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ABSTRACT 

 
Human brain connectivity is disrupted in a wide range of disorders 
– from Alzheimer’s disease to autism – but little is known about 
which specific genes affect it. Here we conducted a genome-wide 
association for connectivity matrices that capture information on 
the density of fiber connections between 70 brain regions. We 
scanned a large twin cohort (N=366) with 4-Tesla high angular 
resolution diffusion imaging (105-gradient HARDI). Using whole 
brain HARDI tractography, we extracted a relatively sparse 70x70 
matrix representing fiber density between all pairs of cortical 
regions automatically labeled in co-registered anatomical scans. 
Additive genetic factors accounted for 1-58% of the variance in 
connectivity between 90 (of 122) tested nodes. We discovered 
genome-wide significant associations between variants and 
connectivity. GWAS permutations at various levels of heritability, 
and split-sample replication, validated our genetic findings. The 
resulting genes may offer new leads for mechanisms influencing 
aberrant connectivity and neurodegeneration.   
 

Index Terms— genetics, high angular resolution diffusion 
imaging (HARDI), cortical surfaces, twin modeling, human 
connectome 
 

1. INTRODUCTION 
 
The human brain is a complex network of structural and functional 
interconnections, with diverse regions activated during functional 
tasks. Advanced diffusion imaging methods, which track the 
diffuson of water along the brain’s axons, can reveal dense 
microstructural fiber bundles connecting anatomically distinct 
cortical and subcortical regions. Such connections are remodeled 
throughout development [1] and deteriorate in diseases such as 
Alzheimer’s disease [2]. While initial investigations have 
examined the degree of genetic involvement in functional 
connectivity, genetic contributions to the brain’s structural 
connectivity, i.e. the proportions and densities of axonal fibers 
connecting cortical subregions, have yet to be explored.  

The degree of genetic influence on a particular trait can be 
determined by studying twins. Twin studies have long been used to 
determine the heritability (proportion of variance explainable by 
genetic variation) of human traits. Some studies have begun to 
estimate the heritability of DTI-derived measures of fiber integrity 
and its asymmetry as well as other neuroimaging measures [3-6]. 
Proportions of variance due to genes versus environment can be 
inferred by fitting structural equation models (SEMs) to data from 
different types of twins--monozygotic (MZ) twins share all their 
genes while dizygotic (DZ) twins share, on average, half. 

In a large family cohort comprised of 366 individuals from 223 
families, we used high angular resolution diffusion imaging 
(HARDI) at high magnetic field (4 Tesla) along with anatomical 
MRI to delineate cortical regions into areas of known structure and 
functionality [7]. We also mapped out white matter fiber pathways 
using high angular-resolution HARDI tractography. In this work, 
we define connectivity as the proportion of total fibers traced in the 
brain that intersect a specific pair of cortical regions – this may 
include connections within or between hemispheres. The 
connectivities of all pairs of regions are compiled into symmetric 
matrices, in which each matrix element (x,y) is the proportion of 
fibers connecting brain regions x and y.  

To determine the genetic influences contributing to the density 
of each cortical connection, we fitted a SEM to connectivity 
matrices extracted from 46 pairs of MZ and 64 pairs of DZ twins. 
If a connection was significantly influenced by genetic factors, we 
followed through with a genome-wide association test to identify 
specific genetic variants associated with the proportion of fiber 
densities at that connection. The sample was split in half to allow 
replication of discovered associations in non-overlapping samples. 
 

2. METHODS 
 
2.1. Subjects and Image Acquisition  
 
Subjects included 92 young adult monozygotic (MZ) twins (46 
pairs) and 128 dizygotic (DZ) twins (64 pairs) along with 146 non-
twin siblings and unpaired twins with caucasian ancestry. In total, 
images from 366 right-handed young adults (mean age: 23.5 years, 
SD 2.0) were included, from a 5-year research project examining 
healthy young adult twins with MRI and DTI [8]. Genomic DNA 
was analyzed on the Human610-Quad BeadChip (Illumina) 
according to the manufacturers protocols (Infinium HD Assay; 
Super Protocol Guide; Rev. A, May 2008). 
     Anatomical and 105-gradient (11 b0, 94 direction) high angular 
resolution diffusion imaging (HARDI) whole-brain MRI scans 
were acquired on a high magnetic field (4T) Bruker Medspec MRI 
scanner. T1-weighted images were acquired with an inversion 
recovery rapid gradient echo sequence. For imaging parameters, 
please see [4].  
 
2.2. A/C/E Heritability Analysis of Connectivity 
 
NxN structural connectivity matrices were created as in [9] with a 
pipeline shown in Fig 1A.  A covariance matrix Sg was obtained 
for every matrix element in the connection matrix within the pairs 
for each of the two types of twins (identical or fraternal). A 
structural equation model (SEM) was then fitted to compare the 



observed and expected covariances (under different degrees of 
heritability) to estimate the proportion of the variance attributable 
to additive genetic (A), shared environmental (C) and unique 
environmental (E) components of variance [10]: 
. Z can be any quantitative phenotypic trait, in this case the fiber 
count proportion at a particular matrix element. A, C, and E are 
latent (unobserved) variables and a, c, e are each parameter’s 
weights determined by optimizing S via full information maximum 
likelihood estimation (FIML). The variance components combine 
to create the total observed inter-individual variance, and sum to 
one:  

This SEM uses FIML:  
with a χ2 null distribution to estimate genetic versus environmental 
contributions to the observed variance, where m is the number of 
twin pairs per group (49 for MZ and 65 for DZ), Sg is the observed 

covariance matrix for each twin group g, and Σg is the expected 
covariance matrix for group g, with α=1 for the MZ group and 
α=0.5 for DZ, as MZ twins share all their genes while dizygotic 

(DZ) twins share, on average, half.:  
In SEM, the χ2 goodness of fit measure determines a p-value for all 
specified regions of interest (elements of the matrix) where the test 
was performed. This value indicates that the model is a good fit to 
the data if p>0.05 (this is the opposite of the usual convention that 
rejects models or hypotheses). To determine the significance of the 
the A or C factors, the χ2 goodness-of-fit values of the model are 
compared to those for a model excluding that factor (i.e., to a C/E 
model to determine the significance of the additional A factor; A/E 
model to determine the significance of C), giving: 

, where χ2
1DF

-1 denotes the inverse of 
the cumulative distribution function for a chi-squared distributed 
variable with one degree of freedom. p(C) is computed 
analogously. In this case, low p-values express significant 
improvements when adding a factor. This is consistent with the 
more standard convention for p-values, and allows us to assess the 
resulting uncorrected p-value maps using the false discovery rate 
(FDR) method [11]. 

OpenMX software [12] was implemented in R (http://www.r-
project.org/) for calculating the A/C/E parameters.  The covariates 
sex, age, and total brain volume (TBV) were added to the model, 
and 95% CIs for the A term were computed.  

 
2.3. Genome-wide associations across the matrix 
 
Genome-wide associations were performed at each of the 90 valid 
(out of 122) matrix elements (after filtering out connections which 
are not heritable or not present in at least 95% of the subjects) 
using emmaX - a mixed model approach - controlling for age, sex, 
and TBV [13]. EmmaX accounts for the familial relatedness 
between subjects through the use of a kinship matrix describing the 
genetic similarities between all pairs of subjects. Analysis was 
limited to those single nucleotide polymorphisms (SNPs) with a 
minor allele frequency (MAF) greater than 0.1. 428,287 SNPs 
were tested.  
 
2.4. Establishing significance thresholds 
 
A significance threshold of 7x10-9 was established for genome-
wide significance for reasons described below. We determined 

significance levels for association tests by first estimating the total 
number of independent tests performed. Linkage disequilibrium 
(LD) leads to correlation among the 428,287 SNPs and when two 
genotyped SNPs are in high LD, each test is not completely 
independent. By first estimating the effective number of 
independent tests we can avoid using an unduly conservative 
significance criterion. Due to linkage disequilibrium, the effective 
number (Meff) of SNPs tested [14] was 214,578. The same logic 
can also be applied to the matrix elements tested. Clearly an off-
diagonal element is not independent of the entries in the same row 
and column. For a matrix element, C(x,y), representing the total 
proportions of fibers connecting cortical regions x and y, this value 
is not fully independent of matrix elements (x,x) and (y,y) 
corresponding to the total proportions of tracts crossing each 
cortical region x and y, respectively. While a total of 90 
connections were evaluated (those with an a2 component > 0.01 
and an ACE model with a good fit), 33 of those connections lie on 
the diagonal corresponding to different regions on the cortex and 
might be expected to be independent components (although not 
necessarily), while off diagonal elements are clearly dependent on 
two regions. Similarly, a principal components analysis of the 90 
matrix elements using information from the twins in the A/C/E 
model reveals that 29 components are sufficient to explain 95% of 
the variance in the sample. A Bonferroni correction on the number 
of independent samples would be 0.05/(33*214,578)= 7.06x10-9 or 
0.05/(29*214,578)= 8.04x10-9, respectively. We chose the more 
conservative 7x10-9 as our threshold for genome-wide significance, 
which we show is acceptable through extensive permutations to 
find the null distribution of association statistics. Other GWA-
studies of multiple traits have used the false discovery rate (FDR) 
procedure to find the appropriate correction threshold for one 
analysis across the genome [15]. For comparison, we performed a 
similar analysis using FDR on the p-values obtained from the 90 
traits to obtain a correction threshold of 7.58x10-9 for the full 
cohort GWAS. 
 
2.5. Modeling null distributions for GWAS 
 
At each of the 90 accepted nodes in the connectivity matrix, a 
GWAS was performed for the 220 twins used in the A/C/E 
structural equation model. To determine any potential differences 
in the null distributions with respect to the degree of the additive 
genetic component, GWAS was performed 1000 times on 
permuted matrices.  When conducting these permutations, each 
subject’s covariates (age, sex, and TBV) remained true to its 
source, while the matrix elements were permuted in a manner that 
ensured preservation of family structure.  Values for MZ twin pairs 
were only permuted with each other, while the DZ twin pairs were 
permuted separately.  Within each permutation, within-twin pair 
rearrangements were also allowed to maximize the set of allowable 
permutations.  
 
2.6. Split-sample GWAS 
 
While all families are participants in the same study, each family is 
genetically unique, so we were able to split our large sample into 
two unique subgroups in order to provide a genetically independent 
sample for replicating the effect of any suggestive genetic variants 
on brain structural connectivity. A schematic workflow, of the 
processing and statistical pipeline, is presented in Fig 1B. The 
groups were split according to unique subject identification 
numbers. All members of the same family were assigned to the 



same group.  No significant differences were seen between groups 
with respect to sex (p = 0.91) or TBV (p = 0.06). As the study was 
deliberately designed to sample young adults in the narrow age-
range 21-30, although mean differences were minimal, there was a 
significant difference in age as calculated through a two-sided t-
test of the populations (p = 1.2x10-18; mean Group 1 = 24.4; mean 
Group 2 = 22.6).   
 

3. RESULTS 
 

Fig. 2 shows regions for which the A/C/E model was found to fit 
the data well and a2 >1% as well as CDF plots of describing the 
significance of ACE, and sub-models with respect to the E model.  
Fig 3 shows the null distribution of GWA statistics at 10 
connections with increasing levels of heritability. We note in 
general that when preserving the family structure, as is done in this 
case, the choice of more highly heritable connections tended to 
produce permutations with on average lower p-values. Across all 
1000 permutations of the 10 connections, 251 SNPs had a p-value 
falling below the 7x10-9 genome-wide significance threshold, 
which suggests that the expected number of false positives over all 
90 regions in the group is on average is 90x0.0251 = 2.26 (where 
we found 4).  
Our GWAS of the connectivity in Group 1 showed a genome-wide 
significant (p = 3.23x10-9) association within the SPON1 gene.  
The contribution of this variant was then assessed in Group 2 at the 
same node.  The association was replicated in the second group to 
again show significant (p = 0.0021) reductions (un-standardized 
slope of regression, βGroup1 = -0.0022, βGroup2 = -0.0015) in the 
white matter fiber density for connections between the left 
posterior cingulate and the left superior parietal lobe.  
 For exploratory purposes, we combined the two groups to 
perform a GWAS at all 90 nodes as before. With 331 genotyped 
subjects (out of 366 subjects overall with matrices computed), the 
statistical power for genetic association is greatly increased; 
however, we are no longer able to provide a sample for replication. 
4 SNPs were found to be significant: 3 in SPON1 and one in 
DLGAP2. A stronger association for the SPON1 variants is 
presented in the full group for the same connection, with an 
additional variant in the DLGAP2 gene showing significant 
associations with the proportion of fibers connecting the right 
superior parietal lobe and the right post-central region of the 
cortex. Manhattan plots for the 2 nodes where variants reached 
genome-wide significance are presented in Fig 5. 
 

4. DISCUSSION 
 
In this study, we used 94-direction HARDI in 366 individuals at 4 
Tesla, to trace fiber tracts throughout the entire brain using an 
orientation distribution function (ODF) based tractography method 
[16]. We used automatically extracted cortical labels to compute 
cortical connectivity matrices based on the proportion of fiber 
counts. Expanding on a twin design, we conducted the first-ever 
genetic and genome-wide association analysis of the connectivity 
matrices.  
 The nodes where genome-wide significant associations were 
discovered include the connections between the left superior 
parietal lobe and the left posterior cingulate (SPON1) and those 
between the right superior parietal lobe and the right post-central 
cortex (DLGAP2). Through our A/C/E analysis, we were able to 
attribute 7.1% and 38.6% of the observed variance in these two 
connections, respectively, to additive genetic components. Our 

previous analysis as demonstrated the reliability of these matrices 
[17]. Variants found in this study may have particular significance 
to genetic mechanisms underlying physiological pathways, rather 
than affecting the global white matter fiber density. Corrections for 
performing a genome-wide search (and tests across each element 
of the NxN matrix) are also highlighted in this study. 
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Figure 1- a) NxN connectivity matrix design workflow; b) 
workflow for genetic association analysis in independent non-
overlapping samples (for split-sample replication of genetic 
hits). 

 
Figure 2- Genetic analysis of a sample of 46 monozygotic twin 
pairs and 64 dizygotic twin pairs, through the A/C/E structural 
equation model, breaks down the observed variance in 
structural neural connectivity into variance components 
describing the contribution of additive genetic effects (A), 
shared environmental effects (C), and unique individual 
variance or measurement error (E).  For nodes where the 
A/C/E model fits the data well, the value of a2 is shown for each 
node in a). Regions are only displayed if a2 was higher than 
1%. We show through cumulative distribution function (CDF) 
plots, b), that the A/C/E model significantly improves upon the 
E model (the model derived if we assume the entire brain 
network is attributable to unique environmental attributes); 
the A/E and C/E models each fit better than the E model. 

 
Figure 3 – At connections with increasing levels of heritability, 
from 1% to 58% (a-j), 1000 GWASs were conducted on 
permutations of the twin NxN matrices used for the A/C/E 
heritability analysis. The –log10 of the lowest 1000 p-values of 
each permutation are plotted against the –log10 expected 
ordered p-values for the same number of tests.  The solid black 
line represents the mean of the ordered p-values, while the 
dashed blue lines represent the 0.025 and 0.975 point-wise 
quantiles of the ordered p-values. The mean of the ordered p-
values of all the 10 plots (solid black line in each), are plotted 
together in k) against the –log10 expected ordered p-values. –
log10 p-values tend to be higher as heritability of the trait is 
increased, suggesting the benefits of pre-screening connections 
for heritability, before running GWAS.  

 
Figure 4 – A genome-wide significant association to 
connectivity was found in Group 1 (Ndiscovery=169) and 
replicated in an independent sample, Group 2 (Nreplication=162). 
The association was found for the density of connections 
between the left posterior cingulate and the left superior 
parietal lobe, shown in a). The Manhattan plot of the GWAS of 
this connection is shown in b).  The threshold for significance 
was set to 7x10-9  (see text for justification).  

 
Figure 5 - In the full group (N=331), we conducted a GWAS at 
every connection, leading to two genetic loci reaching genome-
wide significance (p < 7x10-9) at two connections. Manhattan 
plots are shown for the a) connection between the L superior 
parietal cortex and the L posterior cingulate where variants in 
SPON1 were significant, b) connection between the R superior 
parietal cortex and R post-central cortex, where DLGAP2 was 
found to have genome-wide significant associations. 


