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Establishing Zygosity and Genotyping. Here, we analyzed a high-
angular resolution diffusion imaging (HARDI) -imaged sub-
sample of a much larger genotyped twin population. Subjects
were screened to exclude cases of pathology known to affect brain
structure. No subjects reported a history of significant head injury,
neurological or psychiatric illness, or substance abuse or de-
pendence, and no subjects had a first-degree relative with a psy-
chiatric disorder. All subjects were right-handed as determined
using 12 items from Annett’s Handedness Questionnaire (1).
Zygosity was initially established objectively by typing nine in-
dependent DNA microsatellite polymorphisms (polymorphism
information content > 0.7) using standard PCR methods and
genotyping. Results were cross-checked with blood group (ABO,
MNS, and Rh) and phenotypic data (hair, skin, and eye color),
giving an overall probability of correct zygosity assignment >
99.99%. Subsequently zygosity was confirmed by genome-wide
association scan (GWAS). Genomic DNA samples were ana-
lyzed on the Human610-Quad BeadChip (Illumina) according to
the manufacturer’s protocols (Infinium HD Assay). Quality
control procedures on the zygosity and familial relatedness of
individuals within the cohort have previously been established.
Families with ancestry deviating from the European population
were determined as in ref. 2. Briefly, non-Australian European
populations were used to calculate mean reference first and
second principle component scores (PC1 and PC2). Any Aus-
tralian individual more than 6 SDs from this mean for either PC1
or PC2 was deemed to be an ancestry outlier and removed from
the GWAS analyses. Additionally, the pedigree structures for
this study were examined and confirmed using Graphic Repre-
sentation of Relationships (3).

Imaging Parameters. T1-weighted images were acquired with an
inversion recovery rapid gradient echo sequence. Acquisition
parameters were: inversion/repetition/echo time (TI/TR/TE) =
700/1500/3.35 ms; flip angle = 8 degrees; slice thickness =
0.9mm, with an acquisition matrix of 256 × 256. Diffusion-
weighted images (DWI) were acquired using single-shot echo
planar imaging (EPI) with a twice-refocused spin echo se-
quence to reduce eddy-current induced distortions. Acquisition
parameters were optimized to improve the signal-to-noise ratio
for estimating diffusion tensors (4). Imaging parameters were:
23 cm FOV, TR/TE 6090/91.7 ms, with a 128 × 128 acquisition
matrix. Each 3D volume consisted of 55 2-mm thick axial slices
with no gap and a 1.79 × 1.79 mm2 in-plane resolution. 105
images were acquired per subject: 11 with no diffusion sensi-
tization (i.e., T2-weighted b0 images) and 94 DWI (b = 1159
s/mm2) with gradient directions distributed on the hemisphere.
Scan time was 14.2 minutes.

Heritability Analysis of Connectivity.

Z=Aa+Cc+Ee : [S1]

in Eq. S1, Z can be any quantitative phenotypic trait—in this
case, the fiber count proportion at a particular matrix element.
A, C, and E are latent (unobserved) variables, and a, c, and e are
the weights of each parameter determined by optimizing Σ by full
information maximum likelihood estimation. The variance com-
ponents combine to create the total observed interindividual
variance, and therefore, Eq. S2 is satisfied:

a2 + c2 + e2 = 1: [S2]

This form of the structural equation model uses the full informa-
tion maximum likelihood estimation (Eq. S3) with a χ2-distrib-
uted null distribution to estimate genetic vs. environmental
contributions to the observed variance, where m is the number
of twin pairs in each group [49 for monozygotic (MZ) and 65 for
dizygotic (DZ)], Sg is the observed covariance matrix for each
twin group g, and Σg is the expected covariance matrix (Eq. S4)
for group g, with α = 1 for the MZ group and α = 0.5 for DZ:
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In structural equation models, the χ2 goodness of fit measure
determines a P value for all specified regions of interest (ele-
ments of the matrix) where the test is performed. This value
indicates that the model is a good fit to the data if P > 0.05 (this
direction is the opposite of the usual convention that rejects
models or hypotheses when P < 0.05). To determine the signif-
icance of a particular factor, specifically the A or C factor, the χ2
goodness of fit values of the model may be compared with those
values for a model that does not include that factor [i.e., to
a shared environmental (C)/ unique environmental (E) model
to determine the significance of the additional A factor; to an
additive genetic (A) /E model to determine the significance of
the C factor], giving Eq. S5:
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where χ2
−1

1DF denotes the inverse of the cumulative distribution
function for a χ2 distributed variable with one degree of freedom.
Similar formulations apply for p(C). In this case, low P values
express significant improvements when adding a factor.
OpenMx software (openmx.psyc.virginia.edu/) (5) was im-

plemented in the R statistical package (version 2.9.2; http://
www.r-project.org/) to calculate the A/C/E parameters. The
covariates—sex, age, and total intracranial volume (ICV)—
were added to the model.
The genetic contributions to brain connections were esti-

mated with a classical twin A/C/E structural equation model,
including covariates. The A/C/E model did not fit the data
better than the simpler A/E model. We, therefore, proceeded
with the A/E model, which was a significantly better fit to the
data than if all network variance was attributable to unique
subject-specific effects.

Split Sample Replication. Groups were split according to study
identification numbers uniquely assigned for each subject as
they entered into the study. All family members were assigned to
the same group. No significant differences were seen between
the two groups in sex (P = 0.91) or ICV (as measured by the
volume inside the skull-stripped T1-weighted images; P =
0.06). However, because the study was structured to contain
a narrow range of ages corresponding to young adults between
the ages of 21 and 30 y, there was a significant difference in age
as calculated through a two-sided t test of the populations (P =
1.2 × 10−18; mean group 1 = 24.4; mean group 2 = 22.6). This
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difference was expected—because of the narrow age range of
this study, older Australian twins approaching the age cutoff (30 y)
were recruited into the study first to allow for maximal subject
participation. Age, sex, and ICV were used as standard covariates
in the genome-wide scan.

Full-Sample Connectome-Wide, Genome-Wide Scan. The two groups
of healthy young adults were later combined to maximize the
power for association. The most strongly associated SNPs within
the same locus were found to reach connectome-wide, genome-
wide significance as defined earlier. The Manhattan Plot of
association statistics across the genome is shown in Fig. S3.
Genome-wide significant results across the connections of the
full sample are shown in Table S3. A full-scale quantile–quantile
plot is shown in Fig. S4 combining all P values from all tested
connections.

Tensor-Based Morphometry Study of the Alzheimer’s Disease
Neuroimaging Initiative Cohort. Briefly, the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) is a large 5-y study launched
in 2004 by the National Institute on Aging, the National In-
stitute of Biomedical Imaging and Bioengineering, the Food
and Drug Administration, private pharmaceutical companies,
and nonprofit organizations. Subjects were recruited from 58
sites in the United States. The study was conducted according
to the Good Clinical Practice guidelines, the Declaration of
Helsinki, and US 21 CFR Parts 50 (Protection of Human Sub-
jects) and 56 (Institutional Review Boards). Written informed
consent was obtained from all participants before protocol-
specific procedures were performed. All ADNI data are publicly
available (http://www.loni.ucla.edu/ADNI/). To avoid effects of
population stratification on genetic analysis (6), we included
only Caucasian subjects (non-Hispanic; n = 738) identified by
self-report and confirmed by multidimensional scaling analysis (7).
Genotyping was performed using the Illumina 610-Quad

BeadChip using the Tagger algorithm in Haploview (v4.2) (8).
ADNI subjects were scanned with a standardizedMRI protocol

developed for this cohort (9, 10). High-resolution structural brain
MRI scans were acquired at 58 sites using 1.5 T MRI scanners.
Additional data collected from a subset of the same subjects, at 3
T, were not analyzed here because of the confounding effects of
the different scanner field strength. A sagittal 3D magnetization
prepared rapid gradient echo (MP-RAGE) sequence was used,
optimized for consistency across sites. repatition time/echo time
(TR/TE) = 2,400/1,000 ms; flip angle = 8°; field of view = 24 cm;
final reconstructed voxel resolution = 0.9375 × 0.9375 × 1.2
mm3]. Image corrections were applied using a processing pipe-
line at the Mayo Clinic as previously described (11, 12). To ad-
just for global differences in brain positioning and scale, all
subjects’ scans were linearly registered to the stereotaxic space
defined by the International Consortium for Brain Mapping (13)
using a nine-parameter transformation (three translations, three
rotations, and three scales).
We created a minimal deformation target (MDT) using non-

linear fluid registration with the method proposed by Kochunov
et al. (14, 15). An MDT serves as an unbiased average template
image to enable automated image registration and reduce sta-
tistical bias. Here, an MDT was created from the MRI scans of
40 randomly selected healthy elderly subjects as detailed else-
where (11, 12).
To quantify 3D patterns of regional volumetric differences

throughout the brain, all individual skull-stripped T1-weighted
images (n = 738) were nonlinearly aligned to a cohort-specific
template with an inverse-consistent 3D elastic warping technique
using a mutual information cost function (16). For each subject,
a separate Jacobian matrix field was derived from the gradients
of the deformation field that aligned that individual brain to the
MDT template. The determinant of the Jacobian matrix was

derived from the deformation field to characterize local volume
differences on a voxelwise level.
For this tensor-based morphometry (TBM) analysis, we are

carrying forward into another cohort, for validation, the effect of
just one single discovered SNP on brain structure, and therefore,
there is no need to correct for any more than the one SNP. This
practice has been the standard in other work, where the discovery
stage is used to pick out a SNP (or a handful of SNPs), and then
the multiple testing correction in the second corroborative
sample is either not performed or much less heavy, in line with
the number of SNPs carried forward (in this case, just one).

Assessing Regional Volume Influences. The TBM assessment of the
ADNI cohort suggests cortical volume differences may be driving
the connectivity-level association of SPON1 in the healthy young
adults as well. To assess this possibility, we additionally ran TBM
on the T1-weighted images of same set of 331 twins processed as
for ADNI but controlling for kinship using the mixed model
approach. Additionally, the cortical volumes of the posterior
cingulate cortex and the superior parietal cortex extracted from
FreeSurfer were assessed to determine whether the regional
volumes were associated with the connectivity of SPON1. Vol-
umes from both hemispheres were analyzed.
Significant associations were seen with respect to localized

structural volume in the ADNI cohort in the same regions where
we noted altered structural connectivity, and therefore, we set out
to determine whether the significant associations of SPON1 ge-
notype with the posterior cingulate cortex and the superior pa-
rietal cortex connection were, in fact, attributable to variation in
the volumes of those regions. A TBM analysis of the same 331
twin T1-weighted anatomical images revealed no significant
differences in brain volume with respect to rs2618516. Addi-
tionally, we extracted the raw volumes for the left and right
posterior cingulate cortex and the superior parietal cortex from
the FreeSurfer parcellations and found no association to the
SNP (P = 0.748 for the left posterior cingulate cortex, P = 0.485
for the right posterior cingulate cortex, P = 0.589 for the left
superior parietal cortex, and P = 0.478 for the right superior
parietal cortex). This null finding suggests that the volume of
these regions is not the driving force behind the significant as-
sociations found with connectivity.

Cortical Extraction and HARDI Tractography. Nonbrain regions
were automatically removed from each T1-weighted MRI scan
and a T2-weighted image from the diffusion-weighted image
(DWI) set using the FSL tool BET (http://fsl.fmrib.ox.ac.uk/fsl/).
A trained neuroanatomical expert manually edited the T1-
weighted scans to further refine the brain extraction. Total brain
volume estimates were obtained from the manually edited full
brain mask to include cerebral, cerebellar, and brainstem re-
gions. All T1-weighted images were linearly aligned using FSL
(with 9 degrees of freedom) to a common space (17) with 1-mm
isotropic voxels and a 220 × 220 × 220-voxel matrix. Raw dif-
fusion-weighted images were corrected for eddy current dis-
tortions using the FSL tool eddy_correct (http://fsl.fmrib.ox.ac.
uk/fsl/). For each subject, the 11 eddy-corrected images with no
diffusion sensitization were averaged, linearly aligned, and re-
sampled to a downsampled version of their corresponding T1
image (110 × 110 × 110 mm, 2 × 2 × 2 mm). Averaged b0 maps
were elastically registered to the structural scan using a mutual
information cost function (16) to compensate for echo planar
imaging (EPI)-induced susceptibility artifacts.
The transformation matrix from the linear alignment of the

mean b0 image to the T1-weighted volume was applied to each
of 94 gradient directions to properly reorient the orientation
distribution functions (ODFs). At each HARDI voxel, ODFs
were computed using the normalized and dimensionless ODF
estimator derived for q-ball imaging in ref. 18. We performed
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HARDI tractography on the linearly aligned sets of DWI volumes
using these ODFs. Tractography was performed as in ref. 19.
Elastic deformations obtained from theEPI distortion correction,

mapping the average b0 image to the T1-weighted image, were then
applied to the tracts 3D coordinates for accurate alignment of the
anatomy. Each subject’s dataset contained 2,000–10,000 useable
fibers (3D curves).
Thirty-five cortical labels per hemisphere, as listed in the

Desikan–Killiany atlas (20), were automatically extracted from
all aligned T1-weighted structural MRI scans using FreeSurfer
(http://surfer.nmr.mgh.harvard.edu/) (21).
Cortical labels extracted are listed.

The first 35 elements of the matrix (on both the x and y axes)
represent the regions on the left hemisphere, whereas numbered
labels 36–70 represent the same regions on the right hemisphere.
The resulting T1-weighted images and cortical models were

aligned to the original T1-weighted input image space and
downsampled using nearest neighbor interpolation to the space of
the DWIs (to avoid intermixing of labels). To ensure tracts would
intersect cortical labeled boundaries, labels were dilated with an
isotropic box kernel of width = 5 voxels as implemented in
Matlab (http://www.mathworks.com/).
For each subject, a full 70 × 70 connectivity matrix was created.

Each element described the proportion of the total number of
fibers connecting each of the regions; diagonal elements of the
matrix describe the total number of fibers passing through a certain
cortical region of interest. If more than 5% of subjects had no fibers
in a matrix element, then that connection was considered invalid

or insufficiently consistent in its occurrence in the population,
and it was not included in the analysis.
The flowchart in Fig. S1 shows image processing steps to gen-

erate a map of brain fiber connectivity based on an individual’s
anatomical MRI and diffusion imaging data. To summarize, dif-
fusion-weighted MRI scans are coregistered to a standard ana-
tomical T1-weighted brain image by an image called the average
b0 image. The structural scans undergo automated cortical
parcellations, and tractography is performed on the diffusion-
weighted MRIs. Cortical labels are uniformly dilated to ensure
that they intersect the white matter, where tracts are traced. Tracts
are elastically fitted to the labeled structural scan to ensure ade-
quate coregistration. For each subject, a series of colored images is
created to overlay the fiber density map, the corresponding T1
image, and the dilated FreeSurfer parcellations. These images
were examined to determine which registrations were poor, re-
sulting in subject elimination; 17 subjects were eliminated from
this study because of poor coregistration (Fig. S6 shows axial
images for a typical subject as well as one subject removed from
analysis). Finally, connectivity matrices are created—each matrix
element shows the proportion of the total number of detected
fibers in the brain that cross or intersect the specific pair of cortical
regions at the top and side of the matrix. For all analyses, we
control for sex, age, and ICV, which can influence diffusion-based
analyses (22) and are associated with connectivity measures (23).
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Fig. S1. A flowchart shows image processing steps to generate a map of brain fiber connectivity based on an individual’s MRI and diffusion imaging data. As
detailed in Materials and Methods, diffusion-weighted MRI scans are coregistered to a standard anatomical T1-weighted brain image by an image called the
average b0 image. The structural scans undergo automated cortical parcellations, and tractography is performed on the diffusion-weighted MRIs. Cortical
labels are uniformly dilated to ensure that they intersect the white matter, where tracts are traced. Tracts are elastically fitted to the labeled structural scan to
ensure adequate coregistration. Connectivity matrices are created—each element in the matrix shows the proportion of the total number of detected fibers in
the brain that crosses or intersects the specific pair of cortical regions at the top and side of the matrix.

Jahanshad et al. www.pnas.org/cgi/content/short/1216206110 7 of 12



MZ (N=92) 

DZ (N=128) 

A/E A 1000 GWAS 
permutations 

Genetically 
influenced 
regions 

Genotyped 
N=331 

N=169 

N=162 

GWAS 

Test for 
replication 

Full N=366 

Paired twins 
N=220 

Fig. S2. The pipeline for screening brain connectivity maps for effects of single-letter differences in the genetic code. After network connectivity matrices
were created from the MRI and HARDI brain scans, 220 pairs of twins were separated into MZs and DZs to estimate heritability through structural equation
modeling. The A/E model gave the best fit to the overall matrix, and it accounts for additive genetic effects (A) and unique environmental effects (E) of the
group. Regions where at least 1% of the variance was attributable to additive genetic factors were carried forward for additional analysis; 1,000 permutations
of the connection value (fiber proportion between connections) were conducted while preserving family structure and including age, sex, and ICVs as co-
variates, and 331 genotyped individuals were split by study identification numbers into two roughly equal groups of distinct families. The slightly larger group
was used as a discovery sample. When a significant locus was found, it was further replicated in the second independent sample of the data, which had been
deliberately excluded from the initial analysis.

Fig. S3. Genome-wide association analysis of the full twin sample (n = 331), at every connection, leads to a single SNP reaching genome-wide significance (P <
8.96 × 10−9) for one network connection. (A) The Manhattan plot is shown for the connection between the left superior parietal cortex and the left posterior
cingulate, where variants in SPON1were found to be significant after this extremely conservative correction. (B) The locus is displayed focusing in on the region
using LocusZoom (https://statgen.sph.umich.edu/locuszoom/).
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Fig. S4. A quantile–quantile plot shows the connectome-wide, genome-wide result. All P values from all 59 genome-wide associations were combined to
show the observed distribution of P values with respect to those P values expected from a normal distribution.

Fig. S5. For each subject, a series of colored images is created to overlay the fiber density map, the corresponding T1-weighted image, and the dilated
FreeSurfer parcellations. Examination of these images allowed us to determine which registrations were poor, resulting in subject elimination. Axial images are
shown for a typical subject (Upper) as well as one of those subjects removed from analysis because of poor alignment and high levels of EPI distortions (Lower).
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Fig. S6. One thousand GWASs were conducted on permutations of the twin connectivity matrices used for the A/C/E heritability analysis. The point of these
plots is to show that the analyses do not yield findings by chance when the genomic scan is carried out on randomized data. The −log10 of the lowest 1,000
P values of each permutation is shown plotted against the −log10 expected ordered P values for the same number of tests. The solid black line represents the
mean of the ordered P values, whereas the dashed blue and green lines represent the 0.025 and 0.975 pointwise quantiles of the ordered P values, respectively.
The dashed red line represents the expected null distribution of P values. Regardless of heritability of the node, genome-wide associations of permuted values
do not deviate from the expected null distribution. *Permutations at the node where the genome-wide significant discovery was made.
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Table S1. The additive genetic component of the variance estimated from the model and the
95% confidence intervals (CIs) for all connections examined

From To a2 (Heritability) 95% CI

Caudal middle frontal-L Caudal middle frontal-L 0.01 >0, 0.28
Superior frontal-L Rostral middle frontal-L 0.05 >0, 0.31
Superior frontal-L Medial orbitofrontal-L 0.13 >0, 0.36
Superior parietal-R Lateral occipital-R 0.13 >0, 0.38
Lateral occipital-R Inferior temporal-R 0.13 >0, 0.4
Superior frontal-R Rostral middle frontal-R 0.13 >0, 0.36
Insula-R Pars opercularis-R 0.14 >0, 0.39
Insula-L Postcentral-L 0.17 >0, 0.43
Pars opercularis-R Pars opercularis-R 0.17 >0, 0.44
Precentral-L Postcentral-L 0.20 >0, 0.43
Medial orbitofrontal-L Medial orbitofrontal-L 0.22 >0, 0.46
Medial orbitofrontal-R Medial orbitofrontal-R 0.22 >0, 0.44
Lateral occipital-R Fusiform-R 0.22 >0, 0.47
Superior frontal-R Superior frontal-R 0.24 0.02, 0.45
Precuneus-R Lateral occipital-R 0.26 >0, 0.51
Lateral orbitofrontal-R Lateral orbitofrontal-R 0.27 >0, 0.52
Superior parietal-R Precuneus-R 0.27 >0, 0.52
Precentral-L Posterior cingulate-L 0.27 0.03, 0.5
Precentral-R Paracentral-R 0.29 0.06, 0.51
Superior parietal-L Posterior cingulate-L 0.30 0.04, 0.54
Insula-L Precentral-L 0.31 0.06, 0.53
Rostral middle frontal-R Caudal middle frontal-R 0.32 0.07, 0.55
Pericalcarine-R Lateral occipital-R 0.34 0.11, 0.55
Lingual-R Lingual-R 0.34 0.07, 0.6
Insula-L Insula-L 0.35 0.13, 0.56
Fusiform-R Fusiform-R 0.35 0.11, 0.57
Rostral anterior cingulate-L Lateral orbitofrontal-L 0.36 0.1, 0.59
Precuneus-R Precuneus-R 0.36 0.1, 0.59
Pericalcarine-L Lateral occipital-L 0.36 0.13, 0.58
Superior frontal-L Paracentral-L 0.36 0.14, 0.56
Paracentral-L Paracentral-L 0.37 0.13, 0.58
Superior parietal-R Superior parietal-R 0.37 0.14, 0.58
Lateral occipital-L Lateral occipital-L 0.38 0.13, 0.6
Precentral-L Paracentral-L 0.38 0.17, 0.58
Cuneus-L Cuneus-L 0.39 0.18, 0.58
Fusiform-L Fusiform-L 0.39 0.17, 0.59
Precuneus-L Isthmus of the cingulate-L 0.40 0.18, 0.59
Pars opercularis-L Pars opercularis-L 0.41 0.18, 0.61
Rostral middle frontal-L Rostral middle frontal-L 0.41 0.17, 0.62
Precentral-L Precentral-L 0.42 0.2, 0.61
Posterior cingulate-R Paracentral-R 0.42 0.17, 0.63
Medial orbitofrontal-R Lateral orbitofrontal-R 0.43 0.19, 0.64
Precuneus-R Posterior cingulate-R 0.44 0.17, 0.66
Precuneus-L Lateral occipital-L 0.44 0.21, 0.64
Inferior temporal-R Inferior temporal-R 0.45 0.22, 0.64
Superior parietal-L Superior parietal-L 0.47 0.26, 0.65
Posterior cingulate-L Paracentral-L 0.47 0.24, 0.66
Supramarginal-R Postcentral-R 0.47 0.26, 0.66
Inferior temporal-R Fusiform-R 0.48 0.26, 0.66
Postcentral-R Postcentral-R 0.49 0.24, 0.68
Precuneus-R Precuneus-L 0.50 0.26, 0.69
Insula-R Fusiform-R 0.50 0.26, 0.69
Caudal middle frontal-R Caudal middle frontal-R 0.57 0.36, 0.73
Insula-R Insula-R 0.58 0.39, 0.73
Posterior cingulate-L Posterior cingulate-L 0.63 0.44, 0.77
Insula-R Supramarginal-R 0.64 0.46, 0.77
Precentral-R Precentral-R 0.66 0.48, 0.79
Precuneus-L Posterior cingulate-L 0.66 0.49, 0.79
Precuneus-L Precuneus-L 0.67 0.49, 0.8
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Table S2. Genome-wide significant associations are detected at a single locus in the SPON1 gene
when examining the genetic variability associated with fiber proportions connecting cortical
regions in 331 subjects

Connection Gene SNP MAF P value B value

L-superior parietal and L-posterior cingulate SPON1 rs2697846 0.38 (T) 2.22 × 10−9 0.0018
L-superior parietal and L-posterior cingulate SPON1 rs2618516 0.36 (T) 5.82 × 10−10 0.0018
L-superior parietal and L-posterior cingulate SPON1 rs10832160 0.34(G) 7.58 × 10−9 0.0017
L-superior parietal and L-posterior cingulate SPON1 rs11023052 0.34 (T) 1.07 × 10−9 0.0018
L-superior parietal and L-posterior cingulate SPON1 rs7124311 0.33 (G) 7.02 × 10−9 0.0017

SPON1 was initially discovered and replicated in samples of one-half this size (Ndiscovery = 169; Nreplication =
162). Even with a stringent classical Bonferroni correction over all tests (0.05/59 × 428,287 = 1.98 × 10−9), two
SNPs would still have survived significance. B values represent the unstandardized regression coefficient; here,
the minor allele is associated with increased fiber connectivity. MAF, minor allele frequency.

Table S3. The 15 most significant SNPs (with lowest P values) found for all topological network measures are listed

SNP Gene within 50 kB Chromosome P value Topological measure Node/global

rs16997087 MACROD2 20 1.11E-10 Strength R paracentral
rs17819300 NEDD4 15 1.36E-10 Strength R-banks of the superior temporal sulcus
rs7879933 UBE2A X 1.83E-10 Strength R-inferior parietal
rs17819282 NEDD4 15 2.78E-10 Strength R-banks of the superior temporal sulcus
rs17238489 NEDD4 15 4.45E-10 Strength R-banks of the superior temporal sulcus
rs2175104 NEDD4 15 7.84E-10 Strength R-banks of the superior temporal sulcus
rs4747011 LRRC20 10 9.27E-10 Strength L-transverse temporal
rs2224003 — 6 9.82E-10 Strength R-pars opercularis
rs17024684 CNTN4 3 1.99E-09 Clustering coefficient L-isthmus of the cingulate
rs16997087 MACROD2 20 2.30E-09 Efficiency R-paracentral
rs9834692 — 3 3.01E-09 Clustering coefficient R-insula
rs9883474 — 3 3.01E-09 Clustering coefficient R-insula
rs3771863 TACR1 2 3.47E-09 Strength L-inferior parietal
rs10485022 — 6 4.76E-09 Strength R-pars opercularis
rs7629924 CNTN4 3 4.76E-09 Clustering coefficient L-isthmus of the cingulate

Here, local measures of network strength yielded genome-wide significant findings at the strict significance threshold set (described in
Materials andMethods). These SNPs include rs16997087 near theMACROD2 gene (P = 1.11 × 10−10), rs17819300 and rs17819282 in linkage
disequilibrium inside the NEDD4 gene (P = 1.36 × 10−10 and P = 2.78 × 10−10), and rs7879933 in the UCE2A gene (P = 1.83 × 10−10) of the X
chromosome. Local measures of clustering coefficient and efficiency provided suggestive associations (defined here as 5 × 10−8 < P < 3.39 ×
10−10), where 5 × 10−8 is the classical threshold for a single GWAS with this density of SNPs and 3.39 × 10−10 is the genome-wide
significance threshold corrected for the number of tests. We found no suggestive genome-wide significant variants for Eigenvector
centrality or any of the global measures, because the lowest P value in all cases was >5 × 10−8.
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