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Multicenter dizygotic twin cohort study confirms two
linkage susceptibility loci for body mass index at 3q29
and 7q36 and identifies three further potential novel loci
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Objective: To identify common loci and potential genetic variants affecting body mass index (BMI, kgm�2) in study populations
originating from Europe.
Design: We combined genome-wide linkage scans of six cohorts from Australia, Denmark, Finland, the Netherlands, Sweden
and the United Kingdom with an B10-cM microsatellite marker map. Variance components linkage analysis was carried out
with age, sex and country of origin as covariates.
Subjects: The GenomEUtwin consortium consists of twin cohorts from eight countries (Australia, Denmark, the Netherlands,
Finland, Italy, Norway, Sweden and the United Kingdom) with a total data collection of more than 500000 monozygotic
and dizygotic (DZ) twin pairs. Variance due to early-life events and the environment is reduced within twin pairs, which
makes DZ pairs highly valuable for linkage studies of complex traits. This study totaled 4401 European-originated twin
families (10 535 individuals) from six countries (Australia, Denmark, the Netherlands, Finland, Sweden and the
United Kingdom).
Results: We found suggestive evidence for a quantitative trait locus on 3q29 and 7q36 in the combined sample of DZ twins
(multipoint logarithm of odds score (MLOD) 2.6 and 2.4, respectively). Two individual cohorts showed strong evidence
independently for three additional loci: 16q23 (MLOD¼3.7) and 2p24 (MLOD¼3.4) in the Dutch cohort and 20q13
(MLOD¼3.2) in the Finnish cohort.
Conclusion: Linkage analysis of the combined data in this large twin cohort study provided evidence for suggestive linkage to
BMI. In addition, two cohorts independently provided significant evidence of linkage to three new loci. The results of our study
suggest a smaller environmental variance between DZ twins than full siblings, with a corresponding increase in heritability for
BMI as well as an increase in linkage signal in well-replicated regions. The results are consistent with the possibility of locus
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heterogeneity for some genomic regions, and indicate a lack of major common quantitative trait locus variants affecting BMI in
European populations.
International Journal of Obesity (2009) 33, 1235–1242; doi:10.1038/ijo.2009.168; published online 1 September 2009
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Introduction

Obesity (Online Mendelian Inheritance in Man (OMIM):

601665)-related traits have been a target of numerous studies

in recent decades. This vast amount of information can be

reviewed on the obesity gene map website (http://obesitygene.

pbrc.edu/). Extremes in body mass index (BMI) distribution,

that is, both excesses and very low BMI, present serious health

problems. A low BMI, usually an indication of protein-energy

malnutrition or the effects of wasting or a disease process, is

a significant predictor of mortality.1 On the other hand, high

BMI and obesity increases the risk of coronary heart disease,

certain types of cancer, hypertension, osteoarthritis and type 2

diabetes mellitus. Several monogenic forms of obesity have

been identified which are exemplified by mutations in the

leptin and melanocortin receptors. Moreover, several syn-

dromes have been shown to manifest obesity as one of

the symptoms, such as the Prader–Willi syndrome (OMIM:

176270), the Bardet–Biedl syndrome (OMIM: 209900),

Cohen’s syndrome (OMIM: 216550) and the Macrosomia,

obesity, macrocephaly and ocular abnormalities syndrome

(OMIM: 157980). These monogenic and syndromic forms of

obesity are relatively rare and only explain a small fraction

of variability in the trait. The first successful genome-wide

association study (GWAS) by Frayling et al.2 showed that

relatively common variants of the FTO gene affect BMI in the

general population. Since then, four other GWASs have shown

a number of regions; however, they only account for o1% of

the variance in BMI.3–6 In recent years, a number of studies

have published linkage results with obesity. The obesity gene

map database shows that there is an abundance of obesity-

linked loci and every chromosome has been linked to obesity,

except chromosome Y. Bell et al.7 conclude in their review

paper that seven of these quantitative trait loci have been

subsequently replicated (2p21–p23, 3q27, 4q31–q32, 7q31–q32,

10p11–p12, 11q14–q24 and 20q11–q13). For a more

extensive review of the genetics of obesity, see a paper by

Bell et al.7 and a book edited by Clement and Sørensen.8 To

date, most of the loci found in GWASs have been central

nervous system related, suggesting that they are behavioral

genes. It is possible that linkage studies will identify different

loci than will GWASs. Linkage studies are more powerful to

find rare variants with high impact, whereas it cannot detect

the common low-impact variants that have been identified

by GWASs. Our study aimed at finding loci contributing to

variability in BMI in a large cohort of European-originated

twins, using variance components linkage analysis. The

samples were genotyped from population-based registers

and were unselected for BMI or any other phenotype.

Materials and methods

The data sets and methods are described in detail by Perola

et al.9 In brief, genome-wide microsatellite scan data from

the following six twin cohorts were available for analysis:

The Australian Twin Registry,10 the Danish Twin Registry,11

the Finnish Twin Cohort,12 the Netherlands Twin Register,13

the Swedish Twin Registry14 and the TwinsUK Adult Twin

Registry.15 Although these are all twin studies, some of them

have recruited additional family members included in this

study. Data sets are summarized in Table 1. The combined

sample set comprised 10 928 individuals from 4401 families

with genotype and phenotype information. The skewness

and kurtosis of BMI in the total sample were 1.14 and 2.69,

respectively, and therefore a log base10 transformation was

used. After normalization, the skewness and kurtosis of

logBMI were 0.47 and 0.82, respectively. logBMI was used

in all analyses. Sex, age and country of origin correlate

significantly with BMI and they were used as covariates in

the combined sex analysis. Outliers (n¼393), determined by

Table 1 Demographics of sample sets

Males Females No. of

families

Average

family size

Average

map density

Mean BMI s.d. Min Max Mean age n Mean BMI s.d. Min Max Mean age n

All 25.34 3.44 13.84 53.26 50.15 3667 24.7 4.48 13.64 51.64 48.91 6868 4401 2.4

Australia 25.38 3.74 14.64 53.26 44.51 1214 24.69 4.64 13.85 48.27 44.44 1876 1287 2.4 7.7 cM

Denmark 25.22 3.31 13.84 36.56 53.69 247 23.51 3.70 14.52 37.07 60.96 377 315 2.0 9.6 cM

Finland 25.49 3.70 16.47 46.00 52.07 518 24.72 5.22 13.64 45.70 60.43 339 387 2.2 9.3 cM

The Netherlands 25.21 3.26 14.87 39.64 45.12 1160 24.46 4.13 14.68 47.48 43.55 1535 757 3.6 9.2 cM

Sweden 25.47 2.72 19.57 35.80 74.62 528 25.17 3.68 16.53 41.88 74.99 525 544 2.0 4.2 cM

United Kingdom NA NA NA NA NA NA 25.08 4.68 15.21 51.64 47.26 2216 1111 2.0 4.7 cM

Abbreviations: BMI, body mass index; NA, not available.
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values differing by more than 3 s.d. from the population mean,

were excluded from the analyses. Marker maps from all of the

cohorts were combined using Cartographer program (http://

apps.bioinfo.helsinki.fi/cartographer/).16 The program GRR

(http://www.sph.umich.edu/csg/abecasis/GRR/) was used to test

for the validity of twin zygosity and other familial relation-

ships.17 Genotypes were checked for Mendelian inconsistencies

using the PedCheck program (http://watson.hgen.pitt.edu/

register/soft_doc.html).18 The non-Mendelian inconsistencies

(2249 of the 5882017 genotypes of 6919 loci were excluded)

were evaluated with Merlin’s19 genotyping-error option

and removed by option pedwipe.19 The analyses were per-

formed with AUTOGSCAN20 program (http://www.helsinki.fi/

~tsjuntun/autogscan/) which uses Merlin.19 We performed

variance components analysis for logBMI in the 10535 individ-

uals. There were a total of 3356 dizygotic (DZ) twin pairs

(706 male pairs, 2040 female pairs and 610 opposite-sex pairs).

The heritability estimates were calculated in Merlin along with

the linkage analyses. The larger proportion of females was

because of the UK sample, which was a large female-specific

cohort. The linkage analysis was also carried out conditional on

sex to examine whether there was a sex-specific contribution to

the linkage signal at a given locus. The number of informative

pairs with both genotype and phenotype data is summarized in

Table 2. The analyses were carried out per country in both

extended families (where available) and DZ twins only. We

then combined samples across countries and analyzed the

combined DZ twin sample and extended families sample,

which included all the available individuals.

Results

The covariate-adjusted heritability of BMI was 54% in the

extended families sample and 73% in the DZ twin sample.

Sex-stratified analyses were carried out in the extended family

sample and in the DZ sample, but not in the country-specific

samples. Figures 1 and 2 show all of the linkage results per

chromosome in the extended family sample, DZ twins-only

sample and sex-stratified analyses. The DZ twin data provided

evidence for more loci than did the extended family sample.

The DZ linkage loci of multipoint logarithm of odds score

(MLOD)41 are summarized in Table 3 with corresponding

MLOD scores from both sample sets. The country-specific

linkage peaks of MLOD42 are summarized in the Table 4.

Discussion

Body mass index has been an extensively studied trait

because of the health effects of obesity. The need for more

effective clinical strategies has become evident with the

increasing prevalence of obesity in recent years. This high-

lights the importance of finding variants responsible for

differences between individuals in how they respond to

factors resulting in an imbalance between energy expendi-

ture and energy intake. Yet, the causes of the increase in

obesity are more complex than suggested by the energy

imbalance equation. Thus, Keith et al.21 have shown other

putative contributors to the increase in obesity prevalence.

They found at least 10 factors which correlated with the

increased prevalence of obesity in the United States during

the recent decades, for example, increased sleep deprivation,

reduction in variability in ambient temperature, decreased

smoking, pharmaceutical iatrogenesis (weight gain due to

medication) and increasing gravida age. However, the causal

role of these temporally correlated factors needs to be

established. Hypothetically, genes correlated with obesity

may be genes acting on these putative risk factors rather than

directly on obesity-related metabolic factors. Within popula-

tions, numerous family and twin studies have documented a

consistent major role of genetic effects on BMI.22,23 The

linkage and candidate gene studies have been summarized

by the human obesity gene map.24

In this study, we aimed at finding common major loci

affecting BMI in European populations. The DZ twins in this

study originate from six twin cohorts of European origin.

The aims of this multicenter analysis were to replicate

previous findings and to use the greater statistical power to

identify novel loci. DZ twins are of the same age, have shared

the same prenatal and family rearing environment and

school experiences more closely than had full siblings

from families. As BMI changes with age, and the genetic

determinants of weight change are largely uncorrelated with

BMI level in adulthood, matching on age is an important

advantage of the current data set.25,26 As the biggest

individual cohort comprised 2216 individuals, power was

substantially increased by combining the cohorts which

totaled 10535 individuals. On the other hand, the combined

sample would be unable to find population-specific loci.

We showed suggestive linkage in two regions, namely

3q29 and 7q36 (MLOD¼2.6 and MLOD¼2.4, respectively)

that were extensively replicated in other studies, thus

providing further evidence that these regions harbor genes

that affect BMI.

A summary of earlier relevant findings in relation to the

current results in shown in Table 5. The linkage to

chromosome 3q29 region is exemplified by findings from

Kissebah et al.28 with numerous metabolic syndrome

component traits, including BMI, waist, hip, insulin,

insulin:glucose in Caucasian families (MLOD¼2.4–3.5,

2209 individuals from 507 families). Luke et al.29 showed

linkage with BMI in an African-American population

Table 2 Number of informative pairs with both phenotype and genotype

information

Relative pair Pairs

Sib pairs 5837

Half-sibs 27

Cousins 24

Parent–child 3078

Grandparent–grandchild 14

Avuncular 119
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(MLOD¼4.3, 1163 individuals from 329 families), and Wu

et al.32 showed linkage with BMI in a combined sample of

European, African and Mexican Americans (MLOD¼3.4, in

4021 sib pairs). The key finding of the chromosome 7q36

region include the following: the study by Feitosa et al.,34

who have shown linkage to BMI in an European–American

sample (MLOD¼4.9, 3407 individuals from 536 families),

and the study by Sammalisto et al.,33 who reported linkage to

0 50 100 150 200 250

0

1

2

3

4

cM

LO
D

0

1

2

3

4

LO
D

0

1

2

3

4

LO
D

0

1

2

3

4

LO
D

0

1

2

3

4

LO
D

0

1

2

3

4

LO
D

0

1

2

3

4

LO
D

0

1

2

3

4
LO

D

0

1

2

3

4

LO
D

0

1

2

3

4

LO
D

0

1

2

3

4

LO
D

0

1

2

3

4

LO
D

Chromosome 1

NEGR1 SEC16B

0 50 100 150 200 250

cM cM

Chromosome 2

TMEM18

0 50 100 150 200

Chromosome 3

ETV5

0 50 100 150 200
cM

Chromosome 4

GNPDA2

0 50 100 150 200
cM

Chromosome 5

0 50 100 150
cM

Chromosome 6

NCR3

0 50 100 150
cM

Chromosome 7

0 50 100 150
cM

Chromosome 8

0 50 100 150
cM

Chromosome 9

0 50 100 150

cM

Chromosome 10

PTER

0 50 100 150
cM

Chromosome 11

LGR4
MTCH2

0 50 100 150
cM

Chromosome 12

FAIM2

Figure 1 The multipoint variance components linkage results for chromosomes 1–12 and published genome-wide association loci.

Largest DZ twin linkage study for BMI
J Kettunen et al

1238

International Journal of Obesity



BMI in a combined African-American and European–

American sample (female-specific analysis MLOD¼ 2.9, of

5788 females from 3032 families). Interestingly, the linkage

signal in chromosome 7q36 area of our study is female

driven which is consistent with the study by Sammalisto

et al., suggesting a female-specific effect for this locus. There

was no sex-specific effect in the chromosome 3q29 linkage

signal. There are some interesting candidate genes right
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under the best linkage peaks of the combined sample. For

example, in the 3q29 region, there is APOD (OMIM: 107740),

which has not yet been associated with human obesity but

has a role in fat metabolism. The linkage peak in 7q36 is near

the leptin gene (7q27), but more interestingly under the

linkage peak resides the INSIG1 (OMIM: 602055) gene. It has

been shown to regulate cholesterol concentrations in cells

and would be an excellent candidate gene for further studies

along with APOD. Individual cohorts provided evidence of

linkage in regions, which have also been previously linked to

obesity-related traits: the 2p2437–40 area (MLOD¼3.4) in the

Dutch cohort and the 20q1341–44 area (MLOD¼3.2) in the

Finnish cohort. In addition, the Dutch cohort showed

significant linkage to the chromosome 16q23 area

(MLOD¼3.7), which has been linked to resting energy

expenditure.45 The linkage studies from individual cohorts

with partially overlapping samples have been published

before. The linkage study in UK twins did not reveal any

significant loci on its own.46 The previously published

studies in both Dutch twins47 and Finnish twins48 were

considerably smaller than the sample used in this study, and

they did not provide significant evidence of linkage. The

previously published linkage study in Australian twin

families49 was slightly smaller (933 families) than the sample

used in this study (1153 families), and the results between

our Australian sample and previously published data were

similar. The linkage studies in Danish and Swedish twins

have not been published before. More detailed research on

these regions should be conducted within the populations in

which they were identified. They might contain some rare

alleles that are enriched within these populations but are

very rare in other parts of Europe. The strongest evidence for

linkage in the combined study came from the DZ twin

analysis without the additional family members corroborat-

ing that our sampling strategy was successful. Although the

possibility of sampling error cannot be excluded, the reason

for stronger signal in DZ twin sample was probably the

reduction in environmental variance allowing us to show

linkage in previously well-replicated regions exemplified by

Table 3. Although these regions show evidence of linkage,

GWA scans have not yet been able to show evidence of

association in all of these regions; GWASs identify only

common variants, and current chips do not cover all the

existing variations. Therefore, we still need to find ways to

Table 3 Linkage peaks with MLOD41 in either DZ twins or in extended

families

Position DZ twins Extended families

1p32.2 1.3 0.3

3q27.3 2.5 0.7

3q29 2.6 0.9

7q36.3 2.4 1.0

16p13.2 0.4 1.3

16p13.3 1.3 0.3

18q12.1 1.6 0.0

20p12.2 1.1 0.3

20q13.32 0.1 1.7

22q13.2 1.9 1.1

Abbreviations: DZ, dizygotic; MLOD, multipoint logarithm of odds score.

Table 4 The cohort-specific linkage results of MLOD42 both in DZ twins

and extended families

Position MLOD Sample set

2p24.1 3.4 Dutch DZ sample

3q26.32 2 Australian extended families

6q26 2.56 Dutch DZ sample

7q36.2 2.6 Australian DZ sample

7q36.3 2.4 Danish DZ sample

10q22.3 2.6 Finnish extended families

16q23.2 3.73 Dutch extended families

17p13.3 2.28 Finnish extended families

18q12.1 2.2 Swedish DZ sample

20q13.2 3.2 Finnish extended families

Abbreviations: DZ, dizygotic; MLOD, multipoint logarithm of odds score.

Table 5 Studies that show linkage in chromosome 3q29 and 7q36 regions

Chromosome Study group Number of

families

Number of

individuals

Trait Population LOD

3q29 Francke et al.27 99 535 Categorized coronary heart

disease and myocardial infarction

North Indian origin 2.1

3q29 Kissebah et al.28 507 2209 Metabolic syndrome component traits Caucasian 2.4–3.5

3q29 Luke et al.29 329 1163 BMI African American 4.3

3q29 Vionnet et al.30 143 637 Early onset type 2 diabetes French 4.6a

3q29 Walder et al.31 239 770 BMI Pima Indians 1.4

3q29 Wu et al.32 4021 8042 BMI Mixed European American,

African American and Mexican American

3.4

7q36 Sammalisto et al.33 3032 5788 BMI Mixed European American

and African American

2.9b

7q36 Feitosa et al.34 536 3407 BMI European American 4.9

7q36 Hsueh et al.35 28 672 BMI adjusted leptin levels Amish 1.8

7q36 Pérusse et al.36 156 521 Abdominal subcutaneous fat Caucasian 2

Abbreviation: BMI, body mass index. aMaximum binomial likelihood, bFemale-specific signal.
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combine the linkage and GWASs to finally find the variants

responsible for the linkage signals, which may be caused by

genetic markers other than common single-nucleotide

polymorphisms.

The contribution of the FTO gene to obesity was initially

discovered through type 2 diabetes and not by BMI as such.

Later studies such as the study by Kring et al.50 have shown

that genetic variants in the FTO gene do contribute to fat

mass, but the mechanism still remains unclear. Interestingly,

this region shows no evidence of linkage thus suggesting

that the region does not harbor variants detectable for

linkage. It must be realized that the linkage analysis

approach detects different variants than does association

mapping.51 The MC4R gene has been shown to harbor rare

variants which are associated with severe non-syndromic

obesity and is the largest known source of contribution in

monogenic obesity.52,53 There is a linkage peak in the DZ

twin sample (MLOD¼1.5) which is 20 cM away from the

gene. We plotted all of the GWA findings to our linkage data

in Figure 1. One of the closest genes reported in the GWAS in

the associated region is marking the position of the

association. Interestingly, 4 of the 13 reported GWA loci

show linkage 41 in the combined sample including NPC1,

LGR4, ETV5 and NCR3. This would suggest that these

regions also harbor rare variants with strong effects. The

findings of this study provide further evidence in several

regions in the genome. There are obesity genes to be

identified under established linkage peaks, which might

explain more of the still largely unexplained variance in

human BMI.
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