
(

| 8 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Figure S1 Scores plots of PCs against their adjacent vectors. Demonstrates a homogenous population with no clear substructure or independent clustering of groups of individuals.

Figure S2 Selection of probes driving PCs. (S2A) Maximum (blue) and minimum (black) eigenvector values for each PC. The eigenvector values represent the extent of the correlation between a probe and a PC, with 0 indicating no association. Selection of probes driving each PC is based on the optimal number of probes for each PC that have the same eigenvector value cut off. As multiple probes can contribute a small amount of variance to each PC it is reasonable that a low cut off value can pick up many of the significant probes driving each PC. Probes that have an eigenvector value of greater than 0.02 or less than -0.02 were selected for further biological enrichment analysis as this incorporated all the maximally and minimally expressed probes in this section. (S2B) Selection of probes at this cut off value enabled approximately similar numbers of probes to be selected for each PC. The slightly lower number of probes that are selected in the initial PCs is due to the lower maximum and minimum eigenvector values in these PCs as shown in (S2A).

Figure S3 Variance explained by PCs. Calculated from the eigenvalues obtained from the Singular Value Decomposition. Variance explained by each PC is plotted in black and cumulative variance in blue. A) Normalized dataset, B) Corrected with linear models, C) PC25 corrected D) PC50 corrected. All variances add up to 1 . Cum

Figure S4 Correlation between additive genetic and common environmental factors. Significant association ($p=8.57 \mathrm{e}-08$ and $R 2=0.08$) between the common environment and genetic components estimated in an $A C$ and $A E$ models. The proportion of common environment variance was calculated by dividing the variance attributed to common environment (Vc) by the total phenotypic variance (Vp). The proportion of genetic variability (heritability) was calculated by dividing the additive genetic component (Vg) by the total phenotypic variance (Vp). This result indicates that the heritability estimates obtained are confounded with common environment variance and therefore inflated upwards by common family effects.

PC22

PC35

PC81

PC100

PC106

PC110

PC119

PC156

PC157

PC175

PC214

PC225

PC245

PC264

PC274

PC305

PC323

PC324

Figure S5 Manhattan and QQ plots. Manhattan and QQ plots for each PC with a significant SNP associated in Table S1. The significance value cut-off is drawn as a red line drawn on the Manhattan plots and is based on the Bonferroni correction for each PC. The QQ plot shows the expected p-values vs. the observed p-values in the study and the lambda value gives a numerical estimation of any inflation in the statistics.

FcqR-MEDIATED PHAGOCYTOSIS

PC7

PORPHYRIN METABOLISM

OXIDATIVE PHOSPHORYLATION

| | |
| :--- | :--- | :--- | :--- | :--- | :--- |

B/A	NuoA	NuoB	NuoC	NuoD	NuoE	NuoF	NuoG	NuoH	NuoI	NuoJ	NuoK	NuoL	NuoM

| B/A | NdhC | NdhK | NdhJ | NdhH | NdhA | NdhL | NdhG | NdhE | NdhF | NdhD | NdhB | NdhL | NdhM | NdhN | HoxE | HoxF |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | HoxU

F-type A TPase (Bactena)
beta dipha garma

F-type ATPase (Eukaryotes)

beta	alpha	garma	OSCP	delta	epseilon	c

b	e	$f 6$	f	8	
b	f	h	j	k	g

V-type ATPase (Prokaryotes)
A B C D E F I

V-type ATPase (Eukaryotes)

A	B	C	D	E	F	G
I	AC39	$54 k D$	S	lipid		


```
Cytochrome c oxidase, cbb3-type Cytochrome bd complex
B \begin{tabular}{|l|l|l|l|}
\hline I & II & IV & III \\
\hline
\end{tabular}
Cytochrome bd complex
B/A \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline CydA & CylB \\
\hline
\end{tabular}
\(00190611 / 12\) 2
\begin{tabular}{|l|l|l|l|}
\hline QoxD & QoxC & QoxB & QoxA \\
\hline
\end{tabular}
```

PC12

Figure S6 Pathway diagrams of enriched biological networks. Figures generated from the KEGG pathway database. Pathway analysis for PC1-50 was performed using DAVID Bioinformatics Resources 6.7, Functional Annotation Tool. These pathways were significant after multiple correction (FDR) (Table S2). Components highlighted with red stars represent probes present within the corresponding PC. PC1 shows enrichment for ribosomal components. PC3 is enriched for Fc gamma R-mediated phagocytosis. PC7 is enriched for porphyrin metabolism. PC8 shows enrichment for enzymatic subunits involved oxidative phosphorylation, PC 12 is enriched in components involved in the B-cell receptor signaling pathway and hematopoietic cell lineage. PC13 is enriched for RNA degradation. PC18 shows enrichment for ribosomal components and PC25 shows enrichment for B-cell reception signaling.

Table S1 Results from the GWAS for each PC. Probes that were found to be significant after a Bonferroni correction ($0.05 / 488,462$ SNPs) on each PC are listed in this table. Though none of these are significant after correcting for all PCs, they are significant at an empirical p-value of 0.05 for each PC after 1000 permutations. PC - principal component, CHR chromosome, SNP - SNP ID, BP - base pair, BETA - regression coefficient, STAT - Coefficient T-statistic, P - Asymptotic pvalue for t-statistic, EMP - empirical p-value after 1000 permutations.

PC	CHR	SNP	BP	BETA	STAT	P	EMP
22	10	rs11004899	56960734	3.754	5.487	$8.14 \mathrm{E}-08$	0.036
35	2	rs1516174	51724845	2.826	5.43	1.089E-07	0.049
81	16	rs9673242	14078070	-3.404	-5.524	$6.69 \mathrm{E}-08$	0.021
81	16	rs1004637	14113245	-3.404	-5.524	$6.69 \mathrm{E}-08$	0.021
100	16	rs7190803	77375823	-1.444	-5.535	$6.33 \mathrm{E}-08$	0.021
106	2	rs10497190	158347486	-1.741	-5.585	4.87E-08	0.021
106	13	rs17072974	21351926	2.275	5.501	7.53E-08	0.027
106	13	rs12428031	21355249	2.275	5.501	$7.53 \mathrm{E}-08$	0.027
110	11	rs10501384	59950456	2.555	5.482	8.31E-08	0.033
110	11	rs17542525	59958103	2.555	5.482	8.31E-08	0.033
119	8	rs4596672	88124581	-1.641	-5.488	8.23E-08	0.032
119	8	rs2974279	88144159	-1.385	-5.517	$6.95 \mathrm{E}-08$	0.028
156	1	rs825113	221564768	1.762	5.503	$7.45 \mathrm{E}-08$	0.026
157	2	rs11674634	132055980	-1.305	-6.005	5.02E-09	0.004
175	4	rs6848983	298010	1.736	5.71	$2.50 \mathrm{E}-08$	0.005
214	5	rs1279627	55966337	-1.095	-5.562	$5.50 \mathrm{E}-08$	0.019
225	10	rs7919814	109720733	-1.055	-5.502	$7.52 \mathrm{E}-08$	0.03
245	8	rs17128272	19257994	-1.516	-5.449	$9.85 \mathrm{E}-08$	0.042
323	9	rs10813262	30474037	1.542	5.538	$6.22 \mathrm{E}-08$	0.044
323	9	rs4878432	30490252	1.542	5.538	$6.22 \mathrm{E}-08$	0.044
323	9	rs7866981	30548222	1.568	5.639	$3.65 \mathrm{E}-08$	0.034
324	14	rs10498517	64832534	1.619	6.112	$2.74 \mathrm{E}-09$	0.002
324	14	rs4902382	64834310	1.44	5.662	3.24E-08	0.017

Table S2 Pathway analysis for the first 50 PCs Pathway analysis for PC1-50 was performed using DAVID Bioinformatics Resources 6.7, Functional Annotation Tool. PC - principal component, Term - name of KEGG pathway, Count - count of probes in each hit, \% - percentage of all probes submitted for that PC that are present within the pathway, P - the p -value that is calculated using a modified Fischer's exact test for enrichment, FDR - correction of p-values and using the Benjamini-Hochberg FDR method.

PC	Term	Count	\%	P	FDR
1	Ribosome	8	7.9	$1.00 \mathrm{E}-06$	4.50E-05
3	Fc gamma R-mediated phagocytosis	14	2.7	$4.30 \mathrm{E}-05$	5.40E-03
7	Porphyrin metabolism	7	1.5	$1.60 \mathrm{E}-04$	$2.00 \mathrm{E}-02$
	Proteasome	12	2.6	$2.70 \mathrm{E}-07$	4.00E-05
	Oxidative phosphorylation	18	3.9	1.20E-06	8.70E-05
8	Huntington's disease	21	4.6	$1.90 \mathrm{E}-06$	9.00E-05
	Parkinson's disease	15	3.3	8.50E-05	$3.10 \mathrm{E}-03$
	Alzheimer's disease	15	3.3	$1.10 \mathrm{E}-03$	$3.00 \mathrm{E}-02$
	Hematopoietic cell lineage	13	2.5	$1.40 \mathrm{E}-05$	$2.00 \mathrm{E}-03$
	B cell receptor signaling pathway	10	1.9	5.60E-04	3.80E-02
12	Antigen processing and presentation	10	1.9	1.20E-03	5.30E-02
	Graft-versus-host disease	7	1.3	$1.30 \mathrm{E}-03$	$4.40 \mathrm{E}-02$
	Non-small cell lung cancer	8	1.5	$1.50 \mathrm{E}-03$	$4.00 \mathrm{E}-02$
	Asthma	6	1.2	$2.00 \mathrm{E}-03$	$4.40 \mathrm{E}-02$
13	RNA degradation	11	2.3	$1.30 \mathrm{E}-05$	$1.80 \mathrm{E}-03$
	Oxidative phosphorylation	15	3.1	7.80E-05	$5.60 \mathrm{E}-03$
	Ribosome	11	2.3	$5.00 \mathrm{E}-04$	$2.40 \mathrm{E}-02$
18	Ribosome	14	2.9	$9.40 \mathrm{E}-07$	$1.00 \mathrm{E}-04$

24	B cell receptor signaling pathway	14	2.9	$2.00 \mathrm{E}-07$	$2.70 \mathrm{E}-05$					
25	B cell receptor signaling									
pathway						$\quad 11$				
:---	:---	:---	:---							
26	Primary immunodeficiency	8	2.2							

Figure S4 Correlation between additive genetic and common environmental factors. Significant association ($p=8.57 \mathrm{e}-08$ and $R 2=0.08$) between the common environment and genetic components estimated in an $A C$ and $A E$ models. The proportion of common environment variance was calculated by dividing the variance attributed to common environment (Vc) by the total phenotypic variance (Vp). The proportion of genetic variability (heritability) was calculated by dividing the additive genetic component (Vg) by the total phenotypic variance (Vp). This result indicates that the heritability estimates obtained are confounded with common environment variance and therefore inflated upwards by common family effects.

Table S1 Results from the GWAS for each PC. Probes that were found to be significant after a Bonferroni correction ($0.05 / 488,462$ SNPs) on each PC are listed in this table. Though none of these are significant after correcting for all PCs, they are significant at an empirical p-value of 0.05 for each PC after 1000 permutations. PC - principal component, CHR chromosome, SNP - SNP ID, BP - base pair, BETA - regression coefficient, STAT - Coefficient T-statistic, P - Asymptotic pvalue for t-statistic, EMP - empirical p-value after 1000 permutations.

PC	CHR	SNP	BP	BETA	STAT	P	EMP
22	10	rs11004899	56960734	3.754	5.487	$8.14 \mathrm{E}-08$	0.036
35	2	rs1516174	51724845	2.826	5.43	1.089E-07	0.049
81	16	rs9673242	14078070	-3.404	-5.524	$6.69 \mathrm{E}-08$	0.021
81	16	rs1004637	14113245	-3.404	-5.524	$6.69 \mathrm{E}-08$	0.021
100	16	rs7190803	77375823	-1.444	-5.535	$6.33 \mathrm{E}-08$	0.021
106	2	rs10497190	158347486	-1.741	-5.585	4.87E-08	0.021
106	13	rs17072974	21351926	2.275	5.501	7.53E-08	0.027
106	13	rs12428031	21355249	2.275	5.501	$7.53 \mathrm{E}-08$	0.027
110	11	rs10501384	59950456	2.555	5.482	8.31E-08	0.033
110	11	rs17542525	59958103	2.555	5.482	8.31E-08	0.033
119	8	rs4596672	88124581	-1.641	-5.488	8.23E-08	0.032
119	8	rs2974279	88144159	-1.385	-5.517	$6.95 \mathrm{E}-08$	0.028
156	1	rs825113	221564768	1.762	5.503	$7.45 \mathrm{E}-08$	0.026
157	2	rs11674634	132055980	-1.305	-6.005	5.02E-09	0.004
175	4	rs6848983	298010	1.736	5.71	$2.50 \mathrm{E}-08$	0.005
214	5	rs1279627	55966337	-1.095	-5.562	$5.50 \mathrm{E}-08$	0.019
225	10	rs7919814	109720733	-1.055	-5.502	$7.52 \mathrm{E}-08$	0.03
245	8	rs17128272	19257994	-1.516	-5.449	$9.85 \mathrm{E}-08$	0.042
323	9	rs10813262	30474037	1.542	5.538	$6.22 \mathrm{E}-08$	0.044
323	9	rs4878432	30490252	1.542	5.538	$6.22 \mathrm{E}-08$	0.044
323	9	rs7866981	30548222	1.568	5.639	$3.65 \mathrm{E}-08$	0.034
324	14	rs10498517	64832534	1.619	6.112	$2.74 \mathrm{E}-09$	0.002
324	14	rs4902382	64834310	1.44	5.662	3.24E-08	0.017

Figure S3 Variance explained by PCs. Calculated from the eigenvalues obtained from the Singular Value Decomposition. Variance explained by each PC is plotted in black and cumulative variance in blue. A) Normalized dataset, B) Corrected with linear models, C) PC25 corrected D) PC50 corrected. All variances add up to 1 . Cum

Figure S2 Selection of probes driving PCs. (S2A) Maximum (blue) and minimum (black) eigenvector values for each PC. The eigenvector values represent the extent of the correlation between a probe and a PC, with 0 indicating no association. Selection of probes driving each PC is based on the optimal number of probes for each PC that have the same eigenvector value cut off. As multiple probes can contribute a small amount of variance to each PC it is reasonable that a low cut off value can pick up many of the significant probes driving each PC. Probes that have an eigenvector value of greater than 0.02 or less than -0.02 were selected for further biological enrichment analysis as this incorporated all the maximally and minimally expressed probes in this section. (S2B) Selection of probes at this cut off value enabled approximately similar numbers of probes to be selected for each PC. The slightly lower number of probes that are selected in the initial PCs is due to the lower maximum and minimum eigenvector values in these PCs as shown in (S2A).

FcqR-MEDIATED PHAGOCYTOSIS

PC7

PORPHYRIN METABOLISM

OXIDATIVE PHOSPHORYLATION

| | |
| :--- | :--- | :--- | :--- | :--- | :--- |

B/A	NuoA	NuoB	NuoC	NuoD	NuoE	NuoF	NuoG	NuoH	NuoI	NuoJ	NuoK	NuoL	NuoM

| B/A | NdhC | NdhK | NdhJ | NdhH | NdhA | NdhL | NdhG | NdhE | NdhF | NdhD | NdhB | NdhL | NdhM | NdhN | HoxE | HoxF |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | HoxU

F-type A TPase (Bactena)
beta dipha garma

F-type ATPase (Eukaryotes)

beta	alpha	garma	OSCP	delta	epseilon	c

b	e	$f 6$	f	8	
b	f	h	j	k	g

V-type ATPase (Prokaryotes)
A B C D E F I

V-type ATPase (Eukaryotes)

A	B	C	D	E	F	G
I	AC39	$54 k D$	S	lipid		


```
Cytochrome c oxidase, cbb3-type Cytochrome bd complex
B \begin{tabular}{|l|l|l|l|}
\hline I & II & IV & III \\
\hline
\end{tabular}
Cytochrome bd complex
B/A \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline CydA & CylB \\
\hline
\end{tabular}
\(00190611 / 12\) 2
\begin{tabular}{|l|l|l|l|}
\hline QoxD & QoxC & QoxB & QoxA \\
\hline
\end{tabular}
```

PC12

Figure S6 Pathway diagrams of enriched biological networks. Figures generated from the KEGG pathway database. Pathway analysis for PC1-50 was performed using DAVID Bioinformatics Resources 6.7, Functional Annotation Tool. These pathways were significant after multiple correction (FDR) (Table S2). Components highlighted with red stars represent probes present within the corresponding PC. PC1 shows enrichment for ribosomal components. PC3 is enriched for Fc gamma R-mediated phagocytosis. PC7 is enriched for porphyrin metabolism. PC8 shows enrichment for enzymatic subunits involved oxidative phosphorylation, PC 12 is enriched in components involved in the B-cell receptor signaling pathway and hematopoietic cell lineage. PC13 is enriched for RNA degradation. PC18 shows enrichment for ribosomal components and PC25 shows enrichment for B-cell reception signaling.

PC22

PC35

PC81

PC100

PC106

PC110

PC119

PC156

PC157

PC175

PC214

PC225

PC245

PC264

PC274

PC305

PC323

PC324

Figure S5 Manhattan and QQ plots. Manhattan and QQ plots for each PC with a significant SNP associated in Table S1. The significance value cut-off is drawn as a red line drawn on the Manhattan plots and is based on the Bonferroni correction for each PC. The QQ plot shows the expected p-values vs. the observed p-values in the study and the lambda value gives a numerical estimation of any inflation in the statistics.

(

| 8 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Figure S1 Scores plots of PCs against their adjacent vectors. Demonstrates a homogenous population with no clear substructure or independent clustering of groups of individuals.

Table S2 Pathway analysis for the first 50 PCs Pathway analysis for PC1-50 was performed using DAVID Bioinformatics Resources 6.7, Functional Annotation Tool. PC - principal component, Term - name of KEGG pathway, Count - count of probes in each hit, \% - percentage of all probes submitted for that PC that are present within the pathway, P - the p -value that is calculated using a modified Fischer's exact test for enrichment, FDR - correction of p-values and using the Benjamini-Hochberg FDR method.

PC	Term	Count	\%	P	FDR
1	Ribosome	8	7.9	$1.00 \mathrm{E}-06$	4.50E-05
3	Fc gamma R-mediated phagocytosis	14	2.7	$4.30 \mathrm{E}-05$	5.40E-03
7	Porphyrin metabolism	7	1.5	$1.60 \mathrm{E}-04$	$2.00 \mathrm{E}-02$
	Proteasome	12	2.6	$2.70 \mathrm{E}-07$	4.00E-05
	Oxidative phosphorylation	18	3.9	1.20E-06	8.70E-05
8	Huntington's disease	21	4.6	$1.90 \mathrm{E}-06$	9.00E-05
	Parkinson's disease	15	3.3	8.50E-05	$3.10 \mathrm{E}-03$
	Alzheimer's disease	15	3.3	$1.10 \mathrm{E}-03$	$3.00 \mathrm{E}-02$
	Hematopoietic cell lineage	13	2.5	$1.40 \mathrm{E}-05$	$2.00 \mathrm{E}-03$
	B cell receptor signaling pathway	10	1.9	5.60E-04	3.80E-02
12	Antigen processing and presentation	10	1.9	1.20E-03	5.30E-02
	Graft-versus-host disease	7	1.3	$1.30 \mathrm{E}-03$	$4.40 \mathrm{E}-02$
	Non-small cell lung cancer	8	1.5	$1.50 \mathrm{E}-03$	$4.00 \mathrm{E}-02$
	Asthma	6	1.2	$2.00 \mathrm{E}-03$	$4.40 \mathrm{E}-02$
13	RNA degradation	11	2.3	$1.30 \mathrm{E}-05$	$1.80 \mathrm{E}-03$
	Oxidative phosphorylation	15	3.1	7.80E-05	$5.60 \mathrm{E}-03$
	Ribosome	11	2.3	$5.00 \mathrm{E}-04$	$2.40 \mathrm{E}-02$
18	Ribosome	14	2.9	$9.40 \mathrm{E}-07$	$1.00 \mathrm{E}-04$

24	B cell receptor signaling pathway	14	2.9	$2.00 \mathrm{E}-07$	$2.70 \mathrm{E}-05$					
25	B cell receptor signaling									
pathway						$\quad 11$				
:---	:---	:---	:---							
26	Primary immunodeficiency	8	2.2							

