.465
p ≤ 0.1 0.03 0.04 0.465
p ≤ 0.05 0.05 0.04 0.196
p ≤ 0.01 0.03 0.03 0.347
p ≤ 0.001 0.03 0.03 0.355
p ≤ 0.0001 0.03 0.03 0.377
p ≤ 0.000001 0.04 0.03 0.170

or concordant effects using SECA. We tested for
an excess of SNPs associated with AD also associ-
ating with iron phenotypes. Using a binomial test,
we compared the AD dataset with each of the iron
phenotype datasets in turn examining 144 SNP sub-
sets (testing twelve p value threshold combinations).
No SNP sets were found to have nominally signifi-
cant pleiotropy (Fig. 2). Using Fisher’s test, we also
tested for an excess of SNPs where the effect direc-
tions (BETA) are concordant between SNP subsets in
each dataset. Again, we identified no significant con-
cordance (Supplementary Figure 2). Additionally, no
significant pleiotropy or concordant effects were seen
when switching the primary dataset, i.e., testing for an
excess of SNPs associated with each iron phenotype
also associating with AD.

Table 4
The association of AD GPS at different p value thresholds (exclud-
ing APOE) and number of APOE ε4 alleles with iron phenotypes.
The association analysis was carried out using linear mixed models
implemented in GEMMA (genome-wide efficient mixed-model
association) [37] using the likelihood ratio test. Family rela-
tionships were controlled for using a genetic relatedness matrix
estimated from genotypes. Sex, age, and four ancestry principal
components were also included as covariates. �, standardized Beta

Serum Iron AD GPS N � SE p
Measure

Iron p ≤ 1 8,751 0.02 0.01 0.153
p ≤ 0.5 8,751 0.02 0.01 0.148
p ≤ 0.1 8,751 0.01 0.01 0.349
p ≤ 0.05 8,751 0.01 0.01 0.594
p ≤ 0.01 8,751 0.00 0.01 0.747
p ≤ 0.001 8,751 0.01 0.01 0.405
p ≤ 0.0001 8,751 0.01 0.01 0.615
p ≤ 0.000001 8,751 0.02 0.01 0.119
APOE ε4 8,494 0.00 0.01 0.843

Transferrin p ≤ 1 8,800 371.45 224.20 0.097
Saturation p ≤ 0.5 8,800 201.12 136.43 0.140

p ≤ 0.1 8,800 46.40 54.11 0.391
p ≤ 0.05 8,800 13.37 38.99 0.732
p ≤ 0.01 8,800 2.82 18.46 0.878
p ≤ 0.001 8,800 0.76 6.58 0.908
p ≤ 0.0001 8,800 0.25 2.15 0.908
p ≤ 0.000001 8,800 3.19 1.27 0.012
APOE ε4 8,531 0.02 0.02 0.477

Transferrin p ≤ 1 8,891 –218.75 225.19 0.331
p ≤ 0.5 8,891 –78.29 137.03 0.568
p ≤ 0.1 8,891 9.86 54.36 0.856
p ≤ 0.05 8,891 23.12 39.16 0.555
p ≤ 0.01 8,891 5.87 18.52 0.751
p ≤ 0.001 8,891 16.29 6.58 0.013
p ≤ 0.0001 8,891 4.97 2.15 0.021
p ≤ 0.000001 8,891 –1.77 1.28 0.166
APOE ε4 8,619 –0.02 0.02 0.466

Ferritin p ≤ 1 8,892 156.22 192.51 0.417
p ≤ 0.5 8,892 81.98 117.14 0.484
p ≤ 0.1 8,892 35.61 46.42 0.442
p ≤ 0.05 8,892 7.49 33.47 0.822
p ≤ 0.01 8,892 11.05 15.85 0.485
p ≤ 0.001 8,892 2.53 5.64 0.654
p ≤ 0.0001 8,892 –0.64 1.84 0.728
p ≤ 0.000001 8,892 0.85 1.09 0.435
APOE ε4 8,621 0.01 0.02 0.486

DISCUSSION

It is becoming increasingly clear from investiga-
tions of iron homeostasis and recent advances in
iron imaging methods that iron dysregulation is an
important feature of AD, and therefore lowering of
iron content in the brain is a potential therapeutic tar-
get [39]. But there is limited understanding of the
importance of peripheral iron levels in AD risk, and
whether prolonged increased or decreased iron levels
may be a risk factor for AD. We investigated whether
there is a shared genetic basis between AD and
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Fig. 2. Genetic overlap between dataset 1 (AD) and dataset 2 (Serum iron). In the SECA analysis, exact binomial statistical tests are performed
to determine whether there is an excess of SNPs associated in both datasets for 144 SNP subsets from 12 × 12 p-value threshold combinations.
A binomial test ‘heatmap’ plot is generated to graphically summarize the proportion of SNP subsets with an excess [observed(obs)≥expected
(exp)] or deficit (obs<exp) number of associated SNPs, and empirical p-values (adjusted for testing all 144 subsets) are calculated via
permutation.

peripheral iron levels using a PRS approach. We iden-
tified no effect of genetic variants affecting peripheral
iron biomarkers (including iron, transferrin, transfer-
rin saturation, and ferritin) on AD risk. Nor did we
find increased serum iron levels in those who are at
increased genetic risk of developing AD, including
both APOE ε4 carriers and those with a higher load of
other common risk variants. In addition, in an inves-
tigation of the genetic overlap between AD and each
iron measure, we do not find any significant overlap
of genetic loci from the results of large-scale GWAS
meta-analysis studies.

Taken together, our results suggest that the causes
of variation in brain iron that might contribute to AD
are distinct from those causing variations in circulat-
ing iron (serum iron) or in iron stores in bone marrow
or other organs (serum ferritin). Iron retention is
complex in different organs, and our current data on
peripheral iron measurement cannot exclude causa-
tion by other genes that affect iron levels in the brain
that are not reflected by serum values. In addition,
the peripheral iron measurements used are stan-
dard clinical pathology measures. Non-standard and

possibly more direct measures (such as transferrin
saturation using size exclusion chromatography-
inductively coupled plasma-mass spectrometry) have
been shown to be more sensitive to differences in the
blood between AD patients and controls [15].

It is also possible that, even if iron is not a primary
cause of increase in AD risk, it accumulates after the
initiation of cell damage by other mechanisms, and
exacerbates it. Evidence for this comes from recent
work showing that once A� forms aggregates they
induce iron accumulation [40]. Iron-related therapies
could still be relevant for patients who are in the early
stages of AD.

Iron accumulation in tissues is a feature of many
diseases, and may prove to be causal for some.
Our current results for AD are in contrast to pre-
vious evidence of a causal association of increased
peripheral iron measures with a decreased risk of PD
[22]. The authors hypothesized that low peripheral
iron may decrease neuronal iron storage though a
reduction in ferritin, resulting in free iron accumu-
lation in the brain. To investigate whether a similar
effect exists for AD, we tested a larger number
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of iron-affecting variants against the most recent
GWAS meta-analysis on AD risk. These explain a
larger proportion of the variance and therefore we
would expect them to have more power to detect any
effect.

However, our analysis has limitations that need to
be considered. Firstly, the multi-SNP GPS includes
a large number of genetic variants of unknown effect
or multiple effects; therefore we cannot rule out that
as well as affecting iron levels, some also affect AD
risk though other pathways and could potentially do
so in opposite directions. To attempt to address this
issue, we also tested for an effect of three genetic
variants (in HFE and TMPRSS6) known to have a
direct role in peripheral iron levels and previously
shown to have an effect on PD risk [22], where we
also did not find an effect. In addition, we cannot rule
out the possibility that other genomic variations, such
as epigenetic dysregulation, affect iron levels which
are then causal for AD.

Secondly, as in other complex diseases and phe-
notypes, discovered genetic variants only represent
a small proportion of the variance in both iron lev-
els and AD risk. This study utilizes summary data
from the two largest GWAS meta-analysis discov-
ery cohorts for both AD and biochemical markers
of iron status (total sample sizes of 54,162 and
23,986, respectively [26, 30]) to compute compre-
hensive GPS. In addition, the GPS were applied to
large samples with individual level genotype and phe-
notype data (For AD cases-control: 2,813 AD cases,
and 6,438 controls (of which 4,926 are unscreened
for AD, aged 54), and ≥8,751 for iron measures).
Even so, we cannot rule out a small effect that is not
detectable with this sample size.

Thirdly, effects on iron in relevant brain areas
may differ from effects on circulating iron or iron
in other organs. Previous studies identified an associ-
ation between iron accumulation in the basal ganglia
of elderly men and peripheral iron measures [13].
However, only 9% of the variance of CSF ferritin
can be explained by plasma ferritin [9], highlight-
ing the separation between these compartments. It is
also possible that there are genetic loci more relevant
to iron-homeostasis in elderly people, as the sample
used to construct the iron phenotypes GPS have a
mean age of 47.

Our results suggest that there is not a causal con-
nection between lifetime peripheral iron measures
and increased risk of AD. We did not replicate the
previous finding of an effect of HFE SNPs on risk of
AD and an epistatic interaction for risk with APOE ε4

genotype, but we cannot yet rule out an association
of HFE SNPs with AD age of onset or phenotypic
interactions [25, 27, 28].

It has been suggested that public recommendations
for AD risk reduction should caution the use of iron
supplementation for those whom it is not required
[18, 41, 42]. Dietary patterns such as a Mediterranean
diet and reduced red meat consumption that asso-
ciate with lower AD risk do tend to have a low iron
intake, but also have other unrelated health benefits
for example high intake of vegetables and low satu-
rated fat. Consistent with our genetic findings, there
is no clear evidence that dietary intervention affecting
iron intake alters the risk of AD [18]. More work is
needed to assess the effect of iron on the progression
(as opposed to the initiation) and age of onset of AD.

In conclusion, although iron deposition is an
important feature of AD brain tissues, these results
suggest that there is not a significant causal relation-
ship between lifetime peripheral iron levels and AD.
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http://www.fnih.org
http://www.wtccc.org.uk


96 M.K. Lupton et al. / Effect of Circulating Iron Levels on AD Risk

Lille University Hospital. GERAD was supported by
the Medical Research Council (Grant n◦ 503480),
Alzheimer’s Research UK (Grant n◦ 503176),
the Wellcome Trust (Grant n◦ 082604/2/07/Z)
and German Federal Ministry of Education and
Research (BMBF): Competence Network Dementia
(CND) grant n◦ 01GI0102, 01GI0711, 01GI0420.
CHARGE was partly supported by the NIH/NIA
grant R01 AG033193 and the NIA AG081220 and
AGES contract N01–AG–12100, the NHLBI grant
R01 HL105756, the Icelandic Heart Association,
and the Erasmus Medical Centre and Erasmus
University. ADGC was supported by the NIH/NIA
grants: U01 AG032984, U24 AG021886, U01
AG016976, and the Alzheimer’s Association grant
ADGC–10–196728.

We acknowledge the Genetics of Iron Status Con-
sortium as the source of the iron meta-analysis SNP
association data. The following individuals are part of
the Iron Status Consortium and therefore contributed
to the design and implementation of the iron meta-
analysis study but did not participate in analysis or
writing of this paper (unless named as authors).

Genetics of Iron Status Consortium: Beben
Benyamin1,2, Tonu Esko3,4, Janina S. Ried5,
Aparna Radhakrishnan6, Sita H. Vermeulen7,8,
Michela Traglia9,10, Martin Gog̈ele11, Denise
Anderson12, Linda Broer13,14, Clara Podmore15,
Jianán Luan15, Zoltan Kutalik16,17, Serena Sanna18,
Peter van der Meer19, Toshiko Tanaka20, Fudi
Wang21, Harm-Jan Westra22, Lude Franke22, Evelin
Mihailov3,23, Lili Milani3, Jonas Hal̈ldin3, Juliane
Winkelmann24,25,26,27, Thomas Meitinger26,28,
Joachim Thiery29,30, Annette Peters31,32, Melanie
Waldenberger31,32, Augusto Rendon6,33,34, Jen-
nifer Jolley6,33, Jennifer Sambrook6,33, Lambertus
A. Kiemeney7,35, Fred C. Sweep36, Cinzia F.
Sala37, Christine Schwienbacher11, Irene Pichler11,
Jennie Hui38,39, Ayse Demirkan13,40, Aaron
Isaacs13,41, Najaf Amin13, Maristella Steri18,
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