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Abstract

Bipolar disorder (BD) is a highly heritable neuropsychiatric disease characterized by recur-

rent episodes of mania and depression. BD shows substantial clinical and genetic overlap

with other psychiatric disorders, in particular schizophrenia (SCZ). The genes underlying

this etiological overlap remain largely unknown. A recent SCZ genome wide association

study (GWAS) by the Psychiatric Genomics Consortium identified 128 independent

genome-wide significant single nucleotide polymorphisms (SNPs). The present study inves-

tigated whether these SCZ-associated SNPs also contribute to BD development through

the performance of association testing in a large BD GWAS dataset (9747 patients, 14278

controls). After re-imputation and correction for sample overlap, 22 of 107 investigated SCZ

SNPs showed nominal association with BD. The number of shared SCZ-BD SNPs was sig-

nificantly higher than expected (p = 1.46x10-8). This provides further evidence that SCZ-

associated loci contribute to the development of BD. Two SNPs remained significant after

Bonferroni correction. The most strongly associated SNP was located near TRANK1, which

is a reported genome-wide significant risk gene for BD. Pathway analyses for all shared

SCZ-BD SNPs revealed 25 nominally enriched gene-sets, which showed partial overlap in

terms of the underlying genes. The enriched gene-sets included calcium- and glutamate sig-

naling, neuropathic pain signaling in dorsal horn neurons, and calmodulin binding. The pres-

ent data provide further insights into shared risk loci and disease-associated pathways for

BD and SCZ. This may suggest new research directions for the treatment and prevention of

these two major psychiatric disorders.

Introduction

Bipolar disorder (BD) is a severe neuropsychiatric disease characterized by recurrent episodes

of mania and depression. BD has an estimated lifetime prevalence of around 1% [1], and a her-

itability of around 70% [2]. BD shows substantial clinical and genetic overlap with other
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psychiatric disorders [3, 4]. An analysis of the genome-wide genotype data of the Psychiatric

Genomics Consortium (PGC) revealed a 68% genetic correlation between BD and schizophre-

nia (SCZ), which was the highest correlation with BD of all psychiatric diseases investigated

[3]. However, the genes involved in this etiological overlap remain largely unknown.

Although research into BD and SCZ has identified a number of susceptibility genes, the

respective biological pathways still await identification. For BD, recent genome wide associa-

tion studies (GWAS) have identified a number of risk loci [5–13].

For SCZ, a PGC meta-analysis of data from >36,000 patients and 113,000 controls identi-

fied 128 independent genome-wide significant single nucleotide polymorphisms (SNPs) in

108 genetic loci [14].

The aim of the present study was to investigate whether these 128 SCZ-associated SNPs also

contribute to the development of BD. For this purpose, we performed association testing of

these SNPs in our large BD GWAS dataset [12]. In addition, we analyzed whether the genome-

wide significant BD-associated SNPs identified in our BD GWAS [12] show association with

SCZ.

Materials and methods

Sample description

The analyses were performed using data from our previous GWAS of BD (9,747 patients and

14,278 controls) [12]. This GWAS dataset combined: (i) the MooDS data (collected from Can-

ada, Australia, and four European countries); and (ii) the GWAS results for BD of the large

multinational PGC [5]. The patients were assigned the following diagnoses (DSM-IV,

DSM-IIR, Research Diagnostic Criteria): BD type 1 (n = 8,001; 82.1%); BD type 2 (n = 1,212;

12.4%); schizoaffective disorder (bipolar type; n = 269; 2.8%); and BD not otherwise specified

(n = 265, 2.7%) [12]. The study was approved by the local ethics committees of the participat-

ing centers (University Hospital Würzburg, Germany; Central Institute of Mental Health,

Mannheim, Germany; University of Essen, Germany; Ludwig Maximilians University,

Munich, Germany; Prince of Wales Hospital, Sydney, Australia; Queensland Institute of Medi-

cal Research, Brisbane, Australia; Poznan University of Medical Sciences, Poland; University

of Szczecin, Poland; speciality mood disorders clinics in Halifax and Ottawa, Canada; Russian

State Medical University, Moscow, Russian Federation; Kursk State Medical University, Rus-

sian Federation; Regional University Hospital of Malaga, Spain; and Instituto Municipal de

Asistencia Sanitaria, IMAS-IMIM, Barcelona, Spain) [12]. Written informed consent was

obtained from all participants prior to inclusion [12].

Genome-wide significant loci for SCZ and BD

For the 128 linkage disequilibrium (LD)-independent genome-wide significant SNPs for SCZ,

genetic information was obtained from the supplementary information of the SCZ GWAS of

the PGC [14]. This is the largest GWAS of SCZ to date.

Genome-wide significant SNPs for BD were obtained from our BD GWAS [12].

Imputation and meta-analysis

Different reference panels were used for the imputation of the MooDS and PGC BD genotype

data (1,000 Genomes Project, February 2012 release; and HapMap phase 2 CEU, respectively).

Therefore, the summary statistics of the PGC BD GWAS [5] were imputed using the 1,000

Genomes Project reference panel and ImpG-Summary. The latter is a recently proposed

method for the rapid and accurate imputation of summary statistics [15]. This resulted in

Shared bipolar disorder and schizophrenia risk loci
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z-scores for>20 million SNPs. A total of 111 SCZ-associated SNPs could be mapped to the re-

imputed PGC BD GWAS data. The remaining variants were either located on the X-chromo-

some (n = 3), or represented insertions or deletions (n = 14) which could not be imputed by

the applied method. In total, 107 of the 111 SCZ-associated SNPs could be identified in the

MooDS BD GWAS.

A meta-analysis for these 107 SNPs was then performed by combining the PGC BD GWAS

and the MooDS BD GWAS, and using the sample size based strategy implemented in METAL

[16].

Analysis of shared BD-SCZ SNPs

The risk alleles for all nominally significant SNPs in our BD GWAS [12] were compared to

those reported in the PGC SCZ GWAS.

The SCZ discovery meta-analysis comprised data from 35,476 patients and 46,839 controls.

Our BD GWAS comprised data from 9,747 patients and 14,278 controls [12]. To correct for an

overlap between the two studies of around 500 patients and 9,200 controls [17, 18], we applied

the framework of a bivariate normal distribution for the z-scores from both studies, corre-

sponding to a specific SNP. Since the significant hits from a study were selected from different

chromosomal regions, we assumed that the z-scores within a study are independent. Accord-

ing to the LD Score regression method [19], the mean inflation of the test statistics provides an

approximation of the variance of the z-scores. By considering the set of SNPs in the HapMap3

reference panel [20], the calculated variance was approximately 1.82 for SCZ and 1.24 for BD.

From equation (16) in Bulik-Sullivan et al. [19] (Supplementary Material), the covariance

between z-scores was calculated to be 0.1644, under the assumption of no genetic correlation.

This yielded a correlation of approximately 0.109. To confirm the validity of these theoretical

calculations, we estimated the covariance of z-scores due to sample overlap by applying the LD

Score regression software directly to the results of the PGC SCZ GWAS and our BD GWAS.

After restriction to the well-imputed SNPs of HapMap3, the software estimated a covariance

of 0.1707. This result provides further evidence that the degree of sample overlap was correctly

estimated in the present study.

The z-scores for the 107 SCZ-associated SNPs were extracted from the PGC SCZ discovery

study. The corresponding z-scores were extracted from our BD GWAS [12]. Using the values

above, the mean and the variance of the normal distribution for the BD z-scores were deter-

mined, given the z-scores from the PGC SCZ discovery study. After the transformation of the

initial z-scores from our BD GWAS, a total of 22 of 107 z-scores for BD had corresponding

two-sided association p-values of<5% (Table 1).

Analogously, the z-scores for the genome-wide significant BD SNPs were extracted from

our BD GWAS [12], and the corresponding z-scores were extracted from the PGC SCZ discov-

ery study. Of the five BD-associated lead SNPs in our BD GWAS, one SNP (rs6550435) was in

high LD (r2 = 0.897, SNAP [21]) with a genome-wide SCZ-associated SNP (rs75968099), and

was thus excluded from this additional analysis. For the remaining four SNPs, the transforma-

tion was computed in the other direction. After correction for sample overlap, no BD SNP

showed association with SCZ.

Bonferroni correction for multiple testing was performed by multiplying the nominal p-val-

ues with the number of investigated SNPs (n = 107+4 = 111).

Pathway analysis

Pathway analysis for all 22 shared SCZ-BD SNPs was performed using Ingenuity Pathway

Analysis (IPA; http://www.ingenuity.com/) [22, 23] and INRICH [24].

Shared bipolar disorder and schizophrenia risk loci
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In IPA, each gene is represented in a global molecular network, which is designed using

information from the Ingenuity Pathway Knowledge Base. ‘Networks’ were generated algorith-

mically, and on the basis of their connectivity in terms of activation, expression, and transcrip-

tion. Molecular relationships between genes are represented by connecting lines between

nodes, as supported by published data stored in the Ingenuity Pathway Knowledge Base and/

or PubMed. For the purposes of the present study, the canonical pathway analysis available in

IPA was applied. Here, an SNP is mapped to a gene if it falls within the gene-coding region or

within the 2 kilobase (kb) upstream/ 0.5 kb downstream range of the gene-coding region. This

resulted in the inclusion of 13 genes in the pathway analysis. Significant pathways were filtered

in order to achieve a minimum of two genes per set. The significance of the association

between the SNP-associated genes mapped by IPA and the canonical pathway was measured

using Fisher’s exact test.

INRICH [24] was used as a secondary pathway analysis tool, as it enables examination of

enriched association signals of LD-independent genomic intervals. Gene Ontology (GO) gene

sets were extracted from the Molecular Signatures Database (MSigDB), version 5.0 (Broad

Institute, http://software.broadinstitute.org/gsea/msigdb/index.jsp, downloaded in September

2015). The size of the extracted gene sets ranged from 10 to 200 genes, resulting in 1,268 target

sets for testing. The intervals around the 22 SNPs of interest were based on empirical estimates

of LD from PLINK (http://pngu.mgh.harvard.edu/purcell/plink/). SNPs were assigned to

Table 1. Schizophrenia-associated SNPs with a p-value of <0.05 in our bipolar disorder GWAS data after correction for sample overlap.

SNP Chr Position Alleles P BD Meta Pcorr BD Meta P PGC SCZ Nearby Gene/s

rs75968099 3 36858583 T/C 2.03 x 10−5 0.0022 1.05 x 10−13 TRANK1

rs2535627 3 52845105 T/C 4.68 x 10−5 0.0052 4.26 x 10−11 ITIH3-ITIH4

rs6704641 2 200164252 A/G 0.0030 0.3331 8.33 x 10−9 SATB2

rs140505938 1 150031490 T/C 0.0032 0.3597 4.49 x 10−10 VPS45

rs7893279 10 18745105 T/G 0.0043 0.4770 1.97 x 10−12 CACNB2

rs6704768 2 233592501 A/G 0.0063 0.6991 2.32 x 10−12 GIGYF2

rs12704290 7 86427626 A/G 0.0075 0.8315 3.33 x 10−10 GRM3

rs211829 7 110048893 T/C 0.0088 0.9778 3.71 x 10−8 -

rs3735025 7 137074844 T/C 0.0098 >0.9999 3.28 x 10−9 DGKI

rs324017 12 57487814 A/C 0.0098 >0.9999 2.13 x 10−8 NAB2

rs2909457 2 162845855 A/G 0.0109 >0.9999 4.62 x 10−8 SLC4A10-DPP4

rs9922678 16 9946319 A/G 0.0120 >0.9999 1.28 x 10−8 GRIN2A

rs950169 15 84706461 T/C 0.0181 >0.9999 1.62 x 10−11 ADAMTSL3

rs55661361 11 124613957 A/G 0.0301 >0.9999 2.8 x 10−12 NRGN

rs10043984 5 137712121 T/C 0.0307 >0.9999 1.09 x 10−8 KDM3B

rs1498232 1 30433951 T/C 0.0323 >0.9999 2.86 x 10−9 LOC101929406

rs6434928 2 198304577 A/G 0.0351 >0.9999 2.06 x 10−11 SF3B1-COQ10B

rs2007044 12 2344960 A/G 0.0367 >0.9999 3.22 x 10−18 CACNA1C

rs8044995 16 68189340 A/G 0.0380 >0.9999 1.51 x 10−8 NFATC3

rs56205728 15 40567237 A/G 0.0387 >0.9999 4.18 x 10−9 PAK6

rs2693698 14 99719219 A/G 0.0429 >0.9999 4.8 x 10−9 BCL11B

rs832187 3 63833050 T/C 0.0465 >0.9999 1.43 x 10−8 THOC7

Single nucleotide polymorphisms (SNPs) are shown according to their p-values in our bipolar disorder (BD) GWAS [12] following correction for sample

overlap. Chromosomal positions refer to genome build GRCh37 (hg19). Abbreviations: Chr, chromosome; P BD Meta, p-value in our BD GWAS [12] after

correction for sample overlap; Pcorr BD Meta, p-value in our BD GWAS [12] after correction for sample overlap and Bonferroni correction for multiple testing;

P PGC SCZ, p-value in the PGC schizophrenia GWAS [14].

doi:10.1371/journal.pone.0171595.t001
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genes using 50 kb up- and downstream windows. In total, 21 intervals were tested for the 1,268

target sets.

In IPA, correction for multiple testing was performed using the Benjamini Hochberg

method. In INRICH, the empirical gene set p-value was corrected for multiple testing using

bootstrapping-based re-sampling.

Results

A total of 107 of the 128 SCZ-associated SNPs could be mapped to both the re-imputed PGC

BD GWAS and the MooDS BD GWAS data. A meta-analysis of these 107 SNPs was then per-

formed using METAL [16].

After correction for sample overlap, 22 of the 107 SCZ-associated SNPs showed nominally

significant p-values in our BD GWAS (Table 1, S1 Table). For all 22 SNPs, the direction of the

effect was identical to that observed in the PGC SCZ GWAS [14]. Of the five genome-wide sig-

nificant BD-associated SNPs identified in our BD GWAS, one SNP (rs6550435) was in high

LD (r2 = 0.897) with a genome-wide SCZ-associated SNP (rs75968099). None of the remaining

four genome-wide significant BD-associated SNPs showed a nominally significant association

with SCZ after correction for sample overlap (data not shown).

The number of SCZ SNPs with a p-value of<0.05 in our BD GWAS (n = 22) was signifi-

cantly higher than expected (p = 1.46x10-8, binomial test). This provides further evidence that

SCZ-associated loci contribute to the development of BD.

The most strongly associated SNP was located near the gene TRANK1 (Table 1, p = 2.03x10-

5), which is a reported genome-wide significant risk gene for BD [7, 12]. The other nominally

associated SCZ-BD SNPs implicated loci which contain interesting candidate genes for BD

and SCZ. These include the chromatin remodeling gene SATB2, the glutamate receptor genes

GRM3 and GRIN2A, and the calcium channel subunit gene CACNB2. The latter is a reported

genome-wide significant risk gene for a number of psychiatric disorders, including BD and

SCZ [17].

After Bonferroni correction for multiple testing, two SNPs (rs75968099, rs2535627) showed

significant association with BD (pcorr = 2.25x10-3 and pcorr = 5.19x10-3, respectively).

Pathway analysis using IPA revealed nine pathways with nominally significant enrichment

(Fig 1). Of these, eight remained significantly enriched after Benjamini Hochberg correction

for multiple testing. The pathway with the strongest enrichment was synaptic long term poten-

tiation (pcorr = 0.003, Fig 2, S2 Table). In addition, significant enrichment was found for gluta-

mate receptor- and calcium signaling; neuropathic pain signaling in dorsal horn neurons; and

CREB signaling in neurons.

These findings are consistent with previous pathway analyses of BD and SCZ [5, 25–27].

The present analysis also confirmed the glutamatergic signaling pathway, which was consid-

ered provisional in a recent review [28].

Pathway analysis using INRICH identified a total of 16 nominally significant gene-sets,

which showed partial overlap in terms of the underlying genes. The enriched gene-sets include

voltage-gated calcium channel complex/activity; calmodulin binding; glutamate receptor activ-

ity; and M phase of the mitotic cell cycle (Fig 3). None of these gene-sets remained significantly

enriched for associations after correction for multiple testing (Fig 3, S3 Table).

Discussion

The present analyses revealed a significant enrichment of BD-associated SNPs within known

SCZ-associated loci (p = 1.46x10-8). This is consistent with previous reports of overlapping

genetic susceptibility for BD and SCZ [4, 29, 30].

Shared bipolar disorder and schizophrenia risk loci
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The most strongly associated SNP was located near TRANK1, which is a reported genome-

wide significant risk gene for BD [7]. The second SNP with significant BD association after

correction for multiple testing (rs2535627, Table 1) was located in a genomic region on chro-

mosome 3. This region contains multiple genes, including inter-alpha-trypsin inhibitor heavy

chain 3 (ITIH3) and -4 (ITIH4). Common variation at the ITIH3-ITIH4 region has been iden-

tified as a genome-wide significant risk factor for five different psychiatric disorders, including

SCZ and BD [17].

Interestingly, the GWAS index SNP rs2535627 represents a Bonferroni-significant fetal

brain methylation quantitative trait locus (mQTL), as it has been associated with DNA methyl-

ation at cg11645453. The latter is located in the 5’ untranslated region of ITIH4 [31]. This sug-

gests that the SCZ-BD associated SNP rs2535627 might contribute to disease susceptibility by

altering the expression of ITIH4 in the brain [32]. This hypothesis is supported by a recent

study, which found that the G-allele of the SNP rs4687657—which is in moderate LD with

rs2535627 (r2 = 0.426, D’ = 1.000, SNAP [21])—was significantly associated with reduced

ITIH4 expression in the postmortem dorsolateral prefrontal cortex of controls [33].

SNPs with nominal association implicated several other plausible susceptibility genes for

BD and SCZ (Table 1). These include SATB2, which is a highly conserved chromatin remodel-

ing gene [34]. A previous animal study demonstrated that SATB2 was an essential regulator of

axonal connectivity in the developing neocortex [35]. In addition, mutations spanning SATB2
have been reported in patients with neurodevelopmental disorders, including autism [36, 37].

The present SCZ-BD associated SNPs implicated three promising candidate genes for

shared BD-SCZ etiology, i.e., CACNB2, GRM3, and GRIN2A. The gene CACNB2 encodes an

Fig 1. Results of the Ingenuity Pathway Analysis. Results of the Ingenuity Pathway Analysis (IPA) are shown in bar plot format. The x-axis shows

negative logarithmic enrichment p-values for all associated pathways containing two and more genes prior to- (gray) and after- (blue) Benjamini

Hochberg correction for multiple testing. The red horizontal line indicates a p-value of 0.05.

doi:10.1371/journal.pone.0171595.g001
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Fig 2. IPA pathway synaptic long term potentiation. Results of the Ingenuity pathway analysis (IPA) for the pathway

“Synaptic Long Term Potentiation” are shown. Shared schizophrenia-bipolar disorder associated genes (GRIN2A, GRM3,

CACNA1C) are highlighted in purple.

doi:10.1371/journal.pone.0171595.g002
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L-type voltage-gated calcium channel subunit, and is a reported genome-wide significant risk

gene for several psychiatric disorders, including SCZ and BD [17].

The gene GRM3 encodes a metabotropic glutamate receptor. GRM3 is expressed predomi-

nantly in astrocytes, and has been investigated by previous authors as a potential therapeutic

target in SCZ [14]. A further SCZ-BD SNP was located near GRIN2A, which encodes an

NMDA receptor subunit involved in glutamatergic neurotransmission and synaptic plasticity

[14]. Interestingly, rare mutations in GRIN2A have been reported in patients with SCZ [38].

The present pathway analysis implicated calcium- and glutamate signaling, and neuro-

pathic pain signaling in dorsal horn neurons. These findings are consistent with previous path-

way analyses of BD and SCZ [5, 25–27]. These results thus provide further evidence that

neurotransmitter signaling and synaptic processes are involved in the development of BD and

SCZ.

Fig 3. Results of the INRICH pathway analysis. Results of the INRICH pathway analysis are shown in bar plot format. The x-axis shows negative

logarithmic enrichment p-values for all nominally associated pathways containing two and more genes prior to- (gray) and after- (blue) correction for

multiple testing. The red horizontal line indicates a p-value of 0.05.

doi:10.1371/journal.pone.0171595.g003
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Our enrichment analysis identified a total of 25 enriched gene-sets, which showed partial

overlap in terms of the underlying genes. One of the major characteristics of the GO database

is its hierarchical structure. This structure involves the use of broad ‘parent’ terms, which can

be divided into more distinctive ‘child’ terms [39]. After taking these relations into account,

we categorized our findings from the GO database into five different parent gene-set families:

channel activity, lipase activity, mitotic cell cycle, calmodulin binding, and glutamate receptor

signaling (S3 Table).

The results generated by IPA and INRICH were broadly consistent, despite the fact that the

underlying databases were different. In some cases, pathways were implicated by the same

genes, e.g., glutamate signaling was implicated by GRIN2A and GRM3 in both IPA and

INRICH. In other cases, pathways were implicated by differing genes, e.g., calcium channel

activity/calcium signaling was implicated by NFATC3 and GRIN2A in IPA, and by CACNB2
and CACNA1C in INRICH (S2 and S3 Tables). This provides further support for the involve-

ment of these pathways in the development of BD and SCZ.

The most strongly enriched pathway according to IPA was synaptic long term potentiation

(Fig 2). This pathway has been implicated in learning and memory mechanisms [40]. Interest-

ingly, several previous studies have provided evidence for the involvement of impaired long

term potentiation in the pathophysiology of SCZ [41, 42]. In the present study, this pathway

result was driven by the genes GRIN2A, GRM3, and CACNA1C. The products of all three

genes are located in the postsynaptic membrane (Fig 2), which may suggest that dysfunction at

the postsynaptic level is an early step in the development of BD and SCZ [43].

The identified pathways support specific hypotheses regarding the shared neurobiology of

BD and SCZ. Notably, our results provide further evidence that glutamate signaling might be

involved in the development of both SCZ and BD [44]. This would be consistent with the

observation from routine clinical practice that SCZ drugs which target glutamate signaling are

also effective in BD patients with psychosis or mania [44].

A limitation of the present study was the substantial sample overlap between our BD

GWAS [12] and the SCZ GWAS of the PGC [14], since this creates an inflation of effect. To

address this, the correlation of z-scores between the two studies was calculated. Based on this

information, the initial z-scores were then transformed to correct for sample overlap. To esti-

mate the correlation of test statistics, the publically available summary statistics of the PGC

SCZ GWAS were used, which comprise the results of the discovery phase (35,476 patients,

46,839 controls). As the effect of shared samples might be stronger in the discovery sample

than in the complete meta-analysis, we may have overestimated the correlation of test statistics

between the two GWAS. Therefore our correction for sample overlap may have been too con-

servative. However, since the inflation effect introduced by shared samples might be different

for independent SNPs compared to the average correlation of test statistics, we assume that

our conservative approach was appropriate in terms of reducing false positive results. In future

cross-disorder studies, shared samples should be identified and removed from one study on

the basis of individual genotype data. This was not possible in the present study, as the analyses

were based on summary statistics.

The present data provide further insights into shared risk loci and disease-associated path-

ways for BD and SCZ.

However, further research is required to determine precisely how the genetic risk variants

correlate with particular diagnoses or clinical symptoms. For example, in a previous study, we

showed that common variation at the NCAN locus was associated with both BD [8] and SCZ

[45]. Genetic variation at the NCAN locus thus represents a cross-diagnosis contributory fac-

tor, which may relate to a specific mania symptom-complex [46]. Therefore, future studies are

warranted to determine the specific BD and SCZ phenotypic dimensions to which the present
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variants contribute. Such findings may suggest new research directions for the treatment and

prevention of BD and SCZ.

Supporting information

S1 Table. Overview of the 107 investigated schizophrenia-associated SNPs and respective

test statistics. Single nucleotide polymorphisms (SNPs) are shown according to their p-values

in our bipolar disorder (BD) GWAS [12] following correction for sample overlap. Chromo-

somal positions refer to genome build GRCh37 (hg19). An imputation accuracy metric of 1

indicates that the respective SNP was not imputed using ImpG-Summary. Abbreviations: Chr,

chromosome; A1, the allele to which the z-score is predicted; A2, other allele; Z/P BD Meta, z-

score/p-value in our BD GWAS [12] after correction for sample overlap; Pcorr BD Meta, p-

value in our BD GWAS [12] after correction for sample overlap and Bonferroni correction for

multiple testing; Z/P PGC SCZ (discovery), derived z-score/p-value in the PGC schizophrenia

GWAS (discovery phase) [14].

(XLSX)

S2 Table. Results of the Ingenuity Pathway Analysis. Enrichment p-values for all nine nomi-

nally associated pathways containing two and more genes are shown both prior to and after

Benjamini Hochberg (B-H) correction for multiple testing. Abbreviation: No. Genes in Path-

way, total number of genes in each pathway.

(DOCX)

S3 Table. Results of the INRICH pathway analysis. Empirical gene set p-values for all 16

nominally associated pathways containing two and more genes are shown. The p-values were

corrected for multiple testing using bootstrapping-based re-sampling (corrected p-value).

Abbreviations: GO, Gene Ontology; No. Genes in Pathway, total number of genes in each

pathway.
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