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We implemented least absolute shrinkage and selection operator (LASSO) regression to
evaluate gene effects in genome-wide association studies (GWAS) of brain images, using
an MRI-derived temporal lobe volume measure from 729 subjects scanned as part of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Sparse groups of SNPs in individual
genes were selected by LASSO, which identifies efficient sets of variants influencing the
data. These SNPs were considered jointly when assessing their association with neu-
roimaging measures. We discovered 22 genes that passed genome-wide significance for
influencing temporal lobe volume. This was a substantially greater number of significant
genes compared to those found with standard, univariate GWAS. These top genes are
all expressed in the brain and include genes previously related to brain function or neu-
ropsychiatric disorders such as MACROD2, SORCS2, GRIN2B, MAGI2, NPAS3, CLSTN2,
GABRG3, NRXN3, PRKAG2, GAS7, RBFOX1, ADARB2, CHD4, and CDH13. The top genes
we identified with this method also displayed significant and widespread post hoc effects
on voxelwise, tensor-based morphometry (TBM) maps of the temporal lobes. The most
significantly associated gene was an autism susceptibility gene known as MACROD2. We
were able to successfully replicate the effect of the MACROD2 gene in an independent
cohort of 564 young, Australian healthy adult twins and siblings scanned with MRI (mean
age: 23.8±2.2 SD years). Our approach powerfully complements univariate techniques in
detecting influences of genes on the living brain.
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INTRODUCTION
Genome-wide association studies (GWAS) offer a powerful
approach to discover genes that affect individual risk for devel-
oping neurological and psychiatric disorders. Several high-
density GWAS studies of Alzheimer’s disease (AD), in par-
ticular (e.g., Grupe et al., 2006), have identified genes that
consistently affect AD risk across multiple populations and
ethnic groups, with varying degrees of aggregated evidence.
Among others, these include highly replicated risk genes such as

ApoE,1 CLU,2 PICALM,3 and CR14 (Corder et al., 1993;
Harold et al., 2009; Lambert et al., 2009), as well
as others supported by moderate evidence GAB2,5

1Apolipoprotein E
2Clusterin
3Phosphatidylinositol binding clathrin assembly protein
4Complement component (3b/4b) receptor 1
5GRB2-associated binding protein 2
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GOLM1,6 TRPC4AP,7 LRAT,8 ATXN1,9 CD33,10

and FAM113B11 (Coon et al., 2007; Abraham et al., 2008; Bertram
et al., 2008; Li et al., 2008; Beecham et al., 2009; Podulso et al.,
2009). Most of these GWAS studies search for SNPs with alleles
that are over-represented in very large samples of diseased versus
matched control populations (often numbering tens of thousands
of subjects). Diagnostic status, as defined in these case-control
studies, is often ascertained based on a battery of cognitive tests,
which are relatively remote from the molecular mechanisms of
gene action in the brain. As such, studies of genetic variants that are
over-represented in certain diagnostic groups often require sam-
ples of 30,000 subjects to find and replicate associations (Frayling
et al., 2007).

Neuroimaging measures have been proposed as intermediate
phenotypes (also known as endophenotypes) to overcome these
limitations (Gottesman and Gould, 2003; Meyer-Lindenberg and
Weinberger, 2006; Hall and Smoller, 2010). Several projects, such
as the Alzheimer’s Disease Neuroimaging Initiative (ADNI12) have
also sought biomarkers that are most highly associated with dis-
ease risk or with accelerated progression of the disease (Beckett
et al., 2010). Imaging measures may offer several advantages for
genetic analyses. As an entire 3D image of measurements is col-
lected, rather than one single measure, the full arsenal of statistical
methods developed for images – including voxel-based statistics
and multivariate methods – may be used to identify spatial patterns
of gene effects. Image-wide searches may also detect promising
associations. Voxel-set selection may then be used to boost the
power of replication attempts, by focusing on promising brain
regions that may show larger effect sizes (Vounou et al., 2010,
2012). Such approaches boost statistical power by carrying only
the most promising voxels into secondary analyses of independent
datasets (Chen et al., 2010; Thompson et al., 2010).

Several neuroimaging measures are associated with AD (Frisoni
et al., 2010; Jack et al., 2011), and some of these have already been
analyzed using GWAS. Genome-wide studies of the ADNI dataset
have identified new candidate AD risk genes including TOMM4013

(Potkin et al., 2009) and GRIN2B14 (Stein et al., 2010a). Tradition-
ally, GWAS studies consider each genotype’s effect independently;
they generally ignore the statistical interdependence between vari-
ants, such as their linkage disequilibrium (LD) structure, which
makes certain variants more likely to be inherited together. More
sophisticated GWAS approaches, using information on genes and
even pathways, jointly consider groups of genetic variants that are
correlated (Neale and Sham, 2004; Luo et al., 2010). Recently, neu-
roimaging studies have also begun to use these multi-SNP methods
(Inkster et al., 2010; Hibar et al., 2011a,b; Kohannim et al., 2011;
Wang et al., 2012). Here, we implement a gene-centric approach
based on the least absolute shrinkage and selection operator

6Golgi membrane protein 1
7Transient receptor potential cation channel, subfamily C, member 4 associated
protein
8Lecithin retinol acyltransferase
9Spinocerebellar ataxia type 1 protein
10Cluster of differentiation 33
11Family with sequence similarity 113, member B
12http://adni.loni.ucla.edu
13Translocase of outer mitochondrial membrane 40 homolog
14Glutamate receptor, ionotropic, N -methyl D-aspartate 2B

(LASSO), to detect and model genetic influences on neuroimaging
measures. LASSO is a form of regularized regression (Tibshi-
rani, 1996), that assesses the combined effect of many correlated
variables through a sparsity (or efficiency)-driven L1 penalty.

Here, we use the LASSO algorithm to select sparse groups of
SNPs within genes. We then model the effects of the resulting SNPs
jointly, to discover associations with neuroimaging measures in the
ADNI dataset. Our aim was to detect more genes that influence
brain structure with replication potential, as individual SNP vari-
ants have individual effect sizes that are usually hard to detect
in neuroimaging datasets of the size available today, unless very
large meta-analyses are performed (The ENIGMA Consortium,
2011; Stein et al., 2012). LASSO and similar penalized regres-
sion techniques have been successfully applied in the context of
GWAS or candidate gene studies for selection of SNPs (Ayers and
Cordell, 2010; Shi et al., 2011), detection of gene-gene interactions
(D’Angelo et al., 2009; Li et al., 2011), and risk prediction from top
GWAS hits (Kooperberg et al., 2010).

We hypothesized that using this approach, we would reduce
the number of variants of interest in a gene to sparse sets of SNPs
and thereby identify genes reliably associated with temporal lobe
volume. (The method would work with other brain measures too;
temporal lobe volume is just an example of specific interest, due
to its role as a biomarker of neurodegenerative disease.) We tested
the reliability and reproducibility of our top genetic association
findings in an independent non-overlapping young adult cohort.
Our goal was to see if the results could be replicated in a cohort
scanned on a different continent, with a different scanner field
strength, and with a roughly 50-year difference in mean age. Our
motivation was to find gene effects that might persist across the
human lifespan. Clearly, such a second sample presents challenges
for replication, and we selected it to demonstrate the robustness
of the results. We admit that this very stringent approach is only
likely to find gene effects with an enduring influence throughout
life, and would not serve to replicate biologically important effects
present at only one part of the lifespan.

MATERIALS AND METHODS
SUBJECTS
Neuroimaging and genetic data were obtained from 818 subjects
as part of ADNI, a 5-year study launched in 2004 by the NIH,
private pharmaceutical companies, and non-profit organizations,
as a public–private partnership. The goal of ADNI is to determine
biological markers of Alzheimer’s disease through neuroimaging,
genetics, neuropsychological tests, and other measures in order to
develop and monitor new therapies, and reduce the time of clinical
trials. Subjects were recruited from 58 sites across North America.
The study was conducted according to the Good Clinical Prac-
tice guidelines, the Declaration of Helsinki, and U.S. 21 CFR Part
50 – Protection of Human Subjects, and Part 56 – Institutional
Review Boards. Written informed consent was obtained from all
participants before protocol-specific procedures were performed.
All data acquired as part of this study are publicly available (see
text footnote 12).

All ADNI subjects underwent thorough clinical and cognitive
assessment at the time of scan acquisition to establish diagnosis. In
this study, only the baseline 1.5-T scans were used (not the longitu-
dinal follow-up data). The Mini-Mental State Exam (MMSE) was
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administered to provide a global measure of mental status (Cock-
rell and Folstein, 1988). The Clinical Dementia Rating (CDR) was
used to assess dementia severity (Morris, 1993). Healthy volunteer
status was determined if a subject had MMSE scores between 24
and 30 (inclusive), a CDR of 0, and was non-depressed, non-mild
cognitive impairment (MCI), and non-demented. MCI diagno-
sis was determined if a subject had MMSE scores between 24
and 30 (inclusive), a memory complaint, objective memory loss
measured by education adjusted scores on the Wechsler Mem-
ory Scale Logical Memory II, a CDR of 0.5, absence of significant
levels of impairment in other cognitive domains, essentially pre-
served activities of daily living, and an absence of dementia. AD
was diagnosed based on the National Institute of Neurological
and Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association (NINCDS-ADRDA)
criteria for probable AD (McKhann et al., 1984), MMSE scores
between 20 and 26 (inclusive), and CDR of 0.5 or 1.0. Definitive
autopsy-based diagnosis of AD was not possible.

Our ADNI dataset consisted of 729 subjects (mean age:
75.5± 6.8 SD years; 173 AD, 358 MCI and 198 cognitively healthy
controls) with available neuroimaging, genome-wide genetic data,
and other relevant covariates (age, sex, and population structure
parameters derivable from the GWAS). As our replication sam-
ple, we analyzed the Brisbane healthy young adult dataset, which
consists of neuroimaging and genome-wide genetic data from 564
young adult healthy twins (a mixture of monozygotic and dizy-
gotic) and siblings of European descent (mean age: 23.8± 2.2 SD
years; Wright and Martin, 2004). None of the subjects had a his-
tory of significant head injury, neurological or psychiatric illness,
substance abuse or dependence, or had a first-degree relative with
a psychiatric disorder. All subjects were screened, using a detailed
neurocognitive evaluation (de Zubicaray et al., 2008) to exclude
cases of pathology known to affect brain structure. Handedness
was assessed based on 12 items from Annett’s Handedness Ques-
tionnaire (Annett, 1970). This sample presents some challenges for
replication, due to the wide age difference (of roughly 50 years)
between it and the ADNI sample. As such we were aware that
genes with age-dependent effects might be found in one cohort
that might not replicate in the other, for biological reasons rather
than limitations in power and sample sizes.

NEUROIMAGING
Structural brain MRI scans were acquired for ADNI subjects
using 1.5 T MRI scanners. A subset of the ADNI subjects was
also scanned at 3 T, but their scans were not used here to avoid
any confounding effects of field strength. A sagittal 3D MP-
RAGE sequence was used, that had been optimized for con-
sistency across sites (Jack et al., 2008; TR/TE= 2,400/1,000 ms;
flip angle= 8˚; FOV= 24 cm; final reconstructed voxel resolu-
tion= 0.9375× 0.9375× 1.2 mm3). All scans were then linearly
registered to the stereotaxic space defined by the International
Consortium for Brain Mapping (ICBM-53; Mazziotta et al., 2001)
using a 9-parameter transformation (three translations, three rota-
tions, and three scales; Collins et al., 1994). Three-dimensional
maps of regional brain volumes, computed relative to an average
brain template, were generated with a method known as tensor-
based morphometry (TBM), a well-established method for map-
ping volumetric differences in the brain (Hua et al., 2008a,b), using

a minimal deformation template (MDT) from the healthy elderly
group as reference. Temporal lobe volumes were obtained by inte-
grating the Jacobian determinants of the deformation transform
over the region defined as the temporal lobe on the mean anatom-
ical template. Average temporal lobe volumes (average of lobar
volumes in the left and right hemisphere) were considered as phe-
notypes for genome-wide association, and 3D maps were retained
for use in post hoc analyses. The same temporal lobe volume
phenotype was used in a prior study by Stein et al. (2010a).

In the Brisbane young adult cohort, all subjects were imaged on
one scanner with structural whole-brain MRI at 4 T (Bruker Med-
spec). T 1-weighted images were acquired with an inversion recov-
ery rapid gradient echo sequence [TI/TR/TE= 700/1,500/3.35 ms;
flip angle= 8°; slice thickness= 0.9 mm, with a 2563 acquisition
matrix]. All images were corrected for intensity non-uniformity
(Sled et al., 1998) within an automatically delineated mask of
the brain (Smith, 2002). Images were spatially normalized to the
ICBM-152 template (Mazziotta et al., 2001) using a 9-parameter
(global) transformation that rotated and scaled each image to min-
imize a normalized mutual information cost function (Jenkinson
et al., 2002). Images were then resampled in the space of the tem-
plate using sinc interpolation to yield 1 mm3 isotropic voxels. In
this way, each brain was globally matched in size and mutually
aligned, but local differences in shape and size remained intact.
Similarly to ADNI, TBM was used to create maps of volumet-
ric differences for each subject, using a reference MDT specially
constructed for this young adult cohort.

GENOTYPING
The ADNI genotyping procedures are thoroughly described in
Saykin et al. (2010). Briefly, genotypes were imputed, using Mach
(version 1.0)15 as in Stein et al. (2010b). Imputation is com-
monly used in genetics to infer or impute unmeasured genotypes,
based on available genotypes and known patterns of correlation
among markers. We used imputation in ADNI to estimate hap-
lotype phasing and remove missing genotype calls, yielding a
set of SNPs without missing data. We used the Plink software16

to extract SNPs that had minor allele frequencies greater than
0.1 (10%), and Hardy–Weinberg equilibrium p-values less than
5.7× 10−7. Hardy–Weinberg equilibrium refers to the principle
that frequencies of alleles, and their corresponding genotypes, are
in the expected proportions, under certain assumptions about the
population. We only considered alleles with a minor allele fre-
quency > 0.1 due to the very large sample sizes needed to detect
effects of less common variants (Flint et al., 2010). As in Stein et al.
(2010b), we also considered only unrelated Caucasian subjects
identified by self-report and verified by multidimensional scaling
(MDS) analysis (Stein et al., 2010a). This was done to decrease
the effects of population stratification, although we additionally
included MDS parameters as covariates in this study. As detailed in
Hibar et al. (2011a), we extracted and grouped all intragenic SNPs,
excluding those not located in any genes. Only SNPs within tran-
scripts (i.e., introns and exons, including untranslated regions)
were included; SNPs upstream or downstream from genes were not
included to avoid arbitrary window sizes. Similarly, imputation of

15http://www.sph.umich.edu/csg/abecasis/MaCH/index.html
16http://pngu.mgh.harvard.edu/∼purcell/plink/
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missing genotype calls based on haplotype phasing was performed
in the Brisbane young adult cohort.

GENE-IMAGE ASSOCIATION
SNP selection with the LASSO algorithm
We incorporated all genotyped SNPs in a gene into LASSO regres-
sion models and obtained coefficients for each intragenic SNP. The
LASSO (Tibshirani, 1996) is a form of regularized or “penalized”
regression, where L1 regularization is introduced into the stan-
dard multiple linear regression procedure, using a compound cost
function to optimize the regression coefficients:

β∗ = arg min
β

∥∥y − Xβ
∥∥2
+ λ‖β‖1

Here, y represents the vector of our neuroimaging measure
co-varied for age and sex (i.e., residuals of linear regression after
adjustment for the covariates), X is the matrix of genotypes for a
single gene coded additively for the number of minor alleles (i.e.,
0, 1, or 2), and β∗ represents the vector of fitted regression coeffi-
cients for each SNP’s effect on the neuroimaging measure. λ is a
positive, weighting parameter on the L1 penalty, which encourages
sparsity in the resulting set of fitted regression coefficients. In other
words, a regression model with a smaller number of coefficients is
favored, but this desirable characteristic is traded-off with the need
for a model that offers a good fit to the data (which is measured
by the first term above). Leave-one-out cross-validation was per-
formed to determine the optimal penalty parameter with the mean
squared error criterion. The LASSO analysis was performed gene
by gene,and relatively sparse subsets of SNPs within each gene were
obtained with non-zero coefficients, by fitting each LASSO model
using optimal parameters. For our analyses, we used the “glm-
net” package (Friedman et al., 2010) implemented in R17, which
optimizes model fitting parameters using a coordinate descent
algorithm. We performed single leave-one-out cross-validation
cycles with the coordinate descent algorithm for each fold and
found regularization parameters that led to the smallest average
mean squared errors across all folds.

Multi-SNP partial F-tests
Subsets of SNP genotypes within genes selected by the LASSO were
incorporated into partial F-tests, and p-values were obtained for
their joint effect on imaging phenotypes, after adjustment for age
and sex. Partial F-tests were performed for each gene, where the
full model included SNP genotypes selected by LASSO, along with
covariates, and the reduced model contained only covariates. In
ADNI, population structure parameters from MDS analysis were
also included as covariates. For the Brisbane twin cohort, we used
a version of the efficient mixed-modeling association (EMMA;
Kang et al., 2008) software, modified to allow for subject related-
ness when fitting multiple regressors in the regression model. The
LASSO step used above serves as a filter to yield a less noisy and
more sparse set of predictors, similarly to the data-adaptive col-
lapsing method used in Chen et al. (2011) and the principal com-
ponent regression method used in Hibar et al. (2011a). Although

17http://cran.r-project.org

leave-one-out cross-validation is used to obtain the optimal para-
meters for LASSO, the SNPs that remain in the optimized LASSO
model are incorporated into partial F-tests in the same dataset.

Correction for multiple comparisons
In genetics, there is a notion of genome-wide significance, based
on the premise that credible results should surpass a very strin-
gent statistical threshold that accounts for the very large number of
separate statistical tests performed when imaging measure is asso-
ciated with a large number of different variants on the genome. To
compute an appropriate threshold to determine the genome-wide
significance level for our gene-centric tests, we used a Bonferroni
correction: p= 0.05/(number of genes; i.e., 18,284), which yields a
p-value threshold of 2.73× 10−6. To perform post hoc, exploratory
tests on the top genes, we created voxelwise statistical maps using
partial F-tests from a multiple linear regression fitted at each voxel.
To correct for multiple spatial comparisons, we used a regional
False Discovery Rate (FDR) method, which is now fairly standard
in neuroimaging (Langers et al., 2007).

RESULTS
GENE-IMAGE ASSOCIATION RESULTS
Sparse groups of SNPs within genes were selected by the LASSO
algorithm and were subsequently incorporated into partial F-tests
of association with the MRI-derived measure of temporal lobe
volume (see Figure 1 for an example). We found a total of 22
genes to be genome-wide significant (after Bonferroni correction
for the total number of genes assessed). Remarkably, the top gene
(MACROD2), had a p-value of 7.94× 10−12 (Table 1; also see
later for independent replication of this top hit). We compared
F-test p-values for significant genes with univariate p-values cor-
responding to single top SNPs in the same genes (similarly to
Figure 2 in Hibar et al., 2011a). In the standard, univariate GWAS
(Stein et al., 2010a), two genes passed genome-wide multiple com-
parison correction: GRIN2B and NRXN3. Here, we found the
same two among our 22 significant genes, and the whole-gene
p-values we obtained for both were “more significant” (i.e., had
greater effect sizes) than their top SNP p-values reported in the
GWAS (on the order of 10−9 and 10−8 instead of 10−7 and 10−6,
respectively). The other 20 genes were undetectable with univari-
ate GWAS as none of their SNPs attained an individual p-value
that passed genome-wide significance. We confirmed that all top
genes were expressed in the brain, using the Tissue-specific Gene
Expression and Regulation (TIGER) database (Liu et al., 2008;
Table 1). Although MACROD2 and GALNTL6 were not found in
this database, their expression in the brain was evident from the
GeneNote software (Shmueli et al., 2003).

POST HOC, VOXELWISE ANALYSES
To study the effects of the genes we identified in more spatial
detail, we conducted post hoc, voxelwise analyses, where the par-
tial F-test analysis is repeated at each voxel, and p-value maps are
obtained for the gene effects, after correction for multiple com-
parisons across all temporal lobe voxels. We note in advance that
this type of follow-up analysis does not provide any additional sta-
tistical verification of the effects, above and beyond the evidence
given to the gene for association with the overall temporal lobe
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FIGURE 1 | Comparison of univariate and LASSO association tests
with an imaging-derived measure of temporal lobe volume. (A)
p-values are shown, in the left panel, as −log10 p (i.e., after logarithmic
transformation) for all 291 genotyped SNPs in the MACROD2 gene, using
univariate association with temporal lobe volume. The most significant SNP
in this gene has a p-value of 7.3×10−3. A matrix representing the pairwise
correlation (i.e., r 2), due to linkage disequilibrium (LD), between the SNPs is
displayed in the right panel. (B) LASSO considers all SNPs in a gene jointly
and assigns sparse coefficients to the SNPs. Here, the absolute values of
the coefficients |β∗i | are displayed for all SNPs in MACROD2, 29 of which
attained non-zero coefficients as part of the sparse regression model fitted
by the LASSO method. When considered jointly in a multiple linear
regression model, the selected SNPs yield a boosted p-value of 7.94×10−12

for MACROD2 (seeTable 1). As in (A), the correlation structure between
the selected SNPs is shown, demonstrating reduced multicollinearity.

volume, in the LASSO regression model. The purpose was mainly
to explore whether the volumetric effect could be also detected
diffusely at the voxel level, and if so how widespread the effect was
in the brain.

The top genes we identified showed extensive, statistically sig-
nificant effects on maps of temporal lobes’ volumetric differences
(Figure 2). These are not to be considered as providing inde-
pendent evidence of the effects, they simply pick up a pattern of
regional effects that is likely to contribute to the aggregate effect
of the gene on the temporal lobe volume.

REPLICATION OF GENE-IMAGE ASSOCIATIONS
To replicate our most significant finding (i.e., MACROD2) from
ADNI, we explored the voxelwise effects of this same gene on
temporal lobe maps from N = 564 healthy young adult twins and
siblings. We jointly considered the same group of SNPs in the gene,

selected by the LASSO method in ADNI, and studied their effect
on the younger subjects’ temporal lobe maps, adjusting for sex,
age, and relatedness. After correcting for multiple comparisons,
MACROD2’s association showed partial reproducibility, as it was
statistically significant across ∼15% of the temporal lobe voxels
(versus ∼52% of voxels in ADNI), much of which overlapped
with those in ADNI (see Figure 3).

CROSS-VALIDATION
As mentioned in the Section “Materials and Methods,” leave-one-
out cross-validation was used to find optimal LASSO parameters,
but no further loop of cross-validation was used for the F-tests. In
separate analyses, we performed a nested cross-validation, where
SNP selection with optimized LASSO was performed in a fifth of
the dataset and the joint partial F-tests were then conducted in
the rest of the data. This was repeated for fivefolds. The average
p-values we obtained for our top genes with this approach did not
reach genome-wide significance, mostly because the selection of
SNPs with LASSO was unstable in the relatively small fractions
(i.e., fifths) of the data.

We took another nested cross-validation approach, where a
randomly selected half of the data was used to estimate LASSO
coefficients, and the other half for partial F-tests. This, we pre-
sumed, might provide more balanced sample sizes for the SNP
selection and for the F-test steps. After repeating this scheme
across 10 trials, we obtained average p-values for our top genes.
Only GRIN2B obtained gene-wide significance averaged across all
trials (p= 1.47× 10−6), and its association was not boosted when
compared to that obtained from a univariate approach.

DISCUSSION
We set out to discover and replicate gene effects on brain structure
using a gene-centric LASSO regression approach. The goal of the
method was to sift through the vast amount of genomic data and
come up with a more efficient set of variants for association test-
ing. LASSO allowed us to select sparse subsets of SNPs among all
correlated SNPs within each gene and associate them jointly in par-
tial F-tests with an MRI-derived temporal lobe volume measure.
Using this approach, we identified over twenty genes with signifi-
cant effects on temporal lobe structure in N = 729 elderly subjects
from the ADNI cohort – a considerably larger number of genes,
when compared to a univariate approach, which considers the
association of single SNPs one-by-one. In all 22 genes identified,
multi-SNP p-values (from partial F-tests), using SNPs selected
by LASSO, were “more significant” (i.e., lower p-values, greater
effect sizes) than the top genotyped SNP within each correspond-
ing gene, as computed using standard univariate GWAS. GRIN2B
and NRXN3, which were identified with univariate GWAS (Stein
et al., 2010a), were boosted from p-values on the order of 10−7

and 10−6 to 10−9 and 10−8, respectively. In addition, new genes
with more significant p-values were discovered, whose SNPs’ indi-
vidual p-values were too weak to pass genome-wide significance
in a more standard univariate GWAS experimental design. Fur-
thermore, post hoc analysis revealed widespread and significant,
voxelwise influences for the top genes on TBM maps of the tempo-
ral lobes. We also replicated, at least in part, the spatial effects of our
most significant finding in the MACROD2 gene in an independent
cohort of healthy, young adults.
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Table 1 | Genes showing significant associations with an MRI-derived measure of temporal lobe volume.

Gene name Gene description Chr. Enr. NSNPs p-value

MACROD2 MACRO domain containing 2, isoform 2 20 N/A 29 7.94×10−12

SORCS2 Sortilin-related VPS10 domain containing receptor 2 4 2.08 29 4.87×10−9

GRIN2B Glutamate receptor, ionotropic, N -methyl-d-aspartate 2B 12 4.60 4 7.95×10−9

GALNTL4 UDP-N -acetyl-alpha-d-galactosamine:polypeptide

N -acetylgalactosaminyltransferase-like 4

11 1.55 12 2.39×10−8

NRXN3 Neurexin 3 14 2.75 5 2.84×10−8

AK130123 cDNA FLJ26613 fis, highly similar to serine/threonine protein phosphatase

2A, 55 kDa regulatory subunit B, alpha isoform

8 1.08 20 3.83×10−8

MAGI2 Membrane associated guanylate kinase, WW and PDZ domain containing 2 7 3.76 16 8.44×10−8

NPAS3 Neuronal PAS domain protein 3 14 3.10 7 9.06×10−8

RBFOX1 Ataxin-2-binding protein 1 16 4.64 3 3.24×10−7

AY229892 FIP1L1/PDGFRA fusion protein 4 1.65 11 3.97×10−7

ZMAT4 Zinc finger, matrin-type 4 8 3.76 13 6.93×10−7

STAG3L2 Stromal antigen 3-like 2 7 2.03 10 7.97×10−7

GAS7 Growth arrest-specific 7 17 2.92 9 9.60×10−7

KIAA1217 KIAA1217 10 0.30 13 9.65×10−7

ADARB2 Adenosine deaminase, RNA-specific, B2 10 3.00 17 1.01×10−6

GABRG3 Gamma-aminobutyric acid (GABA) A receptor, gamma 3 15 3.21 26 1.01×10−6

CDH4 Cadherin 4 20 0.91 22 1.12×10−6

CLSTN2 Calsyntenin 2 3 2.40 7 1.37×10−6

CDH13 Cadherin 13 16 2.08 7 1.39×10−6

GALNTL6 UDP-N -acetyl-alpha-d-galactosamine:polypeptide

N -acetylgalactosaminyltransferase-like 6

4 N/A 5 1.80×10−6

PRKAG2 Protein kinase, AMP-activated, gamma 2 non-catalytic subunit 7 1.50 16 1.81×10−6

CHODL Chondrolectin 21 2.04 17 2.27×10−6

Here we show the official names, gene descriptions, corresponding chromosomes (Chr.), enrichment scores for expression of the genes in the brain (Enr.), number

of selected SNPs (NSNPs), and p-values for genes with significant associations with temporal lobe volumes. The genes are ranked in order of significance. Here, the

p-value threshold for significance is 2.73×10−6, which is the Bonferroni-corrected for the total number of genes, which is less strict than that for the total number of

SNPs. p-Values correspond to F-tests, which assess the joint effect of a sparse subset of the genotyped single nucleotide polymorphisms (SNPs) in the respective

gene, selected using the LASSO algorithm, on temporal lobe structure. N/A indicates genes are not found in this particular gene expression database, but we ensured

there is brain expression for these genes using another database (see text). NSNPs refers to the number of variants retained in the optimized LASSO models for each

gene, which were then fed into partial F-tests. Only GRIN2B and NRXN3 possessed SNPs (2 SNPs in GRIN2B and 1 in NRXN3) that passed a liberal genome-wide

significance threshold of 1×10−5 in standard GWAS.

Penalized regression techniques such as LASSO (Tibshirani,
1996), ridge regression (Hoerl, 1962), and the elastic net (Zou
and Hastie, 2005) have recently been highly effective when used in
GWAS. They all deal with (1) multicollinearity due to LD, (2) the
large dimensionality of the genome, and (3) the problem of multi-
ple comparisons (Malo et al., 2008; Cho et al., 2009, 2010; Lin et al.,
2009; Shi et al., 2011). LASSO’s emphasis on sparsity is particularly
useful in our study, as it helps point to a small set of independent
variants in a given gene, which we can then incorporate into a mul-
tiple regression framework. This is similar to the approach taken
by Chen et al. (2011), in the context of jointly considering rare
and common variants. Here, we tested this algorithm in the con-
text of finding genetic influences on an imaging-derived measure
of temporal lobe volume. This allowed us to discover and repli-
cate a great number of genes relative to our earlier imaging GWAS
study (Stein et al., 2010a). We were also able to implicate several
genes with previously identified relevance to brain disorders (see
below).

In a recent study by our group, Hibar et al. (2011a) also consid-
ered gene-based associations with brain images with a new method
based on principal component regression, which associates genes
with images by capturing most of the variation among intra-
genic SNPs. Our approach complements this method, as it instead
emphasizes sparsity of the model based on the available SNP data
for each gene. In the case of principal components regression, a
rather different line of analysis is taken in which the covariance in
a set of N genotyped SNPs is analyzed to produce a reduced set
of k (<N ) predictors, that encode some of the genetic variance,
but are more efficient than the original set. That method can also
produce overall p-values for a specific gene to quantify their effects
on brain structure. However, the results of principal components
regression are less readily ascribed to any specific sets of SNPs on
the genome.

Although the p-values we obtained for the two genes discovered
in univariate GWAS were more significant than the univariate p-
values of their top SNPs, this need not be the case for every gene. As

Frontiers in Neuroscience | Neurogenomics August 2012 | Volume 6 | Article 115 | 6

http://www.frontiersin.org/Neurogenomics
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neurogenomics/archive


Kohannim et al. Discovering genes that affect brain images

FIGURE 2 | Post hoc gene effects on temporal lobe structure. We
conducted voxelwise associations for the 22 significant genes we
identified (gene names are shown at the bottom left of the images). A
representative, axial slice is shown for all gene effects. Warmer colors

represent more significant effects (i.e., higher effect sizes in the analysis
of overall temporal lobe volume). p-values are corrected for multiple
comparisons within the 3D image search region, using a regional false
discovery rate method.

also discussed in Hibar et al. (2011a), there are cases where a uni-
variate test for the top SNP in a gene offers more power to detect
an effect than a multivariate F-test for the whole gene. ADAMTS2,
for instance, is a gene that contains a SNP with the lowest uni-
variate p-value (rs12513486, p= 2.23× 10−5) in our dataset just
below the significance threshold considered in Stein et al. (2010a).
With our F-test approach following LASSO regression, the gene
actually obtained a weaker association (p= 4.83× 10−5). Thus,
our approach complements univariate GWAS, but does not always
boost detection power by including multiple loci.

Several of the genes we identified have been well studied in
the context of psychiatric and neurological disorders, including
Alzheimer’s disease. Our most significant gene, MACROD2, which
we also replicated in a new cohort, was recently discovered in the
context of autism spectrum disorder (ASD), as the gene containing
the top SNP (p < 5× 10−8) in a GWAS of 1,558 families of whom
some members had been diagnosed with ASD (Anney et al., 2010).
The investigators of that study reported that although the precise
function of this gene is mostly unknown, it is involved in several
biological functions and the region comprising their top SNP may
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FIGURE 3 | MACROD2 ’s effects in ADNI temporal lobes and partial
replication in a younger cohort. The SNPs selected from MACROD2 in
ADNI are strongly associated with mean temporal lobe volumes
(p=7.94×10−12), and reveal extensive and significant effects on TBM maps
of temporal lobes (A). We studied the joint effect of the same group of
SNPs in MACROD2 on temporal lobe maps of the Brisbane young adult
dataset. The gene effect showed reproducibility, including effects at some
specific locations overlapping with the ADNI findings, after correction for
multiple comparisons across the temporal lobe voxels (B). A sagittal slice
from the left hemisphere is shown; warmer colors represent more
significant associations. Both (A,B) are taken from the same slice
(x =53 mm in Montreal Neurological Institute coordinates). The slices do
not appear identical due to the age range differences between the
populations [e.g., atrophy in (A)], but almost all of the significant voxels in
the more central cluster in (B) overlap with the significant voxels in (A),
implying replication.

regulate PLD2, a gene coding for a member of a protein family with
significant implications for ASD. MACROD2 has also been associ-
ated with schizophrenia, as the gene corresponding to a rare, copy
number variant in a linkage analysis (Xu et al., 2009). The same
gene has also been associated with MRI-defined brain infarcts, as
the gene comprising the top SNP (p < 5× 10−7) in a meta-analysis
GWAS of >9,000 mostly white, European subjects from the
Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) consortium with an average age of 69.7 years (Debette
et al., 2010). Interestingly, this study also found a suggestive
association for a SNP in GALNTL4, another top gene in our list.

We additionally found boosted associations for another gene,
GRIN2B, coding for a subunit of an N -methyl-d-aspartate
(NMDA)-type glutamate receptor, and NRXN3, coding for a
neurexin, important for synaptic function, both of which were
previously identified in the same dataset with standard GWAS
(Stein et al., 2010a).

We also found significant associations for SORCS2 and MAGI2,
which are in the AlzGene18 database of genes that show promising
associations with the risk for developing AD based on the literature
(Rogaeva et al., 2007; Potkin et al., 2009). Additionally, NPAS3 has
been linked to schizophrenia and bipolar disorder (Pickard et al.,
2009), CLSTN2 has been associated with memory performance
(Papassotiropoulos et al., 2006) and with Alzheimer’s disease (Liu
et al., 2007), and RBFOX1 (A2BP1) has been very recently dis-
covered as a splicing regulator of neuronal excitation and calcium
homeostasis in the brain (Gehman et al., 2011). RBFOX1 has been

18http://www.alzgene.org/

associated with autism, among other brain disorders (Martin et al.,
2007), and an RBFOX1 variant has interestingly been detected in
another sparse regression study in ADNI (Vounou et al., 2012).

The discovery and replication populations in this study are
quite different: the ADNI cohort consists of elderly subjects within
the spectrum of Alzheimer’s disease and the Brisbane cohort con-
sists of healthy young adults. Though the cohorts share a Caucasian
background, which minimizes genetic heterogeneity, the age, and
health differences between them implies that their brain structure
may be influenced by genetic risks and mechanisms that partially
overlap but also partially differ. By choosing cohorts that differ in
age, we can find polymorphisms that are of enduring relevance
over the lifespan, but may be less able to confirm gene effects that
only matter in old age. Unfortunately, another elderly cohort with
GWAS and MRI scans was not available to us at this time; we
requested published GWAS data from other elderly cohorts whose
MRI scans we have already analyzed, but our request was declined.
However, as discussed in Stein et al. (2011) who discovered and
replicated genetic variants on MRI-derived caudate volume in the
same two cohorts, there may be genes with persistent effects over
the human lifespan, so any such replication may be even stronger
than one observed between more similar populations. In addition,
though the genes we identified here may not all be AD genes, the
effect of a well-known AD risk conferring polymorphism in the
clusterin gene (CLU ), and that of GAB2, another AD gene, have
been replicated as showing associations with brain structure in the
same young adult cohort (Braskie et al., 2011; Hibar et al., 2012). In
other words, we knew in advance that genes associated with brain
structure in the elderly may also exert detectable effects in scans
from younger people. This was also the case for some SNP effects
that were reliably replicated by two very large GWAS consortia
analyzing brain scans from cohorts across the lifespan (Stein et al.,
2012) or in elderly cohorts (Bis et al., 2012). In this study, we were
similarly interested to see if our top gene’s effects on temporal lobe
structure would replicate in the young, adult cohort, suggesting a
more lasting influence on brain structure across a person’s lifetime.

In our study, SNPs were coded additively, i.e., using a value
of 0, 1, or 2 for the number of minor alleles. This coding makes
the assumption that all SNPs considered in the analysis exert their
effects in an additive fashion, as opposed to alternative models
such as recessive or dominant. This is certainly not the case for all
SNPs, and the assumption likely affects the statistical power of our
results, since greatest power is obtained when the true model of a
causal allele is implemented (Lettre et al., 2007). This is a potential
limitation of our study. We chose the additive model as previous
genome-wide analyses of the same dataset relevant to our work
implement the same allelic coding and were successful in finding
genetic associations that were later replicated (Stein et al., 2010a;
Hibar et al., 2011a). Furthermore, the additive model is the most
commonly used association model. It is the model assumed in her-
itability calculations and has been argued to be closest to actual risk
models for complex traits, such as our quantitative imaging-based
measure (Balding, 2006).

A possible limitation of our results is that we do not imple-
ment a nested cross-validation approach, in which SNPs selected
from LASSO regression would have been included in F-tests in
non-overlapping subjects. Our implementation of LASSO here,
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however, fits into a filtering rather than predictive framework
and similar data-adaptive filtering followed by F-tests in the same
dataset has been done in previous work (Chen et al., 2011; Hibar
et al., 2011a). This approach is potentially unfair, as fitting in
LASSO is followed by another fitting with multiple linear regres-
sion (F-tests) in the same dataset, whereas fitting is only performed
once in a univariate scheme. As GWAS are sensitive to sample size,
a nested cross-validation scheme, though more robust, would most
likely yield no significant results. We observed this power limita-
tion, as we attempted nested approaches with varying numbers of
folds, and were unable to obtain boosted gene-based associations.
This may change in the future, as larger datasets become more
widely available. Our use of a replication cohort, however, does
add credibility to the top result, as the same set of SNPs selected
in the discovery sample show significant, spatial effects on brain
scans from a completely independent (non-overlapping) group of
subjects scanned with a different scanner on a different continent.
Another limitation of our approach is that we focus on genes, but
exclude promoter and intergenic SNPs. This has the drawback of
missing potentially important regulatory elements in the genome.

Our work has several possible future directions, biologically
and methodologically. Further investigation is needed to clar-
ify the roles of the genes we identified. We did create voxelwise
maps for the top genes, but one could also use a more com-
putationally demanding imaging GWAS approach by re-running
the gene-centric, LASSO at each voxel in the brain (Stein et al.,
2010b; Vounou et al., 2010; Hibar et al., 2011a), instead of run-
ning it on summary measures derived from the images. Sparse
coding, used here to reduce the dimensionality of the genomic
data, could also be used to zero in on the most promising voxels
in the images, leading to a set of phenotypes in the images that
show greatest association. Vounou et al. (2010, 2012), in partic-
ular, have proposed a general “reduced rank” method that distils
a set of genes and brain measures from regions of interest into a
more manageable set for assessing associations. Other approaches
for dimension reduction, within both the image and the genome,
involve variants of independent components analysis (Liu et al.,
2009). In a recent advance, Chiang et al. (2011b) proposed to use
genetic correlations to identify pairs of voxels in an image with
common genetic determination, rather than simply phenotypic
correlation. This could be more promising in principle than using
phenotypic covariance, as it seems voxel sets are influenced by
common (partially overlapping) sets of genes. By clustering these
voxels into regions of interest, Chiang et al. (2011b) were able to
boost power to detect genome-wide associations in a large DTI
study. Clearly, the promise of multivariate methods for imaging
genomics is high. Several variants of linear regression, penalized
regression, and machine learning are now being adapted to handle
images, with the main goal of boosting power and reducing the
very large samples typically considered necessary for replicable
findings in genetics (The ENIGMA Consortium, 2011).

In addition to GWAS, an alternative more hypothesis-driven
approach is to use candidate gene studies to study the influ-
ence of genetic variants on brain structure. These have recently
been successful in implicating genes as associated with brain white
matter integrity measures derived from diffusion tensor imaging
(e.g., CLU, Braskie et al., 2011; BDNF, Chiang et al., 2011a; HFE,

Jahanshad et al., 2012). Furthermore, it will be interesting to study
interactions between genes discovered through GWAS by consid-
ering the overall pathways or regulatory networks in which they
act (Inkster et al., 2010; Potkin et al., 2010). Another type of genetic
information, not considered here, is rare variants on the genome
(Schork et al., 2009), or copy number variants, which may also be
relevant in the determination of brain structure. Ongoing imaging
studies are beginning to include proteomic and gene expression
data, as well. Such studies may begin to integrate genetic infor-
mation from different sources to probe the mechanisms of brain
pathology and identify means to intervene and resist it.
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