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ABSTRACT 

 

Accurate identification of white matter structures and 

segmentation of fibers into tracts is important in 

neuroimaging and has many potential applications. Even so, 

it is not trivial because whole brain tractography generates 

hundreds of thousands of streamlines that include many 

false positive fibers. We developed and tested an automatic 

tract labeling algorithm to segment anatomically meaningful 

tracts from diffusion weighted images. Our multi-atlas 

method incorporates information from multiple hand-

labeled fiber tract atlases. In validations, we showed that the 

method outperformed the standard ROI-based labeling using 

a deformable, parcellated atlas. Finally, we show a high-

throughput application of the method to genetic population 

studies. We use the sub-voxel diffusion information from 

fibers in the clustered tracts based on 105-gradient HARDI 

scans of 86 young normal twins. The whole workflow 

shows promise for larger population studies in the future.  

  

    Index Terms— HARDI, Tractography, Fiber Clustering, 

Label Fusion, Genetic Heritability 

 

1. INTRODUCTION 

 

Diffusion weighted MR imaging (DWI) is increasingly used 

to study pathology and connectivity of the white matter 

(WM) pathways in the living brain. Recently, more 

advanced diffusion imaging models such as high angular 

resolution diffusion imaging (HARDI [1]) and diffusion 

spectrum imaging have been more widely adopted, as they 

offer the angular resolution needed to resolve fibers that mix 

and cross. Tractography can fit a path through the 

directional diffusion data at each voxel, generating 

hypothetical streamlines that are inferred to represent neural 

pathways throughout the whole volume of brain.   

However, the results of whole-brain tractography are too 

complex and cluttered to be interpretable without further 

analysis to organize or group the extracted fibers. Clustering 

– extracting anatomically meaningful sets of streamlines, or 

tracts – is also a useful step in defining regional connectivity 

and in measuring fiber integrity for coherent fiber pathways. 

Intuitively, anatomically well-known WM tracts can be 

extracted based on ROI constraints obtained by a parcellated 

volumetric atlas or manual tracing [2]. The advantage of this 

approach is that the resulting sets of streamlines can be fed 

into large-scale population studies [3], but the final results 

often need manual intervention to screen out false positive 

fibers.  

A classic automatic clustering framework calculates a 

pairwise similarity metric (e.g., distance) between all pairs 

of fibers and the resulting matrix is fed into standard 

clustering algorithms to separate them into distinct bundles 

[4]. However, without anatomical guidance, clustering 

results heavily rely on the number of clusters a user decides 

empirically. In “bottom-up” methods, major tracts emerge 

by adding up smaller groups hierarchically, starting from 

individual fibers. This may not efficiently filter out 

erroneous fibers buried among the large number of 

streamlines (100,000-1,000,000) that whole-brain 

tractography generates. Recent hybrid approaches [5] 

extract the well-known WM tracts by combining prior 

information from an atlas with data-driven similarity-based 

clustering. However, it is not yet clear how best to pick an 

atlas that can successfully find fibers in new scans, adapting 

to the large individual tract variability, which is itself of 

interest in large-scale group studies. 

   In [6], we introduced a multi-atlas label fusion framework 

to automatically extract anatomically meaningful WM 

tracts. Our “top-down” approach produced hand-made 

multiple WM tract atlases as guidance and a distance metric 

to screen trajectories for tracts of interest. We then used a 

label fusion scheme, which has been well-established in 

traditional intensity-based image segmentation [7], to fuse 

the clustered results obtained from individual atlases. In this 

work, we further refine our algorithm as follows: 1) 

Probabilistic tractography is implemented to increase the 

quality and the number of fibers; 2) More anatomically 

well-known tracts are included in the hand-made atlases; 3) 

ROI constraints are added to assist clustering; 4) Label 

fusion scheme includes distance consideration over simple 

majority voting; 5) Quantitative validation is carefully done 
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against manual segmentation; 6) We design a pointwise 

fiber correspondence matching approach across the 

population and gather their diffusion properties in a genetic 

heritability application to demonstrate how to apply the sub-

voxel fiber information to a real biological question. 

   

2. LABEL CLUSTERING & FUSION 

 

2.1. Tractography 

 

We performed whole brain tractography with Camino 

(http://cmic.cs.ucl.ac.uk/camino/). We used Probabilistic 

Index of Connectivity (PICo) tractography [8], to follow the 

principal diffusion directions obtained by spherical 

harmonic reconstruction of the HARDI data to generate 

fibers throughout the entire brain. 

 

2.2. WM Tract Atlas Construction 

 

We constructed seven WM tract atlases, from 7 randomly 

chosen normal subjects from our HARDI dataset. The 

fractional anisotropy (FA) images of all the atlases were 

registered to a single-subject template in the ICBM-152 

space called the “Type II Eve Atlas” (a 32-year old healthy 

female) [9]. The entire brain of the “Eve” template was 

parcellated using 130 bilateral ROIs. 

The labeled template ROIs were re-assigned to the seven 

registered atlases, respectively, by warping them with the 

deformation fields generated by Advanced Neuroimaging 

Tools (ANTs) (http://www.picsl.upenn.edu/ANTS/). Fibers 

that traversed the ROIs were extracted according to the 

lookup table in [10]. For example, the corticospinal tract 

was extracted from fibers passing between the precentral 

gyrus and cerebral peduncle. In creating the atlases, each 

tract was manually edited to remove visible outliers. 

Currently, each atlas is comprised of 17 major WM tracts 

(but could be further supplemented in the future): left/right 

corticospinal tract (CST), left/right anterior thalamic 

radiation (ATR), left/right cingulum (CGC), left/right 

inferior fronto-occipital fasciculus (IFO), left/right inferior 

longitudinal fasciculus (ILF), left arcuate fasciculus (part of 

the superior longitudinal fasciculus) (ARC), and six 

segments of the corpus callosum – projecting to both frontal 

lobes (CC-FRN), precentral gyri (CC-PRC), postcentral gyri 

(CC-POC), superior parietal lobes (CC-PAR), temporal 

lobes (CC-TEM), and the occipital lobes (CC-OCC). We did 

not include the right arcuate fasciculus because not everyone 

has a complete instance of this tract [11], which leads to 

difficulties in performing statistical analysis. Figure 1 

shows an example of the WM tract atlases that we created 

(back, left side, and bottom views). 

 

2.3. Fiber Clustering 

 

Using Camino, we extracted whole-brain tractography from 

additional subjects whose WM fibers need to be clustered 

and labeled. Then, the labeled “Eve” template ROIs were re-

assigned to the subject through registration. Based on the 

look-up table in [10], those fibers that did not traverse the 

ROIs for a particular tract were filtered out. This reduced 

the fiber count for a given tract from a million to a few 

hundreds or thousands. 
Next, the same registration transform was used to align 

the subject’s FA image to each of the seven WM tract 

atlases’ FA images, respectively. Each atlas’s tracts were 

warped to the subject space with the corresponding 

deformation fields generated from the FA registration. 

Scalar registration is preferred than ODF-based registration 

under the multi-atlas scenario because it reduces computing 

time significantly (from a few hours per subject to around 5 

minutes for our dataset) and computing resources in 

population studies. Moreover, fiber alignment is indeed 

improved significantly with FA registration [12].    

We defined a fiber distance metric to decide which fibers 

from each subject should be included in any individual 

warped atlas tract, based on an empirical threshold (15mm 

for our dataset). For any pair of fibers γi and γj, we define 

the symmetric Hausdorff distance [4]: dH(γi,γj) = 

max(dH’(γi,γj), dH’(γj,γi)), where dH’ is the asymmetric 

Hausdorff distance. dH’(γi,γj) = maxxϵγi minyϵγj ||x – y||. ||.|| is 

the Euclidean norm and the ordered pair (γi,γj) indicates an 

asymmetric distance from γi to γj. Here the x’s and y’s are 

the coordinate points along fibers γi and γj, respectively. 

   For each fiber member of a particular tract in an atlas, we 

computed the distance between this fiber and each 

remaining fiber that survived the ROI constraints in the 

subjects’ tractography. The subject’s fibers whose distances 

are less than the threshold were considered candidates for 

that particular tract. 

 

Figure 1. A representative WM fiber atlas computed, and 

manually edited, from 4-Tesla 105-gradient HARDI data, showing 

major tracts. We created these, with manual editing, in 7 subjects, 

and they are then propagated into new subjects. Back, left side, and 

bottom views are shown. 

2.4. Label Fusion 

 

We chose the Hausdorff distance metric in the fiber 

clustering phase to ensure that only streamlines were 

selected that had similar geometric shapes, and that lay in 

the region where the particular atlas WM tract is located. 

However, due to shape variability among individual WM 

atlases, often the same tract in multiple atlases might 

nominate different candidates based on its own shape. We 
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defined a mean fiber distance metric to rank the fibers 

nominated by individual atlases. For each fiber, Dmean=(the 

sum of the Hausdorff distances from the nominated atlases+ 

empirical cutoff threshold*the number of non-nominated 

atlases)/total number of atlases. An empirical percentage 

threshold was used to decide how many fibers were 

included in the final result for each particular tract. 

 

3. GENETIC HERITABILITY ANALYSIS 

 

3.1. Fiber Matching 

 

To perform group studies, we need to establish a point-wise 

correspondence between fibers of the segmented tracts 

across the population. To be more precise, for each 

particular tract, we choose a representative sample among 

our manually constructed atlases. For each point on the 

fibers that belong to this tract, we warped it to each subject 

in the rest of the population by applying the deformation 

field obtained in Section 2.3. Next, we located all fibers of 

that tract in that subject within a neighborhood (a sphere 

with the radius of 1.5 voxel) of the warped atlas point. 

Finally, we chose the projection point on the fiber that had 

the shortest projection distance from the warped atlas point 

as the “corresponding” point in that subject. If no fibers fall 

into the neighborhood of the warped atlas point, we would 

just use the warped atlas point as the “corresponding” point. 

An illustration of fiber matching is shown in Figure 2. 

 
Figure 2. An illustration of how to choose a “corresponding” fiber 

point in a subject. 

  

3.2. Genetic Analysis 

   

Monozygotic (MZ) twins share 100% of their genetic 

variants whereas dizygotic (DZ) twins share, on average 

50%, of their genetic polymorphisms. A simple and widely-

used estimate of heritability (proportion of variance due to 

genetic factors), in twin studies, assesses how much the 

intra-class correlation for MZ twin pairs (rMZ) exceeds the 

DZ twin correlation (rDZ). Falconer’s heritability statistic 

[13] is defined as h
2
=2(rMZ-rDZ). It estimates the proportion 

of the overall variance that is due to genetic differences 

among individuals. More complex methods exist to estimate 

heritability, but we use Falconer’s here just as an example. 

Interpolated FA values at “corresponding” fiber points of a 

particular tract across the population were used to calculate 

intra-class correlations rMZ and rDZ, and h
2
. 

 

3.3. Subjects and Image Acquisition 

 

For this study we included data from 86 healthy, right-

handed, young adult twins from 43 families in Australia 

with 22 same-sex MZ twin pairs (11 male pairs) and 21 

same-sex DZ pairs (9 male pairs). Each image volume 

consisted of 55 1.79x1.79x2mm axial slices. 105 DWI 

volumes were acquired per subject: 11 T2-weighted b0 

image volumes and 94 diffusion-weighted volumes (b = 

1159 s/mm
2
). 

 

4. RESULTS 

 

4.1. Clustering Visualization 
 

Figure 3 shows how we obtained the left arcuate in a test 

subject. The first row shows the atlas versions of the tract. 

The second row shows the different candidates for this tract 

in the same test subject, based on using each atlas to decide 

which fibers it should contain. The final result for this tract 

was obtained by applying the label fusion scheme in Section 

2.4. The manual segmentation result is also included for 

comparison (see the right bottom panel).  

 
Figure 3. Label fusion result for the left arcuate fasciculus (in 
blue) in a test subject (viewed from the left). 

 
Figure 4. Back, left side, and bottom views of two subjects’ fiber 

clustering are shown. The original whole brain tractography 

(leftmost column) is included for comparison, clearly showing the 

utility of the data reduction. 

 

Figure 4 shows automatic WM fiber clustering results for 

two representative test subjects. Back, left side, and bottom 

views are shown. The types of tracts and their colors are as 

in Figure 1. 

 

4.2. Quantitative Validation 

 

To quantitatively evaluate the proposed framework, we first 

514



 

converted each of the fiber tracts to a binary image, where 

voxels that the tracts cross are marked as 1, and 0 otherwise. 

Then the Dice coefficient of two tracts is defined as: 

D(a,b)=2(V(a)∩V(b))/(V(a)+V(b)), where V() is the voxel 

volume the tract penetrates. 

We randomly selected 8 subjects (no twin pairs) from our 

twin datasets. And we performed leave-one-out cross 

validation, i.e., using 7 subjects as atlases to test on the 8th 

one. Figure 5 shows the average Dice coefficients for all 

tracts mentioned in Section 2.2 with our label fusion method 

and ROI-only clustering (based on the look-up table in [10]) 

against manual segmentation (ground truth). 

 
Figure 5. The average Dice coefficients and standard errors (error 

bars) of all the tracts described in Section 2.2 for our label fusion 

method and the ROI method against manual segmentation.  

 

How many atlases are needed is still an open question. 

However, based on the Dice coefficients, 7 atlases may well 

capture the variability, at least for our dataset. Overall, our 

algorithm outperformed the ROI method for every tract, and 

also gave a smaller variance, especially on those tracts that 

have unclear or no ROI constraints (CGC, ARC, ILF and 

CC-TEM). As to the fusion percentage, we chose 20%-50% 

for those tracts with unclear or no ROI constraints and 80%-

100% otherwise. 

 

4.3. Falconer Heritability 

 

Figure 6 shows the Falconer heritability statistic based on 

the FA values for two different segmented tracts (left CST 

and left IFO) based on 76 twins after for correcting multiple 

comparisons using the false discovery rate method (p=0.05). 

Higher Falconer statistics suggest genetic influences on 

those parts of tracts (h
2
~1). 

 

5. CONCLUSION 

 

Here we extended the label fusion concept to fiber 

clustering and compared it to an automatic ROI-based 

method for quantitative validation. We also showed an 

example of how to perform a group statistical analysis (here, 

a heritability study) by using the sub-voxel fiber diffusion 

information mapped onto the clustered tracts. This complete 

workflow provides us with a practical tool for future large 

population studies that may reveal how the brain is affected 

by genetic factors, and by a variety of psychiatric or 

neurological disorders such as Alzheimer’s disease. 

 
 

 

Figure 6. Color maps show example maps of Falconer’s 

heritability statistic for the left corticospinal tract (left) and left 
inferior fronto-occipital fasciculus (right).  
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