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Several common genetic variants have recently been discovered that appear to influence white matter microstructure, as measured by

diffusion tensor imaging (DTI). Each genetic variant explains only a small proportion of the variance in brain microstructure, so we set out

to explore their combined effect on the white matter integrity of the corpus callosum. We measured six common candidate single-

nucleotide polymorphisms (SNPs) in the COMT, NTRK1, BDNF, ErbB4, CLU, and HFE genes, and investigated their individual and

aggregate effects on white matter structure in 395 healthy adult twins and siblings (age: 20–30 years). All subjects were scanned with

4-tesla 94-direction high angular resolution diffusion imaging. When combined using mixed-effects linear regression, a joint model based

on five of the candidate SNPs (COMT, NTRK1, ErbB4, CLU, and HFE) explained B6% of the variance in the average fractional anisotropy

(FA) of the corpus callosum. This predictive model had detectable effects on FA at 82% of the corpus callosum voxels, including the genu,

body, and splenium. Predicting the brain’s fiber microstructure from genotypes may ultimately help in early risk assessment, and

eventually, in personalized treatment for neuropsychiatric disorders in which brain integrity and connectivity are affected.
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INTRODUCTION

Diffusion tensor imaging (DTI) is widely acknowledged as a
useful tool for studying the white matter microstructure of
the living brain. By mapping the diffusion of water through
the brain’s fibers, DTI can recover major fiber pathways in
the brain, and patterns of anatomical connectivity, with
broad applications in psychiatry, neurology, and brain
mapping (Thomason and Thompson, 2011). DTI-based
white matter abnormalities are widely reported in develop-
mental and degenerative brain diseases including Alzhei-
mer’s disease and mild cognitive impairment (Fellgiebel
et al, 2004; Naggara et al, 2006; Oishi et al, 2011), schizo-
phrenia (White et al, 2008; Ellison-Wright and Bullmore,
2009; Patel et al, 2011), bipolar disorder (Sussmann et al,
2009; Heng et al, 2010), attention-deficit/hyperactivity
disorder (Konrad and Eickhoff, 2010), and autism (Alexander
et al, 2007; Ke et al, 2009). These studies show the utility of

DTI in neuropsychiatric research. In several studies, treat-
ment of neuropsychiatric patients has also been associated
with changes in DTI measures (Versace et al, 2008; Yoo
et al, 2007). This also shows the promise of DTI for
understanding therapeutic effects.

Measures of white matter integrity derived from DTI,
such as fractional anisotropy (FA), are highly heritable
(Lee et al, 2008; Chiang et al, 2009; Kochunov et al, 2010;
Lee et al, 2010; Patel et al, 2010; Chiang et al, 2011b). As
such, they may be useful as intermediate measures or
‘endophenotypes’ (Meyer-Lindenberg and Weinberger,
2006; de Geus et al, 2008; Hall and Smoller, 2010; Marenco
and Radulescu, 2010) for assessing genetic influences
on the brain. Several commonly carried genetic variants
have already been identified that exert small effects on
the brain’s white matter as detected by DTI. These include
highly prevalent polymorphisms in genes coding for
brain-derived neurotrophic factor (BDNF; Chiang et al,
2011a), clusterin (CLU; Braskie et al, 2011), the neuregulin
1 receptor (ErbB4; Konrad et al, 2009), neurotrophic
tyrosine kinase receptor-type 1 (NTRK1; Braskie et al,
2012), catechol-O-methyl transferase (COMT; Thomason
et al, 2010), and the hemochromatosis (HFE) gene
(Jahanshad et al, 2012a). We therefore considered these
genes as candidates in this study.
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The molecular and cellular effects of these genes and their
protein products have been extensively investigated. COMT
is a well-studied gene and codes for one of the group of
enzymes that degrade catecholamines. Catecholamine levels
are altered in many neuropsychiatric disorders, thereby
making this molecule an ideal target for medications.
Several of the genes above are also well known for their role
in brain development. BDNF’s protein product is a neural
growth factor or neurotrophin, vital for the healthy develop-
ment and maintenance of the nervous system (Binder and
Scharfman, 2004). Similarly, NTRK1 codes for TrkA, which
belongs to a tyrosine kinase receptor family, to which
neurotrophin growth factors bind. Neurotrophins and their
receptors, not surprisingly, are also important in neuro-
psychiatric disease and may offer new therapeutic targets in
the form of small-molecule antagonists or mimickers (Allen
and Dawbarn, 2006). ErbB4 encodes another tyrosine kinase
receptor, which by binding to its ligand, neuregulin-1
(coded by NRG1), participates in neural modulation and
development and is thought to contribute to the pathophy-
siology of schizophrenia (Hahn et al, 2006). Lastly, HFE and
CLU contain polymorphisms that increase the risk for
neurodegenerative disease. Their protein products regulate
iron metabolismFimportant in brain aging (Bartzokis
et al, 2011)Fand beta-amyloid metabolism (DeMattos
et al, 2002), respectively.

White matter structure is certainly influenced by non-
genetic factors such as age (Chiang et al, 2011b), and sex
differences (which are partly genetic and nongenetic), but
we expect a moderate and significant proportion of an
individual’s white matter integrity to be predictable from
their genetic profiles. This is corroborated by DTI findings
of high heritability for white matter microstructure. As
mentioned above, individual effects of single genetic var-
iants on white matter structure have been explored, but a
multilocus approach has not yet been taken. The utility of a
multilocus candidate gene model in predicting an imaging-
derived outcome was recently explored in the context of
structural MRI (Biffi et al, 2010) and functional MRI
(Nikolova et al, 2011), but its applications in DTI and
detailed three-dimensional maps of brain structure appear
novel. In this paper, we incorporate a subject’s genetic sig-
nature, at key loci, into a multilocus model. We hypothesize
that this would help predict brain integrity, as measured
by DTI-derived FA, more powerfully than a single-locus
genetic test. We focus on the corpus callosum, as it is the
largest white matter structure in the brain, easy to examine
at the brain’s midline, highly heritable (Chiang et al, 2009;
Brouwer et al, 2010; Kochunov et al, 2010), and well studied
in neurology and psychiatry as the primary commissure
connecting the two brain hemispheres (Foong et al, 2000;
Alexander et al, 2007). We chose FA as the DTI measure of
white matter structure, as it has been shown to have higher
heritability than other DTI parameters, such as radial and
axial diffusivity (Kochunov et al, 2010).

MATERIALS AND METHODS

Participants

A total of 395 subjects (23.7±2.2 years of age; 143 men and
252 women; 47 siblings, 141 monozygotic twins (49 pairs

and 43 singletons), and 207 dizygotic twins (1 triplet, 70
pairs, and 64 singletons) from the Brisbane young adult
twins and siblings study (de Zubicaray et al, 2008) were
included in our study, for whom both 105-gradient DTI
scans and genome-wide genotype information were available.
All twins in this study are Australians of European descent.
Previously, principal component analysis was conducted in
this cohort for population stratification analysis and cor-
rection (Medland et al, 2009). Subjects who were 46 SD
from either of the top two average reference principal
component scoresFderived from non-Australian European
populationsFwere identified as ancestry outliers and
excluded from analysis. The first two principal components
refer to differences between Africans and non-Africans and
to differences between East Asians and others, respectively.
Owing to migration patterns and the fact that this sample
was originally recruited to study mole patterns, exclusions
are usually because of Asian or Polynesian ancestry. All
subjects were screened to exclude cases of pathology known
to affect brain structure. Additionally, no subjects had a
first-degree relative with a psychiatric disorder or reported
a history of significant head injury, a neurological or
psychiatric illness, substance abuse or dependence.

Diffusion Tensor Imaging

Whole-brain diffusion tensor MRI scans were collected with
a 4-tesla Bruker Medspec MRI scanner. Images were acquired
using single-shot echo planar imaging with a twice-refocused
spin echo sequence to reduce eddy current-induced dis-
tortions. Acquisition parameters were optimized to yield the
best signal-to-noise ratio for estimation of diffusion tensors
(Jones et al, 1999). Imaging parameters were: 23 cm field-
of-view, TR/TE 6090/91.7 ms, with a 128� 128 acquisition
matrix. 105 images were acquired for each subject: 11 with
no diffusion sensitization and 94 diffusion-weighted images
with gradient directions evenly distributed on the hemi-
sphere. Standard protocols for skull-stripping and eddy
current distortion correction were performed using FSL
(http://www.fmrib.ox.ac.uk/fsl) and we adjusted for echo
planar imaging distortions as detailed in prior studies
(Leow et al, 2005; Jahanshad et al, 2010). FSL was also
used to calculate tensors and scalar maps of FA from the
corrected images. The LONI pipeline (http://pipeline.
loni.ucla.edu) was used to parallelize the preprocessing steps.

A mean deformation template (MDT) was created for the
DTI scans, to which subjects’ FA maps (obtained from DWI
elastically aligned to their high resolution T1-weighted
anatomical scan) were registered as in Jahanshad et al
(2010), using a 3D elastic warping technique with a mutual
information cost function (Leow et al, 2005). The MDT and
the registered FA maps were then thresholded at 0.25, as FA
measures below this threshold may reflect contributions
from non-white matter in healthy-appearing white matter.
After registering the FA maps across subjects, all FA images
were smoothed with a Gaussian filter with a 7-mm isotropic
full-width at half-max (FWHM). The structure of the corpus
callosum was identified automatically by using the Johns
Hopkins University (JHU) white matter atlas (ICBM DTI 81;
Mori et al, 2008), which tracks its 3D extent, extending
laterally from the midline (Figure 1). The atlas FA image was
linearly and then elastically registered to our study-specific
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FA-MDT; the transformation matrix and deformation map
were then applied to the JHU set of labels using nearest-
neighbor interpolation to avoid intermixing of labels. The
full label (composed of three regions: splenium, body, and
genu) of the corpus callosum was then accurately extracted.
This avoided subjectivity and rater dependency in defining
the limits of the corpus callosum.

Genotyping and Selection of Candidate
Single-Nucleotide Polymorphisms (SNPs)

We considered six candidate SNPs listed in Table 1 owing to
the recent imaging genetics discoveries outlined in the
introduction. These particular genetic variants are located
in six different genes. All have been linked to structural
differences detectable with DTI. Several of these poly-
morphisms (ie, rs6265 in BDNF, rs6336 in NTRK1, rs4680 in
COMT, and rs1799945 in HFE) are exonic variants and lead
to amino-acid changes in the protein products of these
genes (val-met, his-tyr, val-met, and his-asp, respec-
tively). These have been well studied in the neuropsychiatric
literature (Egan et al, 2003; Zecca et al, 2004; Tunbridge
et al, 2006; van Schijndel et al, 2011). The remaining
candidate SNPs do not cause missense mutations, but have
been discovered in genome-wide association and genetic
risk studies of neuropsychiatric disease (Lambert et al,
2009; Silberberg et al, 2006; Konrad et al, 2009). To obtain
genotype information, genomic DNA samples were ana-
lyzed on the Human610-Quad BeadChip (Illumina, San
Diego, California, USA) according to the manufacturer’s
protocols (Infinium HD Assay; Super Protocol Guide; Rev. A,
May 2008). Additionally, imputation was performed by mapp-
ing the genotyped information to HapMap (Release 22 Build
36) using the Mach software (http://www.sph.umich.edu/csg/
abecasis/MACH/index.html). All candidate SNPs passed a
platform-specific quality control score (40.7) and genotype
call rate (40.95).

Statistical Analysis

Linear mixed-effects models were used to study the joint
and individual associations of genotypes with imaging mea-
sures, to take into account the relatedness between the
subjects. For n subjects and p independent predictors (SNPs
or other covariates), regression coefficients (b) were obtained,
using the efficient mixed-model association (EMMA) software
with restricted maximum likelihood estimation (Kang et al,

2008), according to the formula:

y ¼ Xbþ Zbþ e

Here, y represents an n-component vector of voxelwise or
mean FA measures, X is a matrix of SNP genotypes (coded
additively as 0, 1, or 2 for the number of minor alleles) and/
or covariates (eg, sex and age), Z is the identity matrix, and b
is a vector of random effects with a variance of sg

2K, where K
is the n by n kinship matrix for the twins and siblings (here,
monozygotic twins are coded as 1, dizygotic twins and siblings
as 0.5, and unrelated subjects as 0, corresponding to the
expected proportion of their shared genetic polymorphisms,
respectively). e is a matrix of residual effects with a variance of
se

2I, and I is an identity matrix. P-values for the significance of
individual and joint SNP associations with FA were assessed
using an F-test, according to the formula,

F ¼ ðRSScovariates � RSSfullÞ=ðpfull � pcovariatesÞ
RSSfull=ðn� pfullÞ

where RSS represents the residual sum-of-squares, a reduced
model includes only covariates, and a full model contains both

Figure 1 The three-dimensional structure of the corpus callosum, as defined by the JHU white matter atlas, is displayed in axial, coronal, and sagittal views
in blue, overlaid on the study template.

Table 1 Associations of Single SNPs with Mean Callosal FA

SNP Gene Chromosome MAF
HWE

(p-value) B (p-value)

rs6336 NTRK1 1 0.04 0.062 �0.015 (0.0066)

rs11136000 CLU 8 0.45 0.072 0.0051 (0.037)

rs839523 ErbB4 2 0.30 0.42 0.0053 (0.036)

rs4680 COMT 22 0.48 0.50 0.0039 (0.11)

rs1799945 HFE 6 0.16 0.10 0.0032 (0.29)

rs6265 BDNF 11 0.21 0.085 0.00031 (0.91)

Abbreviations: FA, fractional anisotropy; HWE, Hardy–Weinberg equilibrium;
MAF, minor allele frequencies; SNP, single-nucleotide polymorphism.
Candidate SNPs are listed with corresponding gene names and chromosome
numbers. MAFs were estimated from unrelated subjects in our data set, for each
genetic variant; the resulting MAF estimates were, in all cases, comparable to
corresponding MAF estimates reported in the literature. P-values arising from tests
of deviation from HWE are also reported for each SNP, none of which were
significant. Linear regression coefficients, b, are also shown (with directions of effect
corresponding to the number of minor alleles). P-values report the significance of
association of each SNP with the average FA across the corpus callosum (CC). The
top three genes have SNPs that are each predictive of CC integrity on their own
(nominally significant p-values are shown in bold).
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SNPs and covariates. For all statistical analyses, the LONI
pipeline (http://pipeline.loni.ucla.edu/) was used for paralleli-
zation on a multi-CPU grid computer. The standard false
discovery rate (FDR) method (Benjamini and Hochberg, 1995)
was used for multiple comparison correction across voxels in
the corpus callosum.

RESULTS

We assessed six candidate SNPs that have recently been
implicated, to varying degrees, in affecting the brain, at the
gross anatomical or microstructural level. We first used
linear mixed-effects models to regress each subject’s geno-
type at each candidate SNP against average FA measures
across the corpus callosum (all callosal voxels with an FA
above 0.25), to study their individual effects on white matter
integrity. The regression b- and p-values for each SNP on
its own, treated as an independent predictor, are shown
in Table 1.

We then assessed the joint effect of our set of candidate
SNPs on the corpus callosum, using a partial F-test and
linear mixed-effects model to compute p-values. When
regressed against average FA across the corpus callosum,
a 5-SNP model with NTRK1, CLU, COMT, ErbB4, and HFE
containing top SNPs explained 5.6% of the variance in FA
(p¼ 0.0001; model included sex and age; a model including
only sex and age explained 0.42% of the variance).
Prediction of mean callosal FA was improved by adding
candidate SNPs in a stepwise fashion (Table 2). Addition of
the BDNF SNP, however, did not improve the model. To
ensure multicollinearity was not present among the geno-
types, we assessed the correlation structure between the
candidate SNPs, and none was correlated with any of the
others (Supplementary Table S1).

We also investigated the combined influence of the can-
didate SNPs on more detailed, spatial maps of the corpus
callosum. In a stepwise fashion, in order of the SNPs’ individual
effects (strongest to weakest, as shown in Table 1), we studied
multilocus effects on voxel-by-voxel maps of callosal white
matter structure that are shown in Table 2. The 5-SNP

model showed the most widespread, statistically significant
influence on the corpus callosum, where 82% of voxels
(encompassing the callosal body, genu, and splenium)
survived the FDR correction for multiple comparisons
across all callosal voxels, at a critical p-value threshold
of 0.041 (Figure 2); we note that in FDR, a higher critical
p-value denotes a stronger effect, as it is the highest thres-
hold that controls the FDR; as such this effect is widespread
and strong. Both the number of statistically significant

Table 2 Multilocus Effects on Average Callosal FA and 3-Dimensional Maps of the Corpus Callosum

No. of top SNPs Mean callosal FA 3D maps of the corpus callosum

R2 Critical FDR p Voxels below critical p (%) Voxels with po0.05 (%) Minimum p

1 0.031 3.49� 10�2 4303 (70) 4709 (77) 1.49� 10�5

2 0.039 4.02� 10�2 4946 (80) 5147 (84) 8.54� 10�7

3 0.046 3.96� 10�2 4874 (79) 5080 (83) 1.23� 10�6

4 0.052 4.06� 10�2 5003 (81) 5164 (84) 1.54� 10�6

5 0.056 4.08� 10�2 5024 (82) 5184 (84) 1.25� 10�6

6 0.056 3.66� 10�2 4501 (73) 4830 (79) 4.25� 10�6

Abbreviations: FA, fractional anisotropy; FDR, false discovery rate; SNP, single-nucleotide polymorphism.
Groups of candidate SNPs are considered in joint association with mean callosal FA and voxelwise FA measures in the corpus callosum, in a stepwise fashion, adding
SNPs in order of their individual effects (strongest to weakest). For mean FA, the fractions of variability explained by the top SNPs are shown, using the multiple
regression R2. For voxelwise results, we show the critical p-value thresholds after correcting for multiple comparisons with the FDR method, the number of voxels
passing FDR at the critical thresholds (also as a percentage of all callosal voxels), the number of voxels with joint effect p-values less than p¼ 0.05 (also as a percentage
of all callosal voxels) and the minimum joint effect p-values across the corpus callosum. Values are displayed for each progressively expanding set of SNP predictors.
For all associations, we adjusted for sex and age at each voxel; we accounted for kinship structure via mixed-effects models.

Figure 2 Voxelwise R2 and p-values are shown in three representative
sagittal slices for the joint effect of five SNPs in the NTRK1, CLU, COMT,
ErbB4, and HFE genes on the corpus callosum microstructure, measured by
DTI fractional anisotropy (FA). (a) The coefficient of determination (R2) or
predictability of the 5-SNP model at each voxel is shown in the selected
slices. Warmer colors represent higher fractions of variance in FA explained
by the multi-SNP model. (b) P-values are shown for the 5-SNP model at
each voxel; maps are corrected for multiple comparisons across voxels by
applying a critical p-value threshold to control the FDR. Warmer colors
represent more significant associations (greater effect sizes). For associa-
tions at each voxel, we adjusted for any effects of sex and age, and
accounted for kinship structure via mixed-effects models.
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voxels and the critical p-value threshold were strongest for
the 5-SNP model. Figure 2 also shows the voxelwise
distribution of the fraction of variance explained by the 5-
SNP model in the corpus callosum.

In addition to the additive, linear model, we included two-
way SNP–SNP interactions in the mean callosal FA mixed-
effect model. No significant interactions were found
(Supplementary Table S2). We also explored prediction of
voxel-by-voxel FA from the five SNPs using two popular
machine-learning models (support vector regression and
artificial neural networks; see Supplementary Methods),
within a cross-validation framework, which similar to the
mixed-effect model, led to statistically significant predic-
tions across the corpus callosum (Supplementary Figure S1).
At each voxel, mean-squared errors of predictions of FA
were obtained from the candidate genotypes. The artificial
neural network and support vector regression models’
predictive errors were then compared with those of null
predictors (ie, where FA is randomly assigned to subjects)
through permutations. The artificial neural network and
support vector regression learning models were found to
be statistically significant across 75% and 40% of the
corpus callosum voxels, after correcting for multiple com-
parisons, with critical p-value thresholds of 0.037 and 0.019,
respectively.

DISCUSSION

In this work, we aimed to predict neuroanatomical white
matter micro-structure based on multiple genetic risk factors,
while covarying for sex and age. Five of the six candidate
polymorphisms that we considered in the studyFCLU
(Braskie et al, 2011), ErbB4 (Konrad et al, 2009), NTRK1
(Braskie et al, 2012), COMT (Thomason et al, 2010), and
HFE (Jahanshad et al, 2012a)Fexplained close to 6% of the
variability in mean callosal FA, using a linear mixed-effect
model. This is a considerable fraction of the variance
explained by only a few SNPs, taking into account the
complexity of the structure and the non-genetic factors that
influence it. It is also comparable to previous findings in
the literature for multilocus models of a brain-imaging
phenotype. Biffi et al (2010) found that 3% of the variance
in MRI-derived volumes of several brain regions could be
explained from a number of candidate genes for Alzhei-
mer’s disease. Nikolova et al (2011) showed 11% of the
variance in ventral striatal reactivity could be explained
from their panel of five polymorphisms. We also found that
our candidate polymorphisms displayed extensive, signifi-
cant effects on 82% of the volume of the corpus callosum,
when cumulatively modeled at a voxelwise FA basis, which
captures more spatial detail than an average measure of FA
across the corpus callosum. We also confirmed significant
predictions across the corpus callosum from the five SNPs
using multilocus machine-learning models. These yielded
similar predictions, but were less spatially widespread, as
only a subset of subjects were considered who were
unrelated to each other.

We focused on DTI-derived FA of the corpus callosum as
our imaging measure in this study. The corpus callosum is
the largest white matter structure in the brain, containing
over 300 million axons (Hofer and Frahm, 2006). This fiber

bundle transfers motor, sensory, and cognitive information
between the two cerebral hemispheres (Huang et al, 2005).
With the advent of DTI, it has become increasingly clear
that the structure of the corpus callosum is impaired in
several brain disorders. In a recent meta-analysis, for
instance, Patel et al (2011) concluded that the splenium of
the corpus callosum has significantly lower FA in patients
with schizophrenia vs controls. Recent DTI studies have
also identified callosal abnormalities in patients with other
brain disorders such as bipolar disorder (Benedetti et al,
2011), post-traumatic stress disorder (Jackowski et al,
2008), and autism (Alexander et al, 2007). It would therefore
be beneficial, clinically, to know an individual’s persona-
lized genetic risk for a corpus callosum structural abnorm-
ality. In addition, the microstructure of the corpus callosum
has been shown to be highly heritable in studies including
those with the same Australian twins as in this paper.
Chiang et al (2009) mapped out genetic contributions
to white matter structure in the Australian twins and
discovered significant voxelwise effects in the callosal genu
and splenium. In that paper, a classical twin design was
used to estimate the overall genetic contribution to the
observed variance, but effects of specific SNPs were not
assessed or modeled. Similarly, Kochunov et al (2010)
found mean FA values from the corpus, body, and genu of
the corpus callosum were highly heritable (all with h240.5)
in members of the San Antonio Family Study. Similar results
have also been reported in studies of young children (Brouwer
et al, 2010) and in older individuals (eg, Pfefferbaum et al,
2001). Recently, it was also shown in the same Australian
population as ours that the heritability of callosal FA, parti-
cularly in the genu, is high regardless of imaging protocol
differences (Jahanshad et al, 2012b). Here, we show that
predictions of microstructural measures may be made based
on a few common polymorphisms. We focused on the corpus
callosum here, but our results may also have implications for
other white matter tracts in the brain. The millions of axons in
the corpus callosum connect numerous regions of the brain
with each other. Genetic variants that affect this brain struc-
ture may also have roles in other white matter regions.

We selected six candidate SNPs for our study based on
their reported individual effects on white matter structure
on DTI and their importance in neuropsychiatric disease.
The val158met missense mutation resulting from the
candidate SNP in COMT causes reduced degradation and
thus increased availability of dopamine, thereby leading to
alterations in reward experience, executive function, and
working memory, with implications on risk for neuropsy-
chiatric disease and differential response to therapy (Tun-
bridge et al, 2006; Wichers et al, 2008). BDNF’s val66met
polymorphism, which affects the neurotrophin’s secretion
and its function in long-term potentiation, has been investi-
gated in many studies and shown to alter memory perfor-
mance at a young age, among other associations with
neuropsychiatric disease (Egan et al, 2003; Hariri et al,
2003). Similarly, although not as fully characterized, the
candidate SNP in the neurotrophin receptor gene, NTRK1,
leads to a his598tyr amino-acid change in the kinase
domain of TrkA, and has been significantly associated
with risk for schizophrenia (van Schijndel et al, 2009;
van Schijndel et al, 2011). In our study, this SNP had
the strongest effect of all candidates on white matter
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micro-structure. We also found subjects with greater numbers
of minor alleles of the NTRK1 polymorphism had lower FA,
which is consistent with data suggesting that the minor
allele is over-represented in schizophrenia patients (van
Schijndel et al, 2011). Another receptor gene we considered
was the neuregulin receptor, ErbB4, with an intronic variant
associated with schizophrenia risk in several studies (Konrad
et al, 2009; Nicodemus et al, 2006, Silberberg et al, 2006).
Another intronic variant, rs11136000, in CLU has been dis-
covered and replicated in genome-wide association studies
of Alzheimer’s disease (Lambert et al, 2009). Similarly, the
his63asp mutation in iron-related HFE gene has been linked
to Alzheimer’s disease, along with other neurodegenerative
disorders (Connor and Lee, 2006). We found all variants
except for the one in BDNF contributed additively to pre-
diction of average callosal FA as well as three-dimensional
maps of voxelwise FA across the corpus callosum.

Personalized prediction of individuals’ disease-related
measures is being advocated by some as a vital component
of future diagnosis and treatment of brain disorders
(Koslow et al, 2010). Some of the genetic variation may
account for some of the broad heterogeneity in patients’
disease status (Cummings, 2000; Folstein and Rosen-
Sheidley, 2001) and the extent to which they respond to
therapy (Gordon, 2007). Multilocus models are particularly
appealing for personalized prediction of disease. Several
groups have explored multilocus models of candidate risk
variants in the context of brain disorders. Carayol et al
(2010), for instance, reported on the cumulative effect of
four candidate SNPs on the risk for autism, using a case–
control approach. These models are beginning to be applied
to brain imaging in the context of neuropsychiatric disorders
(Biffi et al, 2010; Hibar et al, 2011a; Nikolova et al, 2011),
and may provide more biologically meaningful predictions
with implications for personalized diagnosis and therapy.

Future studies are needed to replicate our findings in
independent cohorts of subjects, even though we found
significant predictions using cross-validation in the support
vector regression and artificial neural network analyses. In
addition, as new candidate gene studies and genome-wide
searches using DTI measures (eg, Kochunov et al, 2011)
identify effects of new variants, candidate genes may be
added or removed from this panel, to better predict white
matter integrity. We did not find evidence for two-way
interactions between the SNPs in our study, which is
probably reasonable, as the SNPs are likely contributing
independently and additively to white matter integrity, and
interactions are second-order effects (modulations of the
main effect of a gene) that may require large samples to
identify, if present at all. Such interactions, however, may be
identified in follow-up studies particularly with SNPs that
directly share the same pathway, like NTRK2 and BDNF
(Perroud et al, 2009), NRG1 and ErbB4 (Nicodemus et al,
2010), or COMT and 5-HTTLPR (Borroni et al, 2006). In this
paper, we took a voxelwise approach to study genetic
associations with FA. In addition to voxelwise maps of FA,
tract- and fiber-based measures from diffusion imaging may
also be considered as predictive outputs. Such measures,
along with multivariate methods that simultaneously con-
sider not only multiple genes, but also multiple voxels
(Vounou et al, 2010; Hibar et al, 2011b; Wan et al, 2011)
may help provide more statistical power. For instance, our

voxelwise, multilocus model improved only slightly beyond
the 2-SNP model with polymorphisms in NTRK1 and CLU.
This may be because of the strong effects of NTRK1 and
CLU SNPs on their own, but it may also be because multiple
variants do not necessarily affect the same exact voxels. This
may make it difficult to obtain substantially more expansive
voxelwise effects by adding more variants to the model.
Here, we considered genetic polymorphisms as predictors,
and these explained a small but significant proportion of the
heritable variation in white matter structure across young,
healthy individuals. Although it remains to be determined,
it is plausible that a measure of white matter integrity, such
as DTI-derived FA, relates to a person’s lifetime risk for
developing mental and neurodegenerative disorders, espe-
cially for disorders in which FA is abnormally low.
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