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Society; Health and Safety Executive; Heart

Foundation of Northern Sweden; Icelandic Heart

Association; Icelandic Parliament; Imperial College

Healthcare NHS Trust; INSERM, Réseaux en Santé
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Ministère de l’Économie, de l’Innovation et des

Exportations; Ministry for Health, Welfare and

Sports of the Netherlands; Ministry of Cultural

Affairs of the Federal State of Mecklenburg-West

Pomerania; Ministry of Education and Culture of

Finland (627;2004-2011); Ministry of Education,

Culture and Science of the Netherlands; MRC

Human Genetics Unit; MRC-GlaxoSmithKline Pilot

Programme Grant (G0701863); Municipality of

Rotterdam; Netherlands Bioinformatics Centre

(2008.024); Netherlands Consortium for Healthy

Aging (050-060-810); Netherlands Genomics

Initiative; Netherlands Organisation for Health

Research and Development (904-61-090, 985-10-

002, 904-61-193, 480-04-004, 400-05-717,

Addiction-31160008, Middelgroot-911-09-032,

Spinozapremie 56-464-14192); Netherlands

Organisation for Health Research and Development

(2010/31471/ZONMW); Netherlands Organisation

for Scientific Research (10-000-1002, GB-MW

940-38-011, 100-001-004, 60-60600-97-118, 261-

98-710, GB-MaGW 480-01-006, GB-MaGW 480-

https://doi.org/10.1371/journal.pgen.1006528


91 Department of Statistics and Biostatistics, Rutgers University, Piscataway, New Jersey, United States of

America, 92 Centre for Global Health Research, Usher Institute for Population Health Sciences and

Informatics, Edinburgh, Scotland, 93 MRC Integrative Epidemiology Unit & School of Social and Community

Medicine, University of Bristol, Bristol, United Kingdom, 94 University of Maryland School of Medicine,

Department of Epidemiology & Public Health, Baltimore, Maryland, United States of America, 95 Department

of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany, 96 Department of Medicine,

Oulu University Hospital, Oulu, Finland, 97 Institute of Clinical Medicine, Faculty of Medicine, University of

Oulu, Oulu, Finland, 98 Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts,

United States of America, 99 Department of Genetics, Harvard Medical School, Boston, Massachusetts,

United States of America, 100 Broad Institute of the Massachusetts Institute of Technology and Harvard

University, Cambridge, Massachusetts, United States of America, 101 Survey Research Center, Institute for

Social Research, University of Michigan, Ann Arbor, Michigan, United States of America, 102 Research Unit

of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental

Health, Neuherberg, Germany, 103 Institute of Genetic Epidemiology, Helmholtz Zentrum München, German

Research Center for Environmental Health, Neuherberg, Germany, 104 Institute of Epidemiology II,

Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany,

105 German Center for Diabetes Research (DZD), München-Neuherberg, Germany, 106 Laboratory of

Neurogenetics, National Institute on Aging, Bethesda, Maryland, United States of America, 107 Division of

Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda,

Maryland, United States of America, 108 Musculoskeletal Research Programme, Division of Applied

Medicine, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom, 109 Generation Scotland, Centre

for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom, 110 St. Olav

Hospital, Trondheim University Hospital, Trondheim, Norway, 111 Institute for Nutritional Medicine, Klinikum

Rechts der Isar, Technische Universität München, Munich, Germany, 112 NCA Institute, VU University & VU

Medical Center, Amsterdam, The Netherlands, 113 Department of Human Genetics, Wellcome Trust Sanger

Institute, Hinxton, Cambridge, United Kingdom, 114 School of Population Health, The University of Western

Australia, Crawley, Western Australia, Australia, 115 Department of Pediatrics, Tampere University Hospital,

Tampere, Finland, 116 Department of Pediatrics, University of Tampere School of Medicine, Tampere,

Finland, 117 Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital,

Nedlands, Western Australia, Australia, 118 School of Medicine and Pharmacology, The University of

Western Australia, Crawley, Western Australia, Australia, 119 Department of Physiology, Institute of

Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,

120 Department of Medicine, University of Turku, Turku, Finland, 121 Division of Medicine, Turku University

Hospital, Turku, Finland, 122 National Institute for Health and Welfare, Department of Health, Helsinki,

Finland, 123 Department of Medicine and Abdominal Center: Endocrinology, University of Helsinki and

Helsinki University Central Hospital, Helsinki, Finland, 124 Minerva Foundation Institute for Medical

Research, Helsinki, Finland, 125 Department of Public Health, Faculty of Medicine, University of Split, Split,

Croatia, 126 Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio,

Finland, 127 HUNT Research Centre, Department of Public Health and General Practice, Norwegian

University of Science and Technology, Levanger, Norway, 128 Department of Clinical Physiology, Tampere

University Hospital, Tampere, Finland, 129 Department of Clinical Physiology, University of Tampere School

of Medicine, Tampere, Finland, 130 Institute of Biomedicine, Physiology, University of Eastern Finland,

Kuopio Campus, Finland, 131 Neuroepidemiology Section, National Institute on Aging, National Institutes of

Health, Bethesda, Maryland, United States of America, 132 Program in Medical and Population Genetics,

Broad Institute, Cambridge, Massachusetts, United States of America, 133 The Big Data Institute, University

of Oxford, Oxford, United Kingdom, 134 Geriatric Medicine, Sahlgrenska University Hospital, Mölndal,

Sweden, 135 Department of Public Health and Primary Care, University of Cambridge, Cambridge, United
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Abstract

Physical activity (PA) may modify the genetic effects that give rise to increased risk of obe-

sity. To identify adiposity loci whose effects are modified by PA, we performed genome-

wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip

ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029).

We standardized PA by categorizing it into a dichotomous variable where, on average, 23%

of participants were categorized as inactive and 77% as physically active. While we replicate

the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which

the effect is attenuated by ~30% in physically active individuals compared to inactive individ-

uals, we do not identify additional loci that are sensitive to PA. In additional genome-wide

meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci,

suggesting that accounting for PA or other environmental factors that contribute to variation

in adiposity may facilitate gene discovery.

Author summary

Decline in daily physical activity is thought to be a key contributor to the global obesity

epidemic. However, the impact of sedentariness on adiposity may be in part determined

by a person’s genetic constitution. The specific genetic variants that are sensitive to physi-

cal activity and regulate adiposity remain largely unknown. Here, we aimed to identify

genetic variants whose effects on adiposity are modified by physical activity by examining

~2.5 million genetic variants in up to 200,452 individuals. We also tested whether adjust-

ing for physical activity as a covariate could lead to the identification of novel adiposity

variants. We find robust evidence of interaction with physical activity for the strongest

known obesity risk-locus in the FTO gene, of which the body mass index-increasing effect

is attenuated by ~30% in physically active individuals compared to inactive individuals.

Our analyses indicate that other similar gene-physical activity interactions may exist, but

better measurement of physical activity, larger sample sizes, and/or improved analytical

methods will be required to identify them. Adjusting for physical activity, we identify 11

novel adiposity variants, suggesting that accounting for physical activity or other environ-

mental factors that contribute to variation in adiposity may facilitate gene discovery.

Introduction

In recent decades, we have witnessed a global obesity epidemic that may be driven by changes

in lifestyle such as easier access to energy-dense foods and decreased physical activity (PA) [1].

However, not everyone becomes obese in obesogenic environments. Twin studies suggest that

changes in body weight in response to lifestyle interventions are in part determined by a per-

son’s genetic constitution [2–4]. Nevertheless, the genes that are sensitive to environmental

influences remain largely unknown.

Previous studies suggest that genetic susceptibility to obesity, assessed by a genetic risk

score for BMI, may be attenuated by PA [5, 6]. A large-scale meta-analysis of the FTO obesity

locus in 218,166 adults showed that being physically active attenuates the BMI-increasing

effect of this locus by ~30% [7]. While these findings suggest that FTO, and potentially other
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previously established BMI loci, may interact with PA, it has been hypothesized that loci show-

ing the strongest main effect associations in genome-wide association studies (GWAS) may be

the least sensitive to environmental and lifestyle influences, and may therefore not make the

best candidates for interactions [8]. Yet no genome-wide search for novel loci exhibiting

SNP×PA interaction has been performed. A genome-wide meta-analysis of genotype-depen-

dent phenotypic variance of BMI, a marker of sensitivity to environmental exposures, in

~170,000 participants identified FTO, but did not show robust evidence of environmental sen-

sitivity for other loci [9]. Recent genome-wide meta-analyses of adiposity traits in>320,000

individuals uncovered loci interacting with age and sex, but also suggested that very large sam-

ple sizes are required for interaction studies to be successful [10].

Here, we report results from a large-scale genome-wide meta-analysis of SNP×PA interac-

tions in adiposity in up to 200,452 adults. As part of these interaction analyses, we also examine

whether adjusting for PA or jointly testing for SNP’s main effect and interaction with PA may

identify novel adiposity loci.

Results

Identification of loci interacting with PA

We performed meta-analyses of results from 60 studies, including up to 180,423 adults of

European descent and 20,029 adults of other ancestries to assess interactions between ~2.5 mil-

lion genotyped or HapMap-imputed SNPs and PA on BMI and BMI-adjusted waist circumfer-

ence (WCadjBMI) and waist-hip ratio (WHRadjBMI) (S1–S5 Tables). Similar to a previous meta-

analysis of the interaction between FTO and PA [7], we standardized PA by categorizing it

into a dichotomous variable where on average ~23% of participants were categorized as inac-

tive and ~77% as physically active (see Methods and S6 Table). On average, inactive individu-

als had 0.99 kg/m2 higher BMI, 3.46 cm higher WC, and 0.018 higher WHR than active

individuals (S4 and S5 Tables).

Each study first performed genome-wide association analyses for each SNP’s effect on BMI

in the inactive and active groups separately. Corresponding summary statistics from each

cohort were subsequently meta-analyzed, and the SNP×PA interaction effect was estimated by

calculating the difference in the SNP’s effect between the inactive and active groups. To iden-

tify sex-specific SNP×PA interactions, we performed the meta-analyses separately in men and

women, as well as in the combined sample. In addition, we carried out meta-analyses in Euro-

pean-ancestry studies only and in European and other-ancestry studies combined.

We used two approaches to identify loci whose effects are modified by PA. In the first

approach, we searched for genome-wide significant SNP×PA interaction effects (PINT<5x10-8).

As shown in Fig 1, this approach yielded the highest power to identify cross-over interaction

effects where the SNP’s effect is directionally opposite between the inactive and active groups.

However, this approach has low power to identify interaction effects where the SNP’s effect is

directionally concordant between the inactive and active groups (Fig 1). We identified a

genome-wide significant interaction between rs986732 in cadherin 12 (CDH12) and PA on

BMI in European-ancestry studies (betaINT = -0.076 SD/allele, PINT = 3.1x10-8, n = 134,767) (S7

Table). The interaction effect was directionally consistent but did not replicate in an indepen-

dent sample of 31,097 individuals (betaINT = -0.019 SD/allele, PINT = 0.52), and the pooled asso-

ciation P value for the discovery and replication stages combined did not reach genome-wide

significance (NTOTAL = 165,864; PINT-TOTAL = 3x10-7) (S1 Fig). No loci showed genome-wide

significant interactions with PA on WCadjBMI or WHRadjBMI. CDH12 encodes an integral mem-

brane protein mediating calcium-dependent cell-cell adhesion in the brain, where it may play a

role in neurogenesis [11]. While CDH12 rs4701252 and rs268972 SNPs have shown suggestive
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Fig 1. Power to identify PA-adjusted main, joint or GxPA interaction effects in 200,000 individuals (45,000 inactive, 155,000 active). The

plots compare power to identify genome-wide significant main effects (PadjPA<5x10-8, dashed black), joint effects (PJOINT<5x10-8, dotted green)

or GxPA interaction effects (PINT<5x10-8, solid magenta) as well as the power to identify Bonferroni-corrected interaction effects (PINT<0.05/

number of loci, solid orange) for the SNPs that reached a genome-wide significant PA-adjusted main effect association (PadjPA<5x10-8). The

power computations were based on analytical power formulae provided elsewhere [50] and were conducted a-priori based on various types of

Genome-wide physical activity interactions in adiposity
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associations with waist circumference (P = 2x10-6) and BMI (P = 5x10-5) in previous GWAS

[12, 13], the SNPs are not in LD with rs986732 (r2<0.1).

In our second approach, we tested interaction for loci showing a genome-wide significant

main effect on BMI, WCadjBMI or WHRadjBMI (S7–S12 Tables). We adjusted the significance

threshold for SNP×PA interaction by Bonferroni correction (P = 0.05/number of SNPs tested).

As shown in Fig 1, this approach enhanced our power to identify interaction effects where

there is a difference in the magnitude of the SNP’s effect between inactive and active groups

when the SNP’s effect is directionally concordant between the groups. We identified a signifi-

cant SNP×PA interaction of the FTO rs9941349 SNP on BMI in the meta-analysis of Euro-

pean-ancestry individuals; the BMI-increasing effect was 33% smaller in active individuals

(betaACTIVE = 0.072 SD/allele) than in inactive individuals (betaINACTIVE = 0.106 SD/allele,

PINT = 4x10-5). The rs9941349 SNP is in strong LD (r2 = 0.87) with FTO rs9939609 for which

interaction with PA has been previously established in a meta-analysis of 218,166 adults [7].

We identified no loci interacting with PA for WCadjBMI or WHRadjBMI.

In a previously published meta-analysis [7], the FTO locus showed a geographic difference

for the interaction effect where the interaction was more pronounced in studies from North

America than in those from Europe. To test for geographic differences in the present study, we

performed additional meta-analyses for the FTO rs9941349 SNP, stratified by geographic ori-

gin (North America vs. Europe). While the interaction effect was more pronounced in studies

from North America (betaINT = 0.052 SD/allele, P = 5x10-4, N = 63,896) than in those from

Europe (betaINT = 0.028 SD/allele, P = 0.006, N = 109,806), we did not find a statistically signif-

icant difference between the regions (P = 0.14).

Explained phenotypic variance in inactive and active individuals. We tested whether

the variance explained by ~1.1 million common variants (MAF�1%) differed between the

inactive and active groups for BMI, WCadjBMI, and WHRadjBMI [14]. In the physically active

individuals, the variants explained ~20% less of variance in BMI than in inactive individuals

(12.4% vs. 15.7%, respectively; Pdifference = 0.046), suggesting that PA may reduce the impact of

genetic predisposition to adiposity overall. There was no significant difference in the variance

explained between active and inactive groups for WCadjBMI (8.6% for active, 9.3% for inactive;

Pdifference = 0.70) or WHRadjBMI (6.9% for active, 8.0% for inactive; Pdifference = 0.59).

To further investigate differences in explained variance between the inactive and active

groups, we calculated variance explained by subsets of SNPs selected based on significance

thresholds (ranging from P = 5x10-8 to P = 0.05) of PA-adjusted SNP association with BMI,

WCadjBMI or WHRadjBMI [15] (S13 Table). We found 17–26% smaller explained variance for

BMI in the active group than in the inactive group at all P value thresholds (S13 Table).

Identification of novel loci when adjusting for PA or when jointly testing

for SNP main effect and interaction with PA

Physical activity contributes to variation in BMI, WCadjBMI, and WHRadjBMI, hence, adjusting

for PA as a covariate may enhance power to identify novel adiposity loci. To that extent, each

study performed genome-wide analyses for association with BMI, WCadjBMI, and WHRadjBMI

while adjusting for PA. Subsequently, we performed meta-analyses of the study-specific

known realistic BMI effect sizes [51]. Panels A, C, E: Assuming an effect in inactive individuals similar to a small (R2
INACT ¼ 0:01%, comparable to

the known BMI effect of the NUDT3 locus), medium (R2
INACT ¼ 0:07%, comparable to the known BMI effect of the BDNF locus) and large

(R2
INACT ¼ 0:34%, comparable to the known BMI effect of the FTO locus) realistic effect on BMI and for various effects in physically active

individuals (varied on the x axis); Panels B,D,F: Assuming an effect in physically active individuals similar to the small, medium and large realistic

effects of the NUDT3, BDNF and FTO loci on BMI and for various effects in inactive individuals (varied on x axis).

https://doi.org/10.1371/journal.pgen.1006528.g001

Genome-wide physical activity interactions in adiposity

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006528 April 27, 2017 9 / 26

https://doi.org/10.1371/journal.pgen.1006528.g001
https://doi.org/10.1371/journal.pgen.1006528


results. We discovered 10 genome-wide significant loci (2 for BMI, 1 for WCadjBMI, 7 for

WHRadjBMI) that have not been reported in previous GWAS of adiposity traits (Table 1, S2–S4

Figs).

To establish whether additionally accounting for SNP×PA interactions would identify

novel loci, we calculated the joint significance of PA-adjusted SNP main effect and SNP×PA

interaction using the method of Aschard et al [16]. As illustrated in Fig 1, the joint test

enhanced our power to identify loci where the SNP shows simultaneously a main effect and an

interaction effect. We identified a novel BMI locus near ELAVL2 in men (PJOINT = 4x10-8),

which also showed suggestive evidence of interaction with PA (PINT = 9x10-4); the effect of the

BMI-increasing allele was attenuated by 71% in active as compared to inactive individuals

(betaINACTIVE = 0.087 SD/allele, betaACTIVE = 0.025 SD/allele) (Table 1, S2–S4 Figs).

To evaluate the effect of PA adjustment on the results for the 11 novel loci, we performed a

look-up in published GIANT consortium meta-analyses for BMI, WCadjBMI, and WHRadjBMI

that did not adjust for PA [17, 18] (S22 Table). All 11 loci showed a consistent direction of

effect between the present PA-adjusted and the previously published PA-unadjusted results,

but the PA-unadjusted associations were less pronounced despite up to 40% greater sample

size, suggesting that adjustment for PA may have increased our power to identify these loci.

The biological relevance of putative candidate genes in the novel loci, based on our thor-

ough searches of the literature, GWAS catalog look-ups, and analyses of eQTL enrichment and

overlap with functional regulatory elements, are described in Tables 2 and 3. As the novel loci

were identified in a PA-adjusted model, where adjusting for PA may have contributed to their

identification, we examined whether the lead SNPs in these loci are associated with the level of

PA. More specifically, we performed look-ups in GWAS analyses for the levels of moderate-to-

vigorous intensity leisure-time PA (n = 80,035), TV-viewing time (n = 28,752), and sedentary

behavior at work (n = 59,381) or during transportation (n = 15,152) [personal communication

with Marcel den Hoed, Marilyn Cornelis, and Ruth Loos]. However, we did not find signifi-

cant associations when correcting for the number of loci that were examined (P>0.005) (S16

Table).

Identification of secondary signals

In addition to uncovering 11 novel adiposity loci, our PA-adjusted GWAS and the joint test of

SNP main effect and SNP×PA interaction confirmed 148 genome-wide significant loci (50 for

BMI, 58 for WCadjBMI, 40 for WHRadjBMI) that have been established in previous main effect

GWAS for adiposity traits (S7–S12 Tables, S4 Fig). The lead SNPs in eight of the previously

established loci (5 for BMI, 3 for WCadjBMI), however, showed no LD or only weak LD

(r2<0.3) with the published lead SNP, suggesting they could represent novel secondary signals

in known loci (S17 Table). To test whether these eight signals are independent of the previ-

ously published signals, we performed conditional analyses [19]. Three of the eight SNPs we

examined, in/near NDUFS4,MEF2C-AS1 and CPA1, were associated with WCadjBMI with

P<5x10-8 in our PA-adjusted GWAS even after conditioning on the published lead SNP,

hence representing novel secondary signals in these loci (S17 Table).

Enrichment of the identified loci with functional regulatory elements

Epigenetic variation may underlie gene-environment interactions observed in epidemiological

studies [20] and PA has been shown to induce marked epigenetic changes in the genome [21].

We examined whether the BMI or WHRadjBMI loci reaching P<1x10-5 for interaction with PA

(13 loci for BMI, 5 for WHRadjBMI) show overall enrichment with chromatin states in adipose,

brain and muscle tissues available from the Roadmap Epigenomics Consortium [22].
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However, we did not find significant enrichment (S18 and S19 Tables), which may be due to

the limited number of identified loci. The lack of significant findings may also be due to the

assessment of chromatin states in the basal state, which may not reflect the dynamic changes

that occur when cells are perturbed by PA [23].

We also tested whether the loci reaching P<5x10-8 in our PA-adjusted GWAS of BMI or

WHRadjBMI show enrichment with chromatin states and found significant enrichment of the

BMI loci with enhancer, weak transcription, and polycomb-repressive elements in several

brain cell lines, and with enhancer elements in three muscle cell lines (S20 and S21 Tables).

We also found significant enrichment of the WHRadjBMI loci with enhancer elements in

three adipose and six muscle cell lines, with active transcription start sites in two adipose cell

lines, and with polycomb-repressive elements in seven brain cell lines. The enrichment of

our PA-adjusted main effect results with chromatin annotations in skeletal muscle in partic-

ular, the tissue most affected by PA, could highlight regulatory mechanisms that may be

influenced by PA.

Discussion

In this genome-wide meta-analysis of more than 200,000 adults, we do not find evidence of

interaction with PA for loci other than the established FTO locus. However, when adjusting

for PA or jointly testing for SNP main effect and interaction with PA, we identify 11 novel adi-

posity loci, suggesting that accounting for PA or other environmental factors that contribute

to variation in adiposity may increase power for gene discovery.

Our results suggest that if SNP×PA interaction effects for common variants exist, they are

unlikely to be of greater magnitude than observed for FTO, the BMI-increasing effect of

which is attenuated by ~30% in physically active individuals. The fact that common SNPs

Table 2. Genes of biological interest within 500 kb of lead SNPs associated with BMI.

CCK (rs754635): The lead SNP is located in intron 1 of the CCK gene that encodes cholecystokinin, a

gastrointestinal peptide that stimulates the digestion of fat and protein in the small intestine by inhibiting

gastric emptying, inducing the release of pancreatic enzymes, increasing production of hepatic bile, and

causing contraction of the gallbladder. Cholecystokinin induces satiety and reduces the amount of food

consumed when administered prior to a meal [52, 53]. In a candidate gene study, four common variants in

CCK were associated with increased meal size [54], but the variants are not in LD with rs754635 (r2<0.1). A

GWAS of BMI in 62,246 individuals of East Asian ancestry showed a suggestive association (P = 2x10-7) for

the rs4377469 SNP in high LD with our lead SNP (r2 = 0.7) [55].

ELAVL2 (rs1934100): The lead SNP showed an association with BMI only in men (Table 1). The only

nearby gene ELAVL2 (455 kb away) is a conserved neuron-specific RNA-binding protein involved in

stabilization or enhanced translation of specific mRNAs with AU-rich elements in the 3’-untranslated region

[56]. While ELAVL2 is implicated in neuronal differentiation [56], potential mechanisms linking this function

to obesity remain unclear.

MRAS (rs1720825): The lead SNP is an intronic variant in MRAS. The MRAS rs1199333 SNP, in high LD

with rs1720825 (r2 = 0.85), has shown suggestive association with typical sporadic amyotrophic lateral

sclerosis in a Chinese Han population (P = 4x10-6, S14 Table). Other MRAS SNPs have been associated

with risk of coronary artery disease [57] but they are not in LD with rs1720825 (r2<0.06). MRAS encodes a

member of the membrane-associated Ras small GTPase protein family that function as signal transducers

in multiple processes of cell growth and differentiation and are involved in energy expenditure,

adipogenesis, muscle differentiation, insulin signaling and glucose metabolism [58–60]. Mice with Mras

knockout develop a severe obesity phenotype [61]. The SNP rs1199334, in high LD with our lead SNP

rs1720825 (r2 = 0.90), has been identified as the SNP most strongly associated with the cis-expression of

centrosomal protein 70kDa (CEP70) in subcutaneous adipose tissue (P = 2x10-7) (S15 Table). CEP70

encodes a centrosomal protein that is critical for the regulation of mitotic spindle assembly, playing an

essential role in cell cycle progression [62].

https://doi.org/10.1371/journal.pgen.1006528.t002
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Table 3. Genes of biological interest within 500 kb of lead SNPs associated with WCadjBMI or

WHRadjBMI.

ZSCAN2 (rs7176527): Twenty two genes lie within 500kb of the WCadjBMI-associated lead SNP (S3 Fig).

The nearest gene, ZSCAN2, contains several copies of a zinc finger motif commonly found in

transcriptional regulatory proteins. The rs7176527 SNP is in LD (r2>0.80) with five SNPs (rs3762168,

rs2762169, rs12594450, rs72630460, and rs16974951) that are enhancers in multiple tissues in the data

from Roadmap Epigenomics Consortium [22]. The rs7176527 SNP is a cis-eQTL for the putative

transcriptional regulator SCAND2 [63] in the intestine, prefrontal cortex, and lymphocytes (S15 Table).

PAPPA2 (rs4650943): Seven genes lie within 500kb of the lead SNP (S3 Fig). The nearest gene, PAPPA2,

is 18 kb upstream of rs4650943 and codes for a protease that locally regulates insulin-like growth factor

availability through cleavage of IGF binding protein 5, most commonly found in bone tissue. In murine

models, the PAPP-A2 protein has been shown to influence overall body size and bone growth, but not

glucose metabolism or adiposity [64–66].

MEIS1 (rs2300481): The only gene within 500 kb of the lead SNP is MEIS1 encoding a homeobox protein

that plays an important role in normal organismal growth and development. Two variants in high LD with the

lead SNP (r2 = 0.95) have been identified for association with PR interval of the heart (S14 Table). Another

variant, in low LD with rs2300481 (r2 = 0.25), has been associated with restless leg syndrome [67]–a

sleeping disorder that may cause weight gain [68].

ARHGEF28 (rs167025): The lead SNP showed an association with WHRadjBMI in men only (Table 1).

There are two protein-coding genes within 500kb of rs167025. The nearest gene is ARHGEF28, 195 kb

downstream, encoding Rho guanine nucleotide exchange factor 28. This exchange factor has been shown

to destabilize low molecular weight neurofilament mRNAs in patients with amyotrophic lateral sclerosis,

leading to degeneration and death of motor neurons controlling voluntary muscle movement [69, 70]. The

ENC1 gene, 490 kb away, encodes Ectoderm-neural cortex protein 1, an actin-binding protein required for

adipocyte differentiation [71]

HCP5 (rs3094013): The lead SNP showed an association with WHRadjBMI in men only (Table 1). The

rs3094013 SNP is located in the MHC complex on chromosome 6, and the region within 500kb contains

124 genes (S3 Fig). The known WHRadjBMI-increasing allele rs3099844, in strong LD with our lead SNP

(r2�0.8), has previously been associated with increased HDL-cholesterol levels [72]. Candidate gene

studies suggest that rs1800629 in tumor necrosis factor (TNF), which is 109 kb upstream and in moderate

LD (r2 = 0.64) with the lead SNP, may interact with physical activity to decrease serum CRP levels [73, 74].

We did not, however, find an interaction between rs1800629 and physical activity on WHRadjBMI (P = 0.3).

BAZ1B (rs6976930): There are 31 genes within 500kb the lead SNP rs6976930 (S3 Fig) which is in high

LD (r2>0.8) with GWAS hits associated with protein C levels, triglycerides, serum urate levels, lipid

metabolism, metabolic syndrome, and gamma-glutamyl transferase levels (S14 Table). The rs6976930

SNP shows an eQTL association with MLXIPL expression in omental (P = 7x10-22) and subcutaneous

adipose tissue (P = 4x10-14). MLXIPL is 122 kb downstream of rs6976930 and codes for a transcription

factor that binds carbohydrate response motifs, increasing transcription of genes involved in glycolysis,

lipogenesis, and triglyceride synthesis [75, 76].

PLCE1 (rs10786152): There are 8 genes within 500 kb of the lead SNP (S3 Fig). The lead SNP lies within

the intron of PLCE1 encoding a phospholipase involved in cellular growth and differentiation and gene

expression among many other biological processes involving phospholipids [77]. Variants in this gene have

been shown to cause nephrotic syndrome, type 3 [78]. Nearby variants rs9663362 and rs932764 (r2 = 1.0

and 0.85, respectively) have been previously associated with systolic and diastolic blood pressure (S14

Table).

CTRB2 (rs889512): The lead SNP showed an association with WHRadjBMI in women only (Table 1). There

are 17 genes within 500 kb (S3 Fig). The nearby rs4888378 SNP has been associated with carotid intima-

media thickness in women but not in men, and BCAR1 (breast cancer anti-estrogen resistance protein 1)

has been implicated as the causal gene [79]. The rs488378 SNP is not, however, in LD with our lead SNP

(r2<0.1). The SNP rs7202877, in moderate LD with rs889512 (r2 = 0.6), is a risk variant for type 1 diabetes

(S14 Table). The data from Roadmap Epigenomics Consortium [22] suggest that five variants in strong LD

(r2>0.8) with our lead SNP rest in known regulatory regions, including rs9936550 within an active enhancer

region and rs72802352 in a DNAse hypersensitive region for human skeletal muscle cells and myoblasts;

and rs147630228 and rs111869668 within active enhancer regions for the pancreas. Additionally,

rs111869668 rests within binding motifs for CEBPB and CEBPD (CCAAT enhancer-binding protein-Beta

and Delta) which are enhancer proteins involved in adipogenesis [80, 81].

https://doi.org/10.1371/journal.pgen.1006528.t003

Genome-wide physical activity interactions in adiposity

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006528 April 27, 2017 14 / 26

https://doi.org/10.1371/journal.pgen.1006528.t003
https://doi.org/10.1371/journal.pgen.1006528


explain less of the BMI variance among physically active compared to inactive individuals

indicates that further interactions may exist, but larger meta-analyses, more accurate and

precise measurement of PA, and/or improved analytical methods will be required to identify

them. We found no difference between inactive and active individuals in variance explained

by common SNPs in aggregate for WCadjBMI or WHRadjBMI, and no loci interacted with PA

on WCadjBMI or WHRadjBMI. Therefore, PA may not modify genetic influences as strongly

for body fat distribution as for overall adiposity. Furthermore, while differences in variance

explained by common variants may be due to genetic effects being modified by PA, it is

important to note that heritability can change in the absence of changes in genetic effects, if

environmental variation differs between the inactive and active groups. Therefore, the lower

BMI variance explained in the active group could be partly due to a potentially greater envi-

ronmental variation in this group.

While we replicated the previously observed interaction between FTO and PA [7], it

remains unclear what biological mechanisms underlie the attenuation in FTO’s effect in physi-

cally active individuals, and whether the interaction is due to PA or due to confounding by

other environmental exposures. While some studies suggest that FTOmay interact with diet

[24–26], a recent meta-analysis of 177,330 individuals did not find interaction between FTO
and dietary intakes of total energy, protein, carbohydrate or fat [27]. The obesity-associated

FTO variants are located in a super-enhancer region [28] and have been associated with DNA

methylation levels [29–31], suggesting that this region may be sensitive to epigenetic effects

that could mediate the interaction between FTO and PA.

In genome-wide analyses for SNP main effects adjusting for PA, or when testing for the

joint significance of SNP main effect and SNPxPA interaction, we identify 11 novel adiposity

loci, even though our sample size was up to 40% smaller than in the largest published main

effect meta-analyses [17, 18]. Our findings suggest that accounting for PA may facilitate the

discovery of novel adiposity loci. Similarly, accounting for other environmental factors that

contribute to variation in adiposity could lead to the discovery of additional loci.

In the present meta-analyses, statistical power to identify SNPxPA interactions may have

been limited due to challenges relating to the measurement and statistical modeling of PA [5].

Of the 60 participating studies, 56 assessed PA by self-report while 4 used wearable PA moni-

tors. Measurement error and bias inherent in self-report estimates of PA [32] can attenuate

effect sizes for SNP×PA interaction effects towards the null [33]. Measurement using PA mon-

itors provides more consistent results, but the monitors are not able to cover all types of activi-

ties and the measurement covers a limited time span compared to questionnaires [34]. As

sample size requirements increase nonlinearly when effect sizes decrease, any factor that leads

to a deflation in the observed interaction effect estimates may make their detection very diffi-

cult, even when very large population samples are available for analysis. Finally, because of the

wide differences in PA assessment tools used among the participating studies, we treated PA as

a dichotomous variable, harmonizing PA into inactive and active individuals. Considerable

loss of power is anticipated when a continuous PA variable is dichotomized [35]. Our power

could be enhanced by using a continuous PA variable if a few larger studies with equivalent,

quantitative PA measurements were available.

In summary, while our results suggest that adjusting for PA or other environmental factors

that contribute to variation in adiposity may increase power for gene discovery, we do not find

evidence of SNP×PA interaction effects stronger than that observed for FTO. While other

SNP×PA interaction effects on adiposity are likely to exist, combining many small studies with

varying characteristics and PA assessment tools may be inefficient for identifying such effects

[5]. Access to large cohorts with quantitative, equivalent PA variables, measured with relatively

high accuracy and precision, may be necessary to uncover novel SNP×PA interactions.
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Methods

Main analyses

Ethics statement. All studies were conducted according to the Declaration of Helsinki.

The studies were approved by the local ethical review boards and all study participants pro-

vided written informed consent for the collection of samples and subsequent analyses.

Outcome traits—BMI, WCadjBMI and WHRadjBMI. We examined three anthropometric

traits related to overall adiposity (BMI) or body fat distribution (WCadjBMI and WHRadjBMI)

[36] that were available from a large number of studies. Before the association analyses, we cal-

culated sex-specific residuals by adjusting for age, age2, BMI (for WCadjBMI and WHRadjBMI

traits only), and other necessary study-specific covariates, such as genotype-derived principal

components. Subsequently, we normalized the distributions of sex-specific trait residuals

using inverse normal transformation.

Physical activity. Physical activity was assessed and quantified in various ways in the par-

ticipating studies of the meta-analysis (S1 and S6 Tables). Aiming to amass as large a sample

size as possible, we harmonized PA by categorizing it into a simple dichotomous variable—

physically inactive vs. active—that could be derived in a relatively consistent way in all partici-

pating studies, and that would be consistent with previous findings on gene-physical activity

interactions and the relationship between activity levels and health outcomes. In studies with

categorical PA data, individuals were defined inactive if they reported having a sedentary occu-

pation and being sedentary during transport and leisure-time (<1 h of moderate intensity lei-

sure-time or commuting PA per week). All other individuals were defined physically active.

Previous studies in large-scale individual cohorts have demonstrated that the interaction

between FTO, or a BMI-increasing genetic risk score, with physical activity, is most pro-

nounced approximately at this activity level [6, 37, 38]. In studies with continuous PA data,

PA variables were standardized by defining individuals belonging to the lowest sex- and age-

adjusted quintile of PA levels as inactive, and all other individuals as active. The study-specific

coding of the dichotomous PA variable in each study is described in S6 Table.

Study-specific association analyses. We included 42 studies with genome-wide data, 10

studies with Metabochip data, and eight studies with both genome-wide and Metabochip data.

If both genome-wide and Metabochip data were available for the same individual, we only

included the genome-wide data (S1 Table). Studies with genome-wide genotyped data used

either Affymetrix or Illumina arrays (S2 Table). Following study-specific quality control mea-

sures, the genotype data were imputed using the HapMap phase II reference panel (S2 Table).

Studies with Metabochip data used the custom Illumina HumanCardio-Metabo BeadChip

containing ~195K SNPs designed to support large-scale follow-up of known associations with

metabolic and cardiovascular traits [39]. Each study ran autosomal SNP association analyses

with BMI, WCadjBMI and WHRadjBMI across their array of genetic data using the following lin-

ear regression models in men and women separately: 1) active individuals only; 2) inactive

individuals only; and 3) active and inactive individuals combined, adjusting for the PA stra-

tum. In studies that included families or closely related individuals, regression coefficients

were estimated using a variance component model that modeled relatedness in men and

women combined, with sex as a covariate, in addition to the sex-specific analyses. The additive

genetic effect for each SNP and phenotype association was estimated using linear regression.

For studies with a case-control design (S1 Table), cases and controls were analyzed separately.

Quality control of study-specific association results. All study-specific files for the three

regression models listed above were processed through a standardized quality control protocol

using the EasyQC software [40]. The study-specific quality control measures included checks

on file completeness, range of test statistics, allele frequencies, trait transformation, population
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stratification, and filtering out of low quality data. Checks on file completeness included

screening for missing alleles, effect estimates, allele frequencies, and other missing data.

Checks on range of test statistics included screening for invalid statistics such as P-values >1

or<0, negative standard errors, or SNPs with low minor allele count (MAC, calculated as

MAF�N, where MAF is the minor allele frequency and N is the sample size) and where SNPs

with MAC<5 in the inactive or the active group were removed. The correctness of trait trans-

formation to inverse normal was examined by plotting 2/median of the standard error with

the square root of the sample size. Population stratification was examined by calculating the

study specific genomic control inflation factor (λGC) [41]. If a study had λGC>1.1, the study

analyst was contacted and asked to revise the analyses by adjusting for principal components.

The allele frequencies in each study were examined for strand issues and miscoded alleles by

plotting effect allele frequencies against the corresponding allele frequencies from the Hap-

Map2 reference panel. Finally, low quality data were filtered out by removing monomorphic

SNPs, imputed SNPs with poor imputation quality (r2_hat <0.3 in MACH [42], observed/

expected dosage variance <0.3 in BIMBAM [43], proper_info <0.4 in IMPUTE [44]), and

genotyped SNPs with a low call-rate (<95%) or that were out of Hardy-Weinberg equilibrium

(P<10−6).

Meta-analyses. Beta-coefficients and standard errors were combined by an inverse-vari-

ance weighted fixed effect method, implemented using the METAL software [45]. We per-

formed meta-analyses for each of the three models (active, inactive, active + inactive adjusted

for PA) in men only, in women only, and in men and women combined. Study-specific

GWAS results were corrected for genomic control using all SNPs. Study-specific Metabochip

results as well as the meta-analysis results for GWAS and Metabochip combined were cor-

rected for genomic control using 4,425 SNPs included on the Metabochip for replication of

associations with QT-interval, a phenotype not correlated with BMI, WCadjBMI or WHRadjBMI,

after pruning of SNPs within 500 kb of an anthropometry replication SNP. We excluded SNPs

that 1) were not available in at least half of the maximum sample size in each stratum; 2) had a

heterogeneity I2 >75%, or 3) were missing chromosomal and base position annotation in

dbSNP.

Calculation of the significance of SNP×PA interaction and of the joint significance of

SNP main effect and SNP×PA interaction. To identify SNP×PA interactions, we used the

EasyStrata R package [46] to test for the difference in meta-analyzed beta-coefficients between

the active and inactive groups for the association of each SNP with BMI, WCadjBMI and

WHRadjBMI. Easystrata tests for differences in effect estimates between the active and inactive

strata by subtracting one beta from the other (βactive−βinactive,) and dividing by the overall stan-

dard error of the difference as follows:

Zdiff ¼
bactive � binactiveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2
active � SE2

inactive � 2 r � SE2
active � SE2

inactive

p

where r is the Spearman rank correlation coefficient between βactive and βinactive for all

genome-wide SNPs. The joint significance of the SNP main and SNP×PA interaction effects

was estimated using the method by Aschard et al. [16] which is a joint test for genetic main

effects and gene-environment interaction effects where gene-environment interaction is calcu-

lated as the difference in effect estimates between two exposure strata, accounting for 2 degrees

of freedom.

Testing for secondary signals. Approximate conditional analyses were conducted using

GCTA version 1.24 [19]. In the analyses for SNPs identified in our meta-analyses of European-

ancestry individuals only, LD correlations between SNPs were estimated using a reference
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sample comprised of European-ancestry participants of the Atherosclerosis Risk in Communi-

ties (ARIC) study. In the analyses for SNPs identified in our meta-analyses of all ancestries

combined, the reference sample comprised 93% of European-ancestry individuals and 6% of

African ancestry participants from ARIC, as well as 1% of CHB and JPT samples from the

HapMap2 panel, to approximate the ancestry mixture in our all ancestry meta-analyses. To

test if our identified SNPs were independent secondary signals that fell within 1 Mbp of a pre-

viously established signal, we used the GCTA—cojo-cond command to condition our lead

SNPs on each previously established SNP in the same locus.

Replication analysis for the CDH12 locus. The replication analysis for the CDH12 locus

included participants from the EPIC-Norfolk (NINACTIVE = 4,755, NACTIVE = 11,526) and Fen-

land studies (NINACTIVE = 1,213, NACTIVE = 4,817), and from the random subcohort of the

EPIC-InterAct Consortium (NINACTIVE = 2,154, NACTIVE = 6,632). PA stratum-specific esti-

mates of the association of CDH12with BMI were assessed and meta-analyzed by fixed effects

meta-analyses, and the differences between the PA-strata were determined as described above.

Examining the influence of BMI, WCadjBMI and WHRadjBMI-associated

loci on other complex traits and their potential functional roles

NHGRI-EBI GWAS catalog lookups. To identify associations of the novel BMI,

WCadjBMI or WHRadjBMI loci with other complex traits in published GWAS, we extracted pre-

viously reported GWAS associations within 500 kb and r2>0.6 with any of the lead SNPs,

from the GWAS Catalog of the National Human Genome Research Institute and European

Bioinformatics Institute [47] (S14 Table).

eQTLs. We examined the cis-associations of the novel BMI, WCadjBMI or WHRadjBMI loci

with the expression of nearby genes from various tissues by performing a look-up in a library

of>100 published expression datasets, as described previously by Zhang et al [48]. In addition,

we examined cis-associations using gene expression data derived from fasting peripheral

whole blood in the Framingham Heart Study [49] (n = 5,206), adjusting for PA, age, age2, sex

and cohort. For each novel locus, we evaluated the association of all transcripts ±1 Mb from

the lead SNP. To minimize the potential for false positives, we only considered associations

where our lead SNP or its proxy (r2>0.8) was either the peak SNP associated with the expres-

sion of a gene transcript in the region, or in strong LD (r2>0.8) with the peak SNP.

Overlap with functional regulatory elements. We used the Uncovering Enrichment

Through Simulation method to combine the genetic association data with the Roadmap Epige-

nomics Project segmentation data [22]. First, 10,000 sets of random SNPs were selected

among HapMap2 SNPs with a MAF >0.05 that matched the original input SNPs based on

proximity to a transcription start site and the number of LD partners (r2>0.8 in individuals of

European ancestry in the 1000 Genomes Project). The LD partners were combined with their

original lead SNPs to create 10,000 sets of matched random SNPs and their respective LD part-

ners. These sets were intersected with the 15-state ChromHMM data from the Roadmap Epi-

genomics Project and resultant co-localizations were collapsed from total SNPs down to loci,

which were then used to calculate an empirical P value when comparing the original SNPs to

the random sets. We examined the enrichment for all loci reaching P<10−5 for SNP×PA inter-

action combined, and for all loci reaching P<5x10-8 in the PA-adjusted SNP main effect

model combined. In addition, we examined the variant-specific overlap with regulatory ele-

ments for each of the index SNPs of the novel BMI, WCadjBMI and WHRadjBMI loci and vari-

ants in strong LD (r2>0.8).

Estimation of variance explained in inactive and active groups. We compared variance

explained for BMI, WCadjBMI and WHRadjBMI between the active and inactive groups using
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two approaches. First, we used a method previously reported by Kutalik et al [15], and selected

subsets of SNPs based on varying P value thresholds (ranging from 5x10-8 to 0.05) from the

SNP main effect model adjusted for PA. Each subset of SNPs was clumped into independent

regions using a physical distance criterion of<500kb, and the most significant lead SNP

within the respective region was selected. For each lead SNP, the explained variance was calcu-

lated as:

r2 ¼
1

1þ N

F� 1 P
2ð Þð Þ

2

�
1

N

in the active and inactive groups separately, where N is the sample size and P is the P value for

SNP main effect in active or inactive strata. Finally, the variance explained by each subset of

SNPs in the active and inactive strata was estimated by summing up the variance explained by

the SNPs.

Second, we applied the LD Score regression tool developed by Bulik-Sullivan et al [14] to

quantify the proportion of inflation due to polygenicity (heritability) rather than confounding

(cryptic relatedness or population stratification) using meta-analysis summary results. LD

Score regression leverages LD between causal and index variants to distinguish true signals by

regressing meta-analysis summary results on an ‘LD Score’, i.e. the cumulative genetic varia-

tion that an index SNP tags. To obtain heritability estimates by PA strata, we regressed our

summary results from the genome-wide meta-analyses of BMI, WCadjBMI and WHRadjBMI,

stratified by PA status (active and inactive), on pre-calculated LD Scores available in HapMap3

reference samples of up to 1,061,094 variants with MAF�1% and N>10th percentile of the

total sample size.
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