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Intelligence: shared genetic basis between Mendelian
disorders and a polygenic trait

Sanja Franić*,1, Maria M Groen-Blokhuis1, Conor V Dolan1,2, Mathijs V Kattenberg1, René Pool1,
Xiangjun Xiao3, Paul A Scheet3, Erik A Ehli4, Gareth E Davies4, Sophie van der Sluis5, Abdel Abdellaoui1,
Narelle K Hansell6, Nicholas G Martin6, James J Hudziak7, Catherina E M van Beijsterveldt1,
Suzanne C Swagerman1, Hilleke E Hulshoff Pol8, Eco J C de Geus1, Meike Bartels1, H Hilger Ropers9,
Jouke-Jan Hottenga1 and Dorret I Boomsma1

Multiple inquiries into the genetic etiology of human traits indicated an overlap between genes underlying monogenic disorders

(eg, skeletal growth defects) and those affecting continuous variability of related quantitative traits (eg, height). Extending the

idea of a shared genetic basis between a Mendelian disorder and a classic polygenic trait, we performed an association study

to examine the effect of 43 genes implicated in autosomal recessive cognitive disorders on intelligence in an unselected Dutch

population (N=1316). Using both single-nucleotide polymorphism (SNP)- and gene-based association testing, we detected an

association between intelligence and the genes of interest, with genes ELP2, TMEM135, PRMT10, and RGS7 showing the

strongest associations. This is a demonstration of the relevance of genes implicated in monogenic disorders of intelligence to

normal-range intelligence, and a corroboration of the utility of employing knowledge on monogenic disorders

in identifying the genetic variability underlying complex traits.
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INTRODUCTION

Multiple inquiries into the genetic etiology of complex human traits
have indicated that, for a number of phenotypes, the genetic variants
affecting continuous, polygenic phenotypic variation may be concen-
trated in the same genes as those giving rise to monogenic (ie,
Mendelian) disorders. For instance, 180 loci associated with normal
variation in the classic polygenic trait of adult height were shown to be
enriched in genes underlying skeletal growth disorders.1 Many rare
genetic variants in three candidate genes (ABCA1, APOA1, and LCAT),
which give rise to pathogenically low levels of HDL cholesterol in
plasma, are also found in individuals with the common, complex
version of the low-HDL-cholesterol trait.2–4 Genes underlying Men-
delian disorders of lipid levels, and those affecting their normal
concentration overlap almost entirely.5 Other examples include
hemoglobin F levels,5 fat mass,6 type 2 diabetes,5,7,8 and Parkinson’s
disease.9,10

Genes underlying Mendelian disorders, in which protein function-
ing is severely altered, may therefore provide an opportunity to localize
and understand the genetic variability that underlies susceptibility to a
similar common polygenic phenotype.2 In the present study, we utilize
this idea to examine the effects of 43 genes implicated in autosomal
recessive cognitive disorders11 on intelligence in a Dutch sample from
the general population (N= 1316; see Materials and Methods, and
Supplementary Figures S1 and S2). Despite its being one of the most
heritable human traits (with heritability estimates ranging from 0.6 to

0.8 in adolescence and adulthood12,13), no loci consistently associated
with normal-range variation in intelligence have thus far been
reported.13–16 The two largest genome-wide association studies
(GWAS) to date failed to find replicable genome-wide association
in SNP-based analyses in adults and children, respectively.15,17 The
43 genes considered in the present study are a subset of the genes
identified in a recent study that used homozygosity mapping, exon
enrichment, and next-generation sequencing in consanguineous
families with autosomal-recessive intellectual disabilities to identify
single, presumably disease-causing variants in 50 novel candidate
genes.11 The genome-wide data set of the Netherlands Twin Register
(NTR),18 used in the present study, contains SNP data on 43 of these
50 genes (Table 1), including 1227 genotyped SNPs in total
(Supplementary Table S1).

MATERIALS AND METHODS

Sample
The data were obtained from the NTR.18,19 The NTR is a population-based
register of Dutch twins recruited at birth and measured longitudinally at ages 1
through 18. The sample consisted of 1316 individuals from 662 families (978
twins, 231 siblings, and 107 of their parents). To keep the genetic within-family
covariance matrix approximately compound symmetric (ie, to keep the genetic
covariances between each type of relatives approximately equal), the data were
selected so as to contain no complete MZ twin pairs and no more than one
parent per family. Thus, each family consisted of individuals who were
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genetically either siblings or parent-offspring, that is, the expected genetic
correlation between any given pair of family members was 0.5. The observed
intraclass correlation between the family members was 0.57 (SE= 0.025). In all,
45.8% of the sample were males. The mean ages of children and parents were
12.7 (SD= 4.1) and 43.9 (SD= 4.1), respectively. The age distribution (showing
each participant’s mean age across measurement occasions) is given in
Supplementary Figure S1.

Phenotype data
Intelligence was assessed longitudinally using the Revised Amsterdam Children
Intelligence Test (RAKIT20), Wechsler Intelligence Scale for Children
(WISC21–23), Raven’s Standard and Advanced Progressive Matrices (SPM,
APM24,25), and the Wechsler Adult Intelligence Scale (WAIS26,27), the choice of
test being largely dependent on participants’ age. A previous study employing

the same data set demonstrated a high genetic stability of intelligence scores as
assessed by the different tests (the autoregressive coefficients between the
additive genetic factors at consecutive measurement occasions ranging from 0.8
to 1).28 Therefore, the individuals’ mean scores across the different ages were
used as measure of the phenotype. The IQ scores were derived based on the
age- and sex-appropriate norms for the RAKIT, WISC, or WAIS, and
subsequently converted to z-scale within each measurement occasion and
averaged over measurement occasions. For the 154 participants for whom only
the Raven's Matrices scores were available, we used z-transformed scores on
Raven’s Matrices. The distribution of intelligence scores is given in
Supplementary Figure S2.

Genotype data
Blood and/or buccal samples for DNA extraction were collected as part of
several projects within the NTR. Genotyping was performed using the
Affymetrix Human SNP Array 6.0. Genotypes were called using the BIRDSEED
V2 algorithm. SNPs in Hardy-Weinberg equilibrium (P40.00001) with a
minor allele frequency exceeding 0.01 and a missingness rate below 5% were
included in the analyses. Samples were selected if their call rate exceeded
95% and were checked for Mendelian errors, excessive heterozygosity
(−0.1oFo0.1), and discrepancies in relatedness.29 Genotypes displaying
Mendelian inheritance errors were excluded from the analyses.
For the present study, we selected all genotyped SNPs from the 50 genes of

interest, including a 5-kb border around each gene. In all, 7 out of the 50 genes
contained no genotyped SNPs. The distribution of the SNPs (1227 in total)
over the remaining 43 genes is shown in Table 1. The full list of SNPs is given
in Supplementary Table S1. In all, 0.85% of the SNPs were in exonic regions,
and out of that, 61.3% were non-synonymous.

Analyses
SNP-based analyses. As a first step, we tested for an association between the
phenotype and each of the 1227 SNPs. As the observations were clustered in
families, the analyses were performed using a multilevel regression model with
random intercepts to account for the within-family covariance structure.
Specifically, the model for phenotype of person i in family j was phij= b0j
+b1*SNPij+resij, where ph denotes phenotype, b0j is intercept in family j, b1 is a
(fixed) slope parameter, and resij denotes an individual-specific residual term.
The intercept term can be further decomposed as b0j= g0+k0j, where g0 is a
fixed component and k0j is a component that is random over families. Using
random intercepts prevents the inflation of type I error associated with applying
a standard (fixed-effects) regression model to family-clustered data. The within-
family genetic covariance structure was approximately compound symmetric
(ie, the expected genetic correlation between any given type of relatives was
0.5). The analyses were implemented using the 'nlme' package in R.30 The code
used to carry out the analyses is given in Script S1.

Additionally, we performed association testing using the Plink software
package.31 Here the association between the phenotype and each of the 1227
SNPs was examined using the Huber-White sandwich variance estimator to
account for the family structure in the data. The results were compared with
those obtained using the multilevel regression model in R. A high degree of
correspondence between the results obtained using the multilevel regression
model (which effectively assumes an AE background covariance structure
among first-degree relatives) and those obtained using the Huber-White
sandwich estimator (which corrects for relatedness without assuming a back-
ground model) would imply that any background misspecification in the
random effects model has not affected the conclusions. A high degree of
correspondence is expected, because the test of a fixed effect in the multilevel
regression model is fairly robust to possible background misspecification.32

To empirically evaluate the results obtained for the 1227 SNPs, we drew a
number of random samples of: (a) 1227 SNPs from the entire genome, (b)
1227 SNPs from intragenic regions of the genome, and (c) 43 genes (including
all SNPs on those genes) from the autosomal genome. All samples excluded the
1227 SNPs of interest. Each of the random samples was subjected to the
analyses described above. The resulting QQ plots and genomic inflation factors
(λ) were compared to those obtained for the 1227 SNPs of interest.

Table 1 Chromosomal position (hg19), length, and number

of genotyped SNPs for the 43 genes

Gene Chromosome Start (bp) End (bp) Length (kb) N of SNPs

PARP1 1 224097741 226600780 2503.039 385

RGS7 1 240926554 241525530 598.976 177

TMEM135 11 86743886 87039756 295.870 83

LAMA1 18 6936743 7122813 186.070 68

FRY 13 32600437 32875794 275.357 67

ADK 10 75905960 76474061 568.101 48

SCAPER 15 76635526 77202785 567.259 48

ASCC3 6 100951070 101334248 383.178 31

PECR 2 216856052 216952678 96.626 27

POLR3B 12 106746436 106908976 162.540 24

ENTPD1 10 97449774 97642023 192.249 23

ACBD6 1 180239515 180477089 237.574 23

NDST1 5 149860381 149942773 82.392 18

ZBTB40 1 22773344 22862650 89.306 17

INPP4A 2 99056317 99212496 156.179 17

ELP2 18 33704407 33762909 58.502 16

TAF2 8 120738015 120850103 112.088 14

LINS 15 101094574 101148435 53.861 14

KDM5A 12 384223 503620 119.397 13

CACNA1G 17 48633429 48709835 76.406 13

SLC31A1 9 115978842 116034217 55.375 11

CAPN10 2 241521133 241562122 40.989 9

KIF7 15 90147020 90203682 56.662 8

RALGDS 9 135968107 136044301 76.194 8

WDR45L 17 80567438 80611411 43.973 8

GON4L 1 155714508 155834191 11.9683 8

C9orf86 9 139689818 139740639 50.821 6

TTI2 8 33325904 33376119 50.215 5

UBR7 14 93668401 93700561 32.160 4

ZCCHC8 12 122952417 122990518 38.101 4

CCNA2 4 122732599 122750087 17.488 3

C11orf46 11 30339598 30364774 25.176 3

FASN 17 80031215 80061106 29.891 3

PRMT10 4 148553936 148610381 56.445 3

MAN1B1 9 139976379 140008635 32.256 3

CNKSR1 1 26498894 26521377 22.483 3

HIST1H4B 6 26022124 26032480 10.356 2

HIST3H3 1 228607546 228618026 10.480 2

EEF1B2 2 207019309 207032652 13.343 2

CASP2 7 142980308 143009789 29.481 2

ASCL1 12 103346464 103359294 12.830 2

KDM6B 17 7738222 7763106 24.884 1

ERLIN2 8 37589117 37621619 32.502 1

Total 1227
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As additional verification of the results, permutation was employed to
generate an empirical distribution of λ values under the null hypothesis of no
association. The genotypes (ie, the 1227 SNPs) were randomly reallocated over
the phenotypes 1000 times, and each of the 1000 permuted data sets was
analyzed using the random intercept multilevel regression model described
above. To account for the background covariance structure arising from the
clustering of data in families, family data were relocated jointly: the genotypes
of any two-member family were reassigned to phenotypes of another randomly
selected two-member family, and the same was done for three- and four-
member families. Thus, the family structure in the permuted data sets remained
intact. As in the original analyses, the family structure was subsequently
corrected for using a multilevel model. The null distribution of λ values
generated using the permuted data sets was compared to the λ obtained for the
1227 SNPs of interest.

Finally, a genome-wide association study was performed. Here, the
phenotype was regressed on each of the available genotyped SNPs (538652
SNPs) using the Plink software package.31

All analyses were performed using an additive model and included eight
genomic principal components33 as covariates to account for any possible
effects of population stratification. All λ values were estimated as regression
coefficients of the observed on the expected -log10 of the P-values, using the
GenABEL package in R.30

Gene-based analyses. In the next step, the SNP-based P-values obtained using
the multilevel regression model were used as input for gene-based analysis. A
gene-based association test that employs the extended Simes procedure
(GATES) was used.34 GATES involves jointly analyzing all available SNPs in
a gene to obtain a single P-value associated with the gene. The method assumes
that an association test between the phenotype and all available SNPs on the
gene has been carried out, and that the resulting P-values and pair-wise allelic
correlation coefficients r for all SNPs are available. In the present case, we used
the P-values obtained in the SNP-based multilevel regression analysis, and pair-
wise allelic correlation coefficients obtained using the − r option in Plink. Given
m SNPs on a gene, a gene-based P-value is obtained through an iterative
procedure by combining the ascendingly ordered m P-values in the following
way: PG=min (mep(j)/me(j)), where me is the effective number of independent
P-values among the m SNPs, me(j) is the effective number of independent
P-values among the top j SNPs (j= 1, …, m), and pj is the j-th lowest P-value
(ie, the P-value associated with the j-th top SNP). The null hypothesis of this
gene-based test is that none of the SNPs are associated with the phenotype;
the alternative is that at least one SNP is associated. The effective number
of independent P-values among the m SNPs, me, is estimated as
me ¼ m�Pm

i¼1
½Iðli > 1Þðli � 1Þ�λi40, where I(x) is an indicator function

and λi is the i-th eigenvalue of the mxm correlation matrix (ρ) of the P-values
obtained in the SNP-based association test. The pair-wise P-value correlation
coefficient, ρij, can be approximated by a 6th order polynomial function of the

allelic correlation coefficient rij: ρij = 0.2982rij
6
− 0.0127rij

5 +0.0588rij
4

+0.0099rij
3 +0.6281rij

2
− 0.0009rij, where ρij and rij are the ij-th elements of

the SNP P-value correlation matrix ρ, and of the allelic correlation matrix r,
respectively. For a full overview of the method, we refer the reader to the
original publication34 and to Script S2, which contains our implementation
GATES in R. The R script performs the test k times given k genes in the
input file.

Additionally, we performed a gene-based association test using the Versatile
Gene-Based Test for Genome-wide Association Studies (VEGAS),35 and
compared the results to those obtained using GATES. VEGAS is a
simulation-based method that uses information from the full set of SNPs
within a gene and accounts for linkage disequilibrium (LD) by using
simulations from the multivariate normal distribution. The analyses were
performed using the VEGAS web-interface.35

RESULTS

SNP-based analyses
Association between intelligence scores and each of the 1227 SNPs (see
Materials and Methods) was examined using an additive model and
eight principal components33 to account for the possible effects of
population stratification (Script S1). The left panel of Figure 1 shows a
quantile-quantile (QQ)-plot, including 95% confidence intervals
(CIs), of the association P-values (also see Supplementary Figures S3
and S4, and Supplementary Table S2). The CI estimates were obtained
while taking into account the LD structure between the SNPs: instead
of N= 1227, we used an estimate of the effective number of
independent P-values (N=625). This approach produces relatively
broader CIs; we thus adopt a more stringent approach to evaluate the
significance of the difference between the expected and the observed
distributions. As evident from the figure, the distribution of the
observed P-values differs markedly from that expected under the null
hypothesis of no effect, indicating an enrichment of the 43 candidate
genes for polymorphisms associated with intelligence. Note that the
significant inflation along nearly the entire length of the QQ plot
(genomic inflation factor λ= 1.26) is not necessarily indicative of
population stratification, particularly in the context of a candidate SNP
study. Here, the observed inflation is expected under the alternative
hypothesis of (polygenic) effects of a relatively large number of the
candidate SNPs tested.36 As the analyses were performed while
adjusting for eight principal components (seven of which were
correlated with geographic latitude and longitude in the present
sample,33 thereby feasibly representing differences in ancestry),

Figure 1 Left: QQ-plot based on the 1227 candidate SNPs. Right: Genome-wide QQ-plot based on 538652 SNPs. Dashed lines: 95% confidence
intervals (CIs).

IQ: shared Mendelian/polygenic genetic basis
S Franić et al

3

European Journal of Human Genetics



population stratification does not appear to be a likely cause of the
inflation.
To empirically verify the finding and confirm the absence of

population stratification, we performed SNP-based association testing
on samples of SNPs drawn randomly from the genome. In particular,
we drew 1000 random samples of: (a) 1227 SNPs from the entire
genome, (b) 1227 SNPs from intragenic regions of the genome, and
(c) 43 genes (including all SNPs on those genes) approximately
matched for size with the 43 candidate genes and sampled from the
entire autosomal genome. All random samples excluded the 1227
SNPs of interest. The distributions of the λ values obtained for each set
of random samples, along with the λ obtained for the 1227 SNPs of
interest (marked by a horizontal line), are depicted in Figure 2. As
evident from the figure (panels a and b), the effect found for the SNPs
of interest did not replicate in any of the 2000 random samples
obtained by sampling SNPs from the entire genome or from the
intragenic regions of the genome. For SNPs residing on randomly
sampled sets of 43 genes (panel c, Figure 2), only 3.6% of λ values
exceed the λ obtained for the candidate SNPs. Note that the higher
variance in panel c of Figure 2 relative to that in Panels a and b is
expected given that the degree of non-independence of SNPs (ie, LD)
is considerably higher in SNPs sampled from the same gene relative to
those sampled from the entire genome. A reduced effective number of
independent SNPs is expected to result in a less precise estimate of λ,
that is, in a higher dispersion around the mean λ value.
As further empirical verification, we performed permutation testing

to obtain an empirical distribution of λ values under the null
hypothesis of no association: the genotypes (ie, the 1227 SNPs of
interest) were randomly reallocated over the phenotypes 1000 times,

and each of the 1000 permuted datasets was analyzed using SNP-based
association testing. The resulting distribution of λ values and the
λ obtained for the non-permuted data set (λ= 1.26) are shown in
panel d of Figure 2. Here, only 2.9% of the λ values exceed the λ value
of interest; an empirical P-value consistent with that obtained from
random sampling.
Finally, a genome-wide association analysis was performed. Here,

the phenotype was regressed on each of the available genotyped SNPs
(538652 SNPs). The resulting QQ plot is depicted in the right panel of
Figure 1. As evident from the figure, the genome-wide P-values in the
right panel show no notable inflation (λ= 1.03), in contrast to the left
panel (λ= 1.26).
The present results thus consistently indicate an enrichment of the

candidate set of genes for polymorphisms associated with intelligence,
while plausibly ruling out population structure as the cause of the
observed effect. The former is demonstrated by the significant
inflation of the association P-values for the candidate set of SNPs as
compared with random subsets of SNPs (empirical P= 0.036) and to a
permutation-based null distribution (empirical P= 0.029). The latter is
established by (a) the inclusion of genetic principal components into
the association study, (b) the near absence of comparable P-value
inflation in randomly selected sets of SNPs, and (c) the absence of
genome-wide P-value inflation.

Gene-based analyses
Next, gene-based testing was carried out (see Materials and Methods
and Script S2). The full list of gene-based results is given in
Supplementary Table S3. Genes ELP2 (P= 0.007), TMEM135
(P= 0.007), PRMT10 (P= 0.019), and RGS7 (P= 0.044) displayed

Figure 2 Distribution of genomic inflation factors (λ) obtained for 1000 (a) random samples of 1227 SNPs from the entire genome, (b) random samples of
1227 SNPs from intragenic regions of the genome, (c) random samples of 43 genes from the entire genome, and (d) permuted data sets. Horizontal line: λ
obtained for in the non-permuted data set for the 1227 SNPs of interest.
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the strongest associations, although no association was significant after
correction for multiple testing (with α= 0.05/43). Notably, 2 out of
the 50 genes from the Najmabadi et al11 study harbor more than one
mutation associated with cognitive disabilities; one of those genes is
ELP2, which, in the present study, shows the strongest evidence of
association.
Focusing on the four nominally significant genes, we examined the

positions of the most strongly associated SNPs in these genes relative
to the mutations in Najmabadi et al11 (Supplementary Figure S5). As
evident from the figure, both mutations in ELP2, as well as the
mutations in TMEME135 and PRMT10, are relatively close to our top
SNP for their respective genes; the distances range from 4.8 kb to
31.4 kb. On RGS7, the distance between the mutation and the top SNP
is relatively large (535.7 kb). Note that any distance between the
disease-causing mutation and our top SNP is consistent with the logic
of the present study however, as the gene is viewed as a functional unit
with regard to its etiological relevance to intelligence, regardless of the
distribution of the functionally relevant polymorphisms along
the gene.
For validation, both the gene-based analyses and the SNP-based

analyses were performed using several different methods (see Materials
and Methods). The results obtained using the different methods
converged highly: the log10 of the P-values obtained using two
methods of SNP-based testing correlated 0.88, and the P-values
obtained using two different gene-based tests correlated 0.89
(Supplementary Table S3).

DISCUSSION

The present study focused on 43 genes implicated in autosomal
recessive cognitive disorders in consanguineous Iranian families,11 and
found these to be enriched for polymorphisms associated with
normal-range intelligence in a Dutch population-based sample. This
is a demonstration of the relevance of genes implicated in monogenic
disorders of cognitive ability to continuous variability in intelligence.
Despite the high heritability of intelligence,12,28,37,38 the progress in the
identification of loci consistently associated with variation in its
normal range has thus far been limited.15,17,38–42 Exceptions are the
apolipoprotein E (APOE) gene at older ages43 and formin binding
protein 1-like (FNBP1L), the latter having recently been shown to be
associated with both childhood and adulthood intelligence.15,17 The
present approach utilizes the idea that the differentially sized effects of
individual mutations located within a gene functionally relevant to the
phenotype may range from severe disruptions of protein functioning
(resulting in a Mendelian disorder) to smaller effects underlying
polygenic variation. Utilizing prior knowledge on genetics of Mende-
lian disorders may therefore prove a valuable approach to the
identification of genetic variability underlying polygenic traits, with
the advantage of requiring considerably smaller sample sizes than
GWAS to achieve adequate power. This may prove especially useful in
the study of phenotypes for which large samples are difficult to obtain,
for instance because the phenotype is difficult or costly to measure (eg,
neuropsychological or fMRI measures), and/or in detection of genetic
variants characterized by small effect sizes. For instance, in the present
study we clearly demonstrate enrichment, although none of the
P-values for individual SNPs fall below the Bonferroni-corrected
significance threshold (α= 0.05/1227= 0.00004, or α= 0.05/625=
0.00008 if one corrects by the number of independent SNPs34),
indicating that the magnitudes of individual SNP effects are too small
to be detected in regular GWAS.
Although larger sample sizes are needed to identify the exact genes

and genetic variants driving the association in the present study, we

focus on the top four genes that reach nominal significance. The most
strongly associated gene, ELP2 (elongator complex protein 2), encodes
a subunit of the RNA polymerase II elongator complex,44 involved in
acetylation of histones H3 and probably H4 and possibly in chromatin
remodeling. TMEM135 (transmembrane protein 135) is involved in
fat metabolism and energy expenditure.45 PRMT10 (protein arginine
methyltransferase 10) affects chromatin remodeling leading to tran-
scriptional regulation, RNA processing, DNA repair, and cell
signaling.46 RGS7 (regulator of G-protein signaling 7) interacts with
14-3-3 protein, tau, and snapin (a component of the SNARE complex
required for synaptic vesicle docking and fusion).47

The utilization of knowledge on monogenic disorders to identify
polymorphisms that affect the variability of continuous phenotypes is
a cost-efficient approach to understand the genetic variability under-
lying polygenic traits. At present, the causal variants for a large
number of monogenic disorders have been identified (over 3000
disorders; Online Mendelian Inheritance in Man (OMIM): http://
www.ncbi.nlm.nih.gov/omim), and recent developments in sequen-
cing technologies have made it possible to employ exome sequencing
or whole-genome sequencing, possibly in combination with homo-
zygosity mapping, as an efficient approach to identifying novel causal
variants underlying Mendelian disorders.48–50 The National Human
Genome Research Institute has opened Centers for Mendelian
Genomics (NHGRI Genome Sequencing Program, http://www.gen-
ome.gov/), whose primary goal is the discovery of as yet unknown
variation underlying Mendelian disorders. Thus, at present, the
utilization of existing and impending knowledge on variants under-
lying Mendelian disorders to identify the variation underlying
polygenic traits may prove a viable, efficient, and cost-effective
complement to standard approaches such as GWAS. The present
finding highlights the importance of continuing the efforts directed at
studying monogenic diseases50,51 at a time when focus has shifted
away from them, as they can advance our understanding of multi-
factorial traits.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

Funding was obtained from the European Science Council (ERC Advanced,
230374), the Netherlands Organization for Scientific Research (NWO: grants
480-04-004, 051.02.060, SPI56-464-14192, NWO/MaGW: VIDI-452-12-014),
NBIC/BioAssist/RK(2008.024), Biobanking and Biomolecular Resources
Research Infrastructure (BBMRI NL, 184.021.007), the VU University’s
Institute for Health and Care Research (EMGO+), Neuroscience Campus
Amsterdam (NCA), Avera Institute, Sioux Falls, South Dakota (USA), and the
National Institutes of Health: Grand Opportunity grant 1RC2MH089951-01.
Statistical analyses were partly carried out on the Genetic Cluster Computer
(http://www.geneticcluster.org), which is financially supported by the
Netherlands Scientific Organization (NWO 480-05-003 PI Posthuma) and the
Dutch Brain Foundation and the VU University Amsterdam. This work is part
of the programme of BiG Grid, the Dutch e-Science Grid, which is financially
supported by the NWO.

1 Allen HL, Estrada K, Lettre G et al: Hundreds of variants clustered in genomic loci and
biological pathways affect human height. Nature 2010; 467: 832–838.

2 Antonarakis SE, Beckmann JS: Opinion - Mendelian disorders deserve more attention.
Nat Rev Genet 2006; 7: 277–282.

3 Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH: Multiple rare
alleles contribute to low plasma levels of HDL cholesterol. Science 2004; 305:
869–872.

IQ: shared Mendelian/polygenic genetic basis
S Franić et al

5

European Journal of Human Genetics

http://www.ncbi.nlm.nih.gov/omim
http://www.ncbi.nlm.nih.gov/omim
http://www.genome.gov/
http://www.genome.gov/
http://www.geneticcluster.org


4 Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Tybjaerg-Hansen A: Genetic variation
in ABC transporter A1 contributes to HDL cholesterol in the general population. J Clin
Invest 2004; 114: 1343–1353.

5 Hirschhorn JN, Gajdos ZK: Genome-wide association studies: results from the first few
years and potential implications for clinical medicine. Annu Rev Med 2011; 62: 11–24.

6 Loos RJ, Lindgren CM, Li S et al: Common variants near MC4R are associated with fat
mass, weight and risk of obesity. Nat Genet 2008; 40: 768–775.

7 Sandhu MS, Weedon MN, Fawcett KA et al: Common variants in WFS1 confer risk of
type 2 diabetes. Nat Genet 2007; 39: 951–953.

8 Winckler W, Weedon MN, Graham RR et al: Evaluation of common variants in the six
known maturity-onset diabetes of the young (MODY) genes for association with type 2
diabetes. Diabetes 2007; 56: 685–693.

9 Gasser T: Mendelian forms of Parkinson's disease. Biochim Biophys Acta 2009; 1792:
587–596.

10 Lesage S, Brice A: Parkinson's disease: from monogenic forms to genetic susceptibility
factors. Hum Mol Genet 2009; 18: R48–R59.

11 Najmabadi H, Hu H, Garshasbi M et al: Deep sequencing reveals 50 novel genes for
recessive cognitive disorders. Nature 2011; 478: 57–63.

12 Plomin R, Defries JC, McClearn GE, McGuffin P: Behavioral Genetics. W.H. Freeman &
Co Ltd: New York, NY. 2008.

13 Deary IJ, Johnson W, Houlihan LM: Genetic foundations of human intelligence. Hum
Genet 2009; 126: 215–232.

14 Butcher LM, Davis OSP, Craig IW, Plomin R: Genome-wide quantitative trait locus
association scan of general cognitive ability using pooled DNA and 500K single
nucleotide polymorphism microarrays. Genes Brain Behav 2008; 7: 435–446.

15 Davies G, Tenesa A, Payton A et al: Genome-wide association studies establish that
human intelligence is highly heritable and polygenic. Mol Psychiatry 2011; 16:
996–1005.

16 Chabris CF, Hebert BM, Benjamin DJ et al: Most reported genetic associations with
general intelligence are probably false positives. Psychol Sci 2011; 23: 1314–1323.

17 Benyamin B, Pourcain B, Davis O et al: Childhood intelligence is heritable, highly
polygenic and associated with FNBP1L. Mol Psychiatry 2013; 19: 253–258.

18 van Beijsterveldt CE, Groen-Blokhuis M, Hottenga JJ et al: The Young Netherlands Twin
Register (YNTR): Longitudinal twin and family studies in over 70,000 children.
Twin Res Human Genet 2013; 16: 252.

19 Boomsma DI, de Geus EJC, Vink JM et al: Netherlands Twin Register: From twins to
twin families. Twin Res Hum Genet 2006; 9: 849–857.

20 Bleichrodt N, Drenth P, Zaal J, Resing W: Revisie Amsterdamse Kinder Intelligentie
Test, RAKIT. Swets and Zeitlinger: Lisse. 1984.

21 Wechsler D, Kort W, Compaan EL, Bleichrodt N, Resing WCM, Schittkatte M: Wechsler
Intelligence Scale for Children-Third Edition. Dutch version. Swets and Zeitlinger:
Lisse, The Netherlands. 2002.

22 Sattler JM: Assessment of Children: WISC–III and WPPSI–R Supplemental. San Diego,
CA. 1992.

23 Van Haasen P, De Bruyn E, Pijl Y et al: Wechsler Intelligence Scale for Children-
Revised, Dutch Version. Swets & Zetlinger BV: Lisse, The Netherlands. 1986.

24 Raven JC: Guide to the Standard Progressive Matrices: Sets A, B, C, D and E. London:
HK Lewis, 1960.

25 Raven J, Raven JC, Court JH: Manual for Raven’s Progressive Matrices and Vocabulary
Scales. Section 4, The Advanced Progressive Matrices. Oxford Psychologists Press:
Oxford, England. 1998.

26 Stinissen J, Willems P, Coetsier P, Hulsman W: Manual for the Dutch Translated and
Adapted Version of the Wechsler Adult Intelligence Scale (WAIS). Swets and Zeitlinger:
Lisse. 1970.

27 Wechsler D:Wechsler Adult Intelligence Scale–Third Edition, Dutch Version. Swets and
Zeitlinger: Lisse, The Netherlands. 1997.

28 Franic S, Dolan CV, Borsboom D, van Beijsterveldt CEM, Boomsma DI: Multivariate
genetic analysis of longitudinally measured cognitive abilities. Behav Genet 2010; 40:
792–792.

29 Scheet P, Ehli EA, Xiao X et al: Twins, tissue, and time: an Assessment of SNPs
and CNVs. Twin Res Hum Genet 2012; 15: 737.

30 R_Development_Core_Team R: A Language and Environment for Statistical Computing.
2.13.0 edn R Foundation for Statistical Computing: Vienna, Austria. 2011.

31 Purcell S, Neale B, Todd-Brown K et al: PLINK: a tool set for whole-genome
association and population-based linkage analyses. Am J Hum Genet 2007; 81:
559–575.

32 Minica CC, Dolan CV, Hottenga J-J, Willemsen G, Vink JM, Boomsma DI: The use
of imputed sibling genotypes in sibship-based association analysis: on modeling
alternatives, power and model misspecification. Behav Genet 2013; 1–13.

33 Abdellaoui A, Hottenga J-J, de Knijff P et al: Population structure, migration, and
diversifying selection in the Netherlands. Eur J Hum Genet 2013; 21: 1277–1285.

34 Li M-X, Gui H-S, Kwan JSH, Sham PC: GATES: a rapid and powerful gene-based
association test using extended simes procedure. Am J Hum Genet 2011; 88:
283–293.

35 Liu JZ, McRae AF, Nyholt DR et al: A versatile gene-based test for genome-wide
association studies. Am J Hum Genet 2010; 87: 139–145.

36 Yang J, Weedon MN, Purcell S et al: Genomic inflation factors under polygenic
inheritance. Eur J Hum Genet 2011; 19: 807–812.

37 Haworth C, Wright M, Luciano M et al: The heritability of general cognitive ability
increases linearly from childhood to young adulthood. Mol Psychiatry 2009; 15:
1112–1120.

38 Deary IJ, Johnson W, Houlihan L: Genetic foundations of human intelligence. Hum
Genet 2009; 126: 215–232.

39 Chabris CF, Hebert BM, Benjamin DJ et al: Most reported genetic associations
with general intelligence are probably false positives. Psychol Sci 2012; 23:
1314–1323.

40 Need AC, Attix DK, McEvoy JM et al: A genome-wide study of common SNPs
and CNVs in cognitive performance in the CANTAB. Hum Mol Genet 2009; 18:
4650–4661.

41 Butcher LM, Davis OS, Craig IW, Plomin R: Genome‐wide quantitative trait locus
association scan of general cognitive ability using pooled DNA and 500 K single
nucleotide polymorphism microarrays. Genes Brain Behav 2008; 7: 435–446.

42 Davis OS, Butcher LM, Docherty SJ et al: A three-stage genome-wide association study
of general cognitive ability: hunting the small effects. Behav Genet 2010; 40:
759–767.

43 Deary IJ, Whiteman MC, Pattie A et al: Ageing: cognitive change and the APOE ϵ
4 allele. Nature 2002; 418: 932–932.

44 Fellows J, Erdjument-Bromage H, Tempst P, Svejstrup JQ: The Elp2 subunit of
elongator and elongating RNA polymerase II holoenzyme is a WD40 repeat protein.
J Biol Chem 2000; 275: 12896–12899.

45 Exil VJ, Avila DS, Benedetto A et al: Stressed-induced TMEM135 protein is part of a
conserved genetic network involved in fat storage and longevity regulation in
Caenorhabditis elegans. PLoS ONE 2010; 5: e14228.

46 Fisk JC, Zurita-Lopez C, Sayegh J, Tomasello DL, Clarke SG, Read LK: TbPRMT6 is a
type I protein arginine methyltransferase that contributes to cytokinesis in
Trypanosoma brucei. Eukaryot Cell 2010; 9: 866–877.

47 Ilardi JM, Mochida S, Sheng Z-H: Snapin: a SNARE–associated protein implicated in
synaptic transmission. Nat Neurosci 1999; 2: 119–124.

48 Najmabadi H, Motazacker MM, Garshasbi M et al: Homozygosity mapping in
consanguineous families reveals extreme heterogeneity of non-syndromic autosomal
recessive mental retardation and identifies 8 novel gene loci. Hum Genet 2007; 121:
43–48.

49 Inlow JK, Restifo LL: Molecular and comparative genetics of mental retardation.
Genetics 2004; 166: 835–881.

50 Ku C-S, Naidoo N, Pawitan Y: Revisiting Mendelian disorders through exome
sequencing. Hum Genet 2011; 129: 351–370.

51 Ropers H-H: Single gene disorders come into focus-again. Dialogues Clin Neurosci
2010; 12: 95.

Supplementary Information accompanies this paper on European Journal of Human Genetics website (http://www.nature.com/ejhg)

IQ: shared Mendelian/polygenic genetic basis
S Franić et al

6

European Journal of Human Genetics


	Intelligence: shared genetic basis between Mendelian disorders and a polygenic�trait
	INTRODUCTION
	MATERIALS AND METHODS
	Sample
	Phenotype data
	Genotype data
	Analyses
	SNP-based analyses


	Table 1 Chromosomal position (hg19), length, and number of genotyped SNPs for the 43 genes
	Outline placeholder
	Gene-based analyses


	RESULTS
	SNP-based analyses

	Figure 1 Left: QQ-plot based on the 1227 candidate SNPs.
	Gene-based analyses

	Figure 2 Distribution of genomic inflation factors (&#x003BB;) obtained for 1000 (a) random samples of 1227 SNPs from the entire genome, (b) random samples of 1227 SNPs from intragenic regions of the genome, (c) random samples of 43 genes from the entire 
	DISCUSSION
	Funding was obtained from the European Science Council (ERC Advanced, 230374), the Netherlands Organization for Scientific Research (NWO: grants 480-04-004, 051.02.060, SPI56-464-14192, NWO/MaGW: VIDI�-�452-12-014), NBIC/BioAssist/RK(2008.024), Biobanking
	ACKNOWLEDGEMENTS




