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Asthma, hay fever (or allergic rhinitis) and eczema (or atopic 
dermatitis) often coexist in the same individuals1, partly 
because of a shared genetic origin2–4. To identify shared risk 
variants, we performed a genome-wide association study 
(GWAS; n = 360,838) of a broad allergic disease phenotype 
that considers the presence of any one of these three diseases. 
We identified 136 independent risk variants (P < 3 × 10−8), 
including 73 not previously reported, which implicate 132 
nearby genes in allergic disease pathophysiology. Disease-
specific effects were detected for only six variants, confirming 
that most represent shared risk factors. Tissue-specific 
heritability and biological process enrichment analyses suggest 
that shared risk variants influence lymphocyte-mediated 
immunity. Six target genes provide an opportunity for drug 
repositioning, while for 36 genes CpG methylation was found 
to influence transcription independently of genetic effects. 
Asthma, hay fever and eczema partly coexist because they 
share many genetic risk variants that dysregulate the expression 
of immune-related genes.

The analytical approach used in our study is summarized in 
Supplementary Figure 1. We tested for association with allergic 
disease 8,307,659 genetic variants that passed quality control filters 
(Supplementary Table 1), comparing 180,129 cases who reported 

having suffered from asthma and/or hay fever and/or eczema with 
180,709 controls who reported not suffering from any of these diseases 
(Supplementary Table 2), all of European ancestry. Meta-analysis  
of results from the 13 contributing studies (Supplementary Fig. 2) 
identified 99 genomic regions (loci) located >1 Mb apart containing at 
least one genetic variant associated with allergic disease at a genome-
wide significance threshold of 3 × 10−8 (Fig. 1 and Supplementary 
Table 3). On the basis of approximate conditional analysis5, 136 
genetic variants in these 99 loci had a statistically independent asso-
ciation with disease risk (Supplementary Table 4). Henceforth, we 
refer to these as ‘sentinel risk variants’, which either represent or are 
in linkage disequilibrium (LD) with a causal functional variant. These 
included 86 (in 50 loci) located <1 Mb from risk variants reported 
in previous GWAS of allergic disease (Supplementary Table 5). Of 
note, 23 of these 86 sentinel variants were in low LD (r2 < 0.05) with 
the previously reported risk variants, indicating that they represent 
new associations in these loci. The remaining 50 sentinel variants 
(in 49 loci) were located >1 Mb from previously reported associa-
tions (Supplementary Table 6), of which 17 were in low LD with 
nearby variants reported for other diseases or traits (Supplementary 
Table 7). Eighteen loci had multiple independent association sig-
nals (Supplementary Table 3). Altogether, we identified 73 (50 + 
23) genetic associations with allergic disease that are new, a sub-
stantial increment over the 89 associations reported previously 
(Supplementary Fig. 3 and Supplementary Table 8).

As expected from a study design that maximized power to identify 
shared risk variants6, we found that 130 of the 136 sentinel variants 
had similar allele frequencies in case-only association analyses that 
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compared three non-overlapping groups of adults: those who reported 
suffering from asthma only (n = 12,268), hay fever only (n = 33,305) 
or eczema only (n = 6,276) (Supplementary Table 9). There was thus 
no evidence that these 130 variants have differential effects on the 

three individual diseases. The six variants with evidence for stronger 
effects in one allergic disease when compared to the other two were 
located in five known allergy risk loci (for example, FLG and GSDMB; 
Fig. 2). On the other hand, many sentinel variants (26, or 19%) were 
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Figure 1  Loci containing genetic risk variants independently associated with the risk of allergic disease at P < 3 × 10−8. The 136 sentinel risk variants 
were located in 50 previously reported (86 variants) and 49 new (50 variants) risk loci. The numbers of plausible target genes of sentinel risk variants 
identified for each locus are shown, with target gene names listed in blue font. For loci with many target genes, only a selection is listed. When no target 
gene was identified (black font), brackets are used to indicate the location of the sentinel risk variant relative to the nearest gene(s). Specifically, when 
the risk variant was intergenic (indicated by “gene1-[]-gene2”), the two closest genes (upstream and downstream) are shown; the distance to each gene 
is proportional to the number of dashes shown. Otherwise, when the risk variant was located within a gene, the respective gene name is shown in brackets 
(“[gene]”). The red vertical line in the Manhattan plot shows the genome-wide significance threshold used (P = 3 × 10−8).
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also associated with the age at which symptoms of any allergic dis-
ease first developed (n = 35,972; Supplementary Table 10), with the 
allele associated with a higher disease risk always being associated 
with earlier age of onset (Supplementary Fig. 4). For 18 of these 
26 variants, the effect on age of onset was not significantly different 
between individual diseases (Supplementary Table 10), suggesting 
that these variants influence the age at which symptoms first develop 
for all three diseases.

We then used LD score regression analysis7 (Online Methods) to 
quantify the liability-scale heritability of the three individual diseases 
that was collectively explained by the 136 top associations in the 
Nord-Trøndelag Health Study (HUNT; up to n = 20,350), which was 
not part of the discovery meta-analysis. This heritability was found 
to be 3.2% for asthma, 3.8% for hay fever and 1.2% for eczema, repre-
senting, respectively, about one-fifth, one-sixth and one-tenth of the 
overall heritability for each disease that is explained by common SNPs 
(Supplementary Table 11). Therefore, the inheritance of risk alleles 
at these loci partly explains why these three conditions coexist.

To understand the biological consequences of allergy risk variants, 
we then identified plausible target genes of the 136 sentinel variants. 
There were 5,739 transcripts annotated near (±1 Mb with respect to) 
sentinel variants, including 2,569 protein-coding genes. For 132 of 
these transcripts, the nearby sentinel variant was in high LD (r2 ≥ 
0.8) with either a nonsynonymous SNP (22 genes; Supplementary 
Table 12) or a sentinel expression quantitative trait locus (eQTL) 
identified in relevant tissues or cell types (an additional 110 genes; 
Supplementary Tables 13 and 14). We refer to these 132 transcripts 
as plausible target genes, which were located in 54 of the 99 risk loci 
(Fig. 1 and Supplementary Table 15). Studies that confirm the target 
gene predictions and identify the underlying functional variants are 
warranted; genes that could be prioritized for functional follow-up 
include 78 identified using a more conservative LD threshold (r2 ≥ 
0.95; Supplementary Table 15) or 61 predicted to be the likely tar-
gets on the basis of independent evidence from publicly available 
functional data (Supplementary Tables 16 and 17; see the Online 
Methods for details). Of note, 79 (60%) of the 132 plausible target 
genes have not previously been co-cited with allergy-related terms 
(Supplementary Table 15) and so potentially represent new key con-
tributors to disease pathophysiology (examples in Table 1).

Next, on the basis of data from the GTEx Consortium8, we identi-
fied broad tissue types in which the plausible target genes were dispro-
portionally expressed, using the Tissue-Specific Expression Analysis 
(TSEA) approach described previously9. We excluded genes located in 
the major histocompatibility complex (MHC) region or not present in 
the TSEA GTEx database, leaving 112 plausible target genes for analy-
sis. When compared to the remaining 17,671 non-MHC genes in the 
genome, we found that the list of plausible targets was enriched for 
genes specifically expressed in whole blood and lung (Fig. 3a). Both 
associations remained significant (Supplementary Fig. 5) after restrict-
ing the background gene list to the subset of 12,804 non-MHC genes 
with eQTLs reported in the same studies used to identify the plausible 
target genes (Supplementary Table 13). These results indicate that the 
plausible targets are enriched for genes preferentially expressed in whole 
blood and lung, and that this is unlikely to arise because the plausible 
targets were also enriched for genes with eQTLs in those tissues.

The enrichment in whole blood and lung expression could be a 
general feature of arbitrary genes located near the sentinel risk vari-
ants. To address this possibility, we determined how often the enrich-
ment observed with the plausible target genes was exceeded when 
analyzing 1,000 lists of random genes. When genes were randomly 
selected from the same 98 non-MHC allergy risk loci identified in 

the meta-analysis, matching on the number of plausible target genes 
identified per locus (range 0 to 11) and in total (112), the enrich-
ment observed in whole blood was not exceeded in any of the 1,000 
random lists when considering results for all 25 tissues tested (Fig. 3a  
and Supplementary Table 18). Similar results were observed for lung. 
For comparison, arbitrary genes were also selected from 2-Mb loci 
drawn at random from the genome or simply from all genes in the 
genome, and results were very similar (Fig. 3a and Supplementary 
Table 18). Randomly selecting genes from the subset with eQTLs also 
had no impact on the results (Supplementary Fig. 5). Therefore, we 
conclude that the enrichment in expression observed in whole blood 
and lung was specific to the genes identified as plausible targets of 
sentinel risk variants.

To identify specific cell types that were likely to contribute to the 
enrichment in whole blood, we used an orthogonal approach10 that 
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Figure 2  Sentinel variants with significant allele frequency differences in 
pairwise case-only association analyses contrasting individuals suffering 
from a single allergic disease. For each sentinel variant, we performed 
three case-only association analyses, comparing asthma-only cases  
(n = 12,268) against hay fever–only cases (n = 33,305); asthma-
only cases against eczema-only cases (n = 6,276); and hay fever–only 
cases against eczema-only cases. After accounting for multiple testing, 
significant associations for at least one of these analyses were only 
observed for 6 of the 136 sentinel variants, which are shown in the first 
two rows of the figure. For a given variant, the vertices of the inner triangle 
point to the position along the edges of the outer triangle that corresponds 
to the allele frequency difference observed between pairs of single-disease 
cases. For example, the rs61816761[A] allele, which is located in the 
FLG gene (fillagrin), was 1.32-fold more common in individuals suffering 
only from eczema when compared to individuals suffering only from hay 
fever (P = 7.2 × 10−8), consistent with this SNP being a stronger risk 
factor for eczema than for hay fever. A similar result (odds ratio (OR) 
= 1.26, P = 0.0004) was observed for this variant when contrasting 
eczema-only cases against asthma-only cases. For comparison, a variant 
with no allele frequency differences in all three pairwise single-disease 
association analyses is also shown (rs2228145, in the IL6R gene). In this 
case, the three estimated odds ratios were approximately equal to 1. The 
color of the odds ratio text reflects the significance of the association: red 
for P < 1.2 × 10−4 (correction for multiple testing), blue for P < 0.05 and 
black for P > 0.05.©
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quantifies tissue-specific enrichments in SNP heritability rather 
than in gene expression. Specifically, this approach quantifies the 
trait heritability that is explained by SNPs that overlap cell-type-
specific regulatory annotations measured by the Encyclopedia of 
DNA Elements (ENCODE) project in 100 different cell types. In this 
analysis, the strongest enrichment in SNP heritability was observed 
for regulatory annotations measured in helper T cells (including 
TH17, TH1 and TH2), regulatory T cells, CD4+ and CD8+ memory 
T cells, CD56+ natural killer (NK) cells and CD19+ B cells (Fig. 3b  

and Supplementary Table 19). These results are consistent with pre-
vious findings11 and the widely documented contribution of these 
T cell subsets to allergic responses. Similar results were obtained 
after removing the 136 top associations from our GWAS results 
(Supplementary Fig. 6 and Supplementary Table 19), indicat-
ing that the observed enrichments extend beyond genome-wide 
significant SNPs. These results demonstrate that genetic risk vari-
ants shared between asthma, hay fever and eczema, including but 
not limited to the ones that reached genome-wide significance,  

Table 1  Selected examples of plausible target genes not previously implicated in the pathophysiology of allergic disease
Gene Summary Possible role(s) in allergic diseasea

RERE Nuclear receptor co-regulator that positively regulates retinoic acid  
  signaling

Positive regulation of B cell differentiation, eosinophil survival and migration

PPP2R3C Subunit of protein phosphatase 2A (PP2A) that regulates immune cell  
  function

TH2 differentiation, Treg function, response to viral infection

RASA2 GTPase-activating protein of Ras that regulates receptor signal transduction Unknown; RASA3, hematopoiesis; RASA4, macrophage phagocytosis

SIK2 Salt-inducible kinase Regulation of macrophage inflammatory phenotype, metabolic homeostasis

RTF1 Component of the PAF complex, which is involved in transcriptional  
  regulation

Antiviral response, regulation of TNF expression

SMARCE1 Subunit of the BAF chromatin-remodeling complex Repressor of CD4 differentiation

DYNAP Dynactin-associated protein that activates protein kinase B Cytokine signaling, T cell function

THEM4 Mitochondrial thioesterase that is a negative regulator of protein kinase B Vitamin D–dependent macrophage-mediated inflammation

ARHGAP15 Rho GTPase–activating protein that downregulates RAC1 Rac1-dependent inflammatory response

SENP7 Sentrin/small ubiquitin-like modifier (SUMO)-specific protease Susceptibility to viral infection
aReferences that support the possible role(s) listed are provided in the Supplementary Note.
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Figure 3  Tissues and biological processes influenced by allergy risk variants. (a) Enrichment of tissue-specific gene expression in 25 broad tissues 
studied by the GTEx Consortium. We used the TSEA approach9 to test whether genes specifically expressed in a given tissue were enriched  
among the list of plausible target genes when compared to other genes in the genome. Enrichment (y axis) is shown as the –log10 Fisher’s exact  
test P value. For comparison, we analyzed 1,000 lists of random genes instead of the plausible target genes. We selected genes at random using  
three strategies (see Online Methods for details). First, genes were randomly drawn from the 98 non-MHC allergy risk loci identified in our GWAS, 
matching on the number selected per locus and in total. The enrichment P value for each of the 1,000 lists of random genes is shown by a gray  
circle. The black solid line shows the P value for the 50th most significant random list (corresponding to the 5th percentile): under the null  
hypothesis of no enrichment, this P value should be close to 0.05 (horizontal gray line). Second, genes were drawn at random from 2-Mb loci  
selected at random from the genome, matching on the number of genes selected (and available for selection) per locus and in total. Third, genes 
were drawn at random from all 18,300 genes available for analysis. For the latter two strategies, the P value for the 50th most significant random 
gene list is shown by the blue and yellow lines, respectively; enrichment results for each individual random data set are not shown. (b) Enrichment 
of SNP-based heritability in 220 individual cell-type-specific regulatory annotations. We used stratified LD score regression analysis10 to quantify 
the contribution of SNPs that overlap cell-type-specific regulatory annotations to the SNP-based disease heritability. Annotations with an enrichment 
in SNP heritability (−log10 of the P value of the regression coefficient; y axis) that was significant after correcting for multiple testing (P < 0.0002) 
are shown in black circles (top ten listed in blue font; all results in Supplementary Table 19). (c) Biological processes enriched amongst the list of 
plausible target genes. We used GeneNetwork12 to test whether the plausible target genes as a group were more likely to be part of a specific biological 
process category when compared to the rest of the genes in the genome. Enrichment (y axis) is shown as –log10 of the Wilcoxon rank-sum test P value 
(see Online Methods for details). The top ten pathways are listed in blue font. For comparison, we analyzed 1,000 lists of random genes generated 
using the same three strategies described above. For each of these strategies, the P value for the 50th most significant random gene list is shown by 
the black (random genes from allergy loci), blue (random genes from random loci) and yellow (random genes selected from all available genes) lines. 
Genes and SNPs in the MHC region were excluded from these analyses.
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operate to a large extent by modulating gene expression in cells of 
the immune system.

To help understand how the sentinel variants might influence 
immune cell function, we then identified biological processes 
over-represented among the plausible target genes when com-
pared to the rest of the genes in the genome (MHC excluded), using 
GeneNetwork12. As for the analysis of tissue-specific enrichment in 
gene expression, for each specific biological process, we compared 
the enrichment observed with the list of plausible target genes with 
that observed with 1,000 lists of genes randomly drawn from the same 
allergy risk loci. After correcting for the 3,770 biological processes 
tested, we found 35 pathways for which the enrichment observed with 
the plausible target genes was exceeded in <5% of the random gene 
lists (Fig. 3c and Supplementary Table 20). These included biologi-
cal processes related to T and B cell activation, B cell proliferation 
and isotype switching, and IL-2 and IL-4 production, confirming a 
key role for the sentinel variants and the likely target genes on lym-
phocyte-mediated immunity. Other noteworthy enrichments were 
observed for pathways related to induction of cell death, lipid phos-
phorylation and NK cell differentiation.

Consistent with a widespread effect of allergy risk variants on 
immune cell function, many sentinel risk variants have been reported 
to associate with other immune-related traits, notably blood cell counts 
(Supplementary Table 21) and autoimmune diseases (Supplementary 
Table 22). The genetic overlap with autoimmune diseases was not 
restricted to sentinel variants, as evidenced by significant positive 
genetic correlations with celiac disease, Crohn’s disease and inflam-
matory bowel disease obtained after excluding the 136 top associations 
from our GWAS results (Supplementary Table 23). Other significant 
genetic correlations were observed for obesity- and depression-related 
traits, both previously suggested by twin studies13. The former provides 
support for a role of allergy risk variants in the regulation of metabolic 
homeostasis.

We then investigated whether any of the plausible target genes 
identified could potentially represent a new opportunity for drug 
repositioning, as shown by others14. We found that 29 genes have 
been or are being considered as drug targets, including 9 for the treat-
ment of allergic diseases (Supplementary Table 24), 4 for autoim-
mune diseases (Supplementary Table 25) and 16 for other diseases 
(Supplementary Table 26), mostly cancer. Therefore, for 20 genes, 
drugs currently in development for other indications might influence 

biological mechanisms underlying allergic disease. For six of these 
genes, the effect on gene expression of the allergy-protective allele 
(Supplementary Table 27) and the existing drug matched (Table 2), 
suggesting that the latter might attenuate (and not exacerbate) allergy 
symptoms and so could be prioritized for preclinical testing.

Finally, on the basis of data from the BIOS consortium15 (n = 2,101), 
we found that a substantial fraction of target genes (36, or 27%) had 
a nearby CpG site for which methylation levels were significantly 
correlated with mRNA levels in blood, independently of SNP effects 
(Supplementary Table 28). This observation raises the possibility that 
environmental effects on the methylation state of these CpGs might 
influence target gene expression and, by extension, allergic disease 
risk. Well-powered studies that address this possibility are warranted. 
In exploratory analyses, we tested the association between five estab-
lished risk factors for allergic disease (Online Methods) and the meth-
ylation state of expression-associated CpGs for those 36 genes (largest 
n = 1,211). We observed only one significant association, between 
smoking and the methylation state of PITPNM2 (Supplementary 
Table 29), which was reported in a previous study16. These results 
indicate that smoking might influence the risk of allergic disease 
partly by modulating the methylation state of expression-associated 
CpGs for PITPNM2, a PYK2-binding protein17 potentially involved 
in neutrophil function18,19.

In conclusion, we substantially increased the number of known 
risk variants for allergic disease through a large GWAS of a mul-
tiple-disease phenotype defined on the basis of information from 
three genetically correlated diseases (asthma, hay fever and eczema). 
With a few exceptions, the variants identified had similar effects on 
the individual disease entities. The risk variants, and their likely 
target genes, are predicted to influence overwhelmingly the func-
tion of immune cells. Novel drugs for allergy are proposed on the 
basis of genomics-guided drug repositioning. Finally, our results 
raise the possibility that environmental factors such as smoking 
might influence allergic disease risk through modulation of target  
gene methylation.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Table 2  Plausible target genes with drugs in development for indications other than allergic diseases, for which the effect on gene 
expression of the allergy-protective allele and the existing drug matched

Plausible  
target gene

Effect of allergy- 
protective allele on 

gene expression Drug action Drug status Drug name Originator company Active indications

CD86 Increased Agonist Discovery BR-02001 Boryung Pharm Co Ltd Autoimmune disease

CCR7 Decreased Antagonist Discovery Anti-CCR7 chimeric IgG1 antibodies North Coast Biologics, LLC Unidentified indication

CCR7 Decreased Antagonist Discovery Anti-CCR7 monoclonal antibody Pepscan Systems BV Cancer

CCR7 Decreased Antagonist Discovery CCR7-targeting antibody Abilita Bio, Inc. Metastatic breast cancer

CCR7 Decreased Antagonist NA Chemokine antagonists Neurocrine Biosciences, Inc. NA

CCR7 Decreased Antagonist NA Chemokine receptor inhibitors Sosei Group Corp NA

F11R Decreased Antagonist Discovery F11R inhibitors Provid Pharmaceuticals, Inc. Cardiovascular disease

F11R Decreased Antagonist Discovery F-50073 Pierre Fabre SA Cancer

PHF5A Decreased Antagonist Discovery PHF5A inhibitors Fred Hutchinson Cancer  
Research Center

Glioblastoma

RGS14 Decreased Antagonist NA Regulator of G protein signaling 14 
inhibitor

University of Malaga Memory loss

TARS2 Decreased Antagonist Discovery Borrelidin Scripps Research Institute Infectious disease

NA, not applicable.
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Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Meta-analysis of allergic disease GWAS results conducted in 13 studies (n = 
360,838). In each of 13 participating studies (Supplementary Tables 1 and 2),  
a GWAS was performed using an additive genetic model in individuals of 
European descent who reported suffering from asthma and/or hay fever and/or 
eczema (case group; total n = 180,129) against those who never reported suf-
fering from any of these three conditions (control group; total n = 180,709). 
A detailed description of the procedures used to identify cases and controls, 
as well as for SNP genotyping, imputation and association testing, is provided 
for each study in the Supplementary Note.

Prior to the meta-analysis, standard quality control filters were applied to 
results from individual studies (Supplementary Table 1). After quality control, 
and restricting the analysis to SNPs present in at least the two largest studies 
(UK Biobank and 23andMe, Inc.; combined n = 256,623), results were avail-
able for 8,307,659 variants, of which most (89%) were available in >95% of the 
overall sample. Intercept estimates from LD score regression analysis7, which 
reflect inflation of test statistics likely due to technical biases, ranged between 
1.00 and 1.16 (Supplementary Table 1). Results from individual studies were 
adjusted for the observed inflation by multiplying the square of the standard 
error of each genetic effect estimate by the respective LD score regression 
intercept. We then used METAL20 to combine association results across stud-
ies using an inverse-variance-weighted, fixed-effects meta-analysis. P values 
from the meta-analysis were further adjusted for the meta-analysis LD score 
regression intercept of 1.04. The genome-wide significance threshold was set 
at 3 × 10−8, as suggested previously for GWAS analyzing variants with minor 
allele frequency (MAF) ≥ 1% (ref. 21).

Identification of independent associations through approximate condi-
tional analyses. For each chromosome, we identified all SNPs with P ≤ 3 × 
10−8, sorted these on the basis of base-pair position and then grouped variants 
into the same locus if the distance between consecutive variants was <1 Mb. 
Variants located >1 Mb from the previous genome-wide significant variant 
were assigned to a new locus. Next, for each of these loci, we identified statis-
tically independent associations using approximate conditional analyses, as 
implemented in GCTA5. We refer to these as sentinel risk variants. In these 
analyses, LD calculations were based on a subset of 5,000 individuals from the 
UK Biobank study. Briefly, for each locus, we (i) identified the most signifi-
cantly associated SNP (i); (ii) adjusted the summary statistics of all SNPs in 
that locus by the effect of the top SNP; (iii) identified the most significantly 
associated SNP (j) that remained genome-wide significant in the locus; and 
(iv) adjusted the summary statistics of all SNPs in the locus by the effects of 
SNPs i and j. We repeated this process until there were no SNPs associated 
with allergic disease at P ≤ 3 × 10−8 after adjusting for the effect of other, more 
strongly independently associated variants in the locus. Lastly, we estimated 
the LD between sentinel variants located in different risk loci (that is, >1 Mb 
apart) and confirmed that r2 was always close to 0 (no pairs of sentinel vari-
ants had r2 >0.02).

Determining the novelty status of independent SNP associations with 
allergic disease. Previous GWAS identified 185 SNPs associated with the risk 
of various allergic conditions, which we grouped into 89 independent asso-
ciations on the basis of the LD between variants (Supplementary Note). We 
used this information to classify each of our independent SNP associations 
into one of two major groups: known (<1 Mb from any of the 185 previously 
reported associations; ‘KnownLocus’) and new (>1 Mb from the previously 
reported variants; ‘NewLocus’) allergy risk loci. For the first group, we then 
estimated the LD between each sentinel variant identified in our study and all 
variant(s) reported in previous GWAS. If all reported variants had r2 < 0.05  
with our sentinel variant, then our association was considered to represent 
a new risk variant in a known risk locus (‘KnownLocus–NewVariant’). 
Alternatively, when at least one reported variant had r2 ≥ 0.05, our asso-
ciation was considered to be a known risk variant in a known risk locus 
(‘KnownLocus–KnownVariant’). The second major group was composed of 
variants located in new allergy risk loci. Within this group, we used the same 
approach to determine whether our associations were new when considering 
any disease or trait with genome-wide significant associations reported in 
the NHGRI-EBI GWAS catalog.

Comparison of risk allele frequencies between individuals suffering from 
a single allergic disease. By combining information from asthma, hay fever 
and eczema in the case–control definition used in our GWAS, we expected 
our study design to improve power to identify risk variants shared between 
but not specific to any of the three diseases6. To understand whether the asso-
ciations discovered in our GWAS were indeed likely to represent risk factors 
shared across allergic diseases, we took advantage of the observation that not 
all affected individuals reported allergic comorbidities1,22,23 and compared 
allele frequencies between three groups of adults: asthma-only cases (n = 
12,268), hay fever–only cases (n = 33,305) and eczema-only cases (n = 6,276). 
The studies that contributed to this analysis are indicated in Supplementary 
Table 1 and described in detail in the Supplementary Note. We performed 
three sets of association analyses contrasting three non-overlapping groups 
of individuals: asthma only (g1) versus hay fever only (g2); asthma only (g1) 
versus eczema only (g3); and hay fever only (g2) versus eczema only (g3). 
These analyses are statistically independent from the case–control analysis 
carried out as part of the GWAS, which facilitates interpretation of the results. 
For a given sentinel SNP, results from these analyses indicate whether the risk 
allele is more (OR > 1) or less (OR < 1) common in, for example, group 1 (g1) 
when compared to group 2 (g2). For example, if a SNP contributed similarly 
to the risks of asthma and hay fever but not to that of eczema, then one would 
expect an OR of ~1 in the asthma versus. hay fever comparison but an OR of 
>1 in the asthma versus eczema and hay fever versus eczema analyses. The 
significance threshold for these analyses was set at 1.2 × 10−4, which corre-
sponds to a Bonferroni correction for the 136 SNPs and three sets of analyses 
performed (P < 0.05/(136 × 3)).

Association between sentinel risk variants and variation in allergy age of 
onset. There is considerable variation in the age at which allergic diseases are 
first reported, which has been shown to be influenced by genetic risk factors24. 
We therefore studied the association between the sentinel variants identified 
in our GWAS and age of onset observed in the UK Biobank study (n = 35,972). 
For each individual, we first considered the earliest age of any allergic disease 
(asthma or hay fever/eczema; the latter two were covered by the same ques-
tion and so could not be differentiated) being reported. SNPs were tested for 
association with this phenotype, with sex and a SNP array variable included 
as covariates. The significance threshold used for this analysis was 3.6 × 10−4  
(P < 0.05/136). Because significant SNP associations with this broad age-of-
onset phenotype could be driven by different risk allele frequencies among 
cases suffering from different individual conditions (for example, an FLG vari-
ant might be associated with earliest age of onset because it is more prevalent in 
cases with eczema, which tends to precede the development of asthma and hay 
fever25), we repeated the analysis by considering individuals who had reported 
suffering only from a single disease: asthma-only (n = 7,445), hay fever–only 
(n = 4,232) and eczema-only (n = 1,225) cases. For a given SNP, differences in 
effect size (β) between groups were quantified using the formula z = σ/SEσ, 
where σ = βgroup A – βgroup B and SE sqrt SE SEgroupA groupBs b b= +( )2 2 , which 
follows a normal distribution.

Estimating the contribution of the sentinel variants to the heritability of 
asthma, hay fever and eczema. Five steps were involved. First, we performed 
a GWAS of the individual diseases in the HUNT study, which was not included 
in the discovery meta-analysis. The HUNT study is described in greater detail 
in the Supplementary Note. Briefly, on the basis of self-reported information 
from a questionnaire, we identified 1,875 cases and 16,463 controls for the 
asthma GWAS; 6,939 cases and 12,844 controls for the hay fever GWAS; and 
2,630 cases and 16,131 controls for the eczema GWAS. After quality control 
filters, we analyzed 7.6 million common variants (genotyped and imputed) 
for association with each individual phenotype. The genomic inflation fac-
tor (λ) for these analyses was 1.049 for asthma, 1.078 for hay fever and 1.041 
for eczema. Second, for each of the three diseases, we quantified the overall 
SNP-based heritabilities with LD score regression7 using a subset of 1.2 mil-
lion HapMap SNPs. To obtain a heritability estimate on the liability scale, we 
set the population prevalence to be the same as the sample prevalence, given 
that this was a population-based study. Third, we removed the 136 sentinel 
variants (and all variants correlated at r2 > 0.05) from the individual disease 
GWAS results. Fourth, we re-estimated SNP-based heritabilities as described 

©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.



Nature Genetics doi:10.1038/ng.3985

for step two, but now using the GWAS results without the 136 top associations. 
In the fifth and final step, the contribution of the 136 sentinel variants toward 
the heritability of each disease was calculated as the difference between the 
SNP-based heritability estimated in steps two (all SNPs) and four (without 
the 136 top associations).

Identification of plausible target genes of sentinel risk variants. Two inde-
pendent strategies were used to identify plausible target genes underlying the 
observed associations. By ‘target gene’, we mean a gene for which the protein 
sequence and/or variation in transcription is associated with a sentinel risk 
variant or one of its proxies (r2 > 0.8).

First, we used wANNOVAR26 to identify genes containing nonsynonymous 
SNPs among all variants in LD (r2 > 0.8) with any sentinel risk variant. SNPs 
in LD with sentinel risk variants were identified using genotype data from 
individuals of European descent from the 1000 Genomes Project27 (n = 294; 
release 20130502_v5a).

Second, to identify genes with transcription levels associated with a sentinel 
risk variant or one of its proxies (r2 > 0.8), we queried publicly available results 
from 39 published eQTL studies conducted in 19 tissues or cell types relevant 
to allergic disease (Supplementary Table 13). We used a conservative sig-
nificance threshold to identify significant SNP–gene expression associations, 
specifically P < 2.3 × 10−9 for cis effects (<1 Mb). We selected this threshold on 
the basis of a Bonferroni correction considering the total number of protein- 
coding genes (G) and the number of SNPs likely to have been tested per gene 
(M): P < 0.05/(G × M). G was set at 21,742, on the basis of the GeneCards 
database28, queried on 19 October 2016. We approximated M to be 1,000, as 
indicated by others29–31, and so the threshold became P = 0.05/(21,472 genes 
× 1,000 SNPs per gene) = 2.3 × 10−9. We did not use information from trans-
eQTLs to identify plausible target genes of sentinel risk variants because often 
these are thought to involve indirect effects32 (for example, where the sentinel 
SNP influences the expression of a transcript in cis, which in turn affects the 
expression of many other genes in trans).

For each eQTL study, and within each study for each tissue, we created 
a list of SNPs associated with gene expression in cis at P < 2.3 × 10−9. Then, 
for each gene in that study–tissue data set, we used the --clump procedure in 
PLINK to reduce the list of expression-associated SNPs (which often included 
many correlated SNPs) to a set of ‘sentinel eQTLs’, defined as the SNPs with 
the strongest association with gene expression and in low LD (r2 < 0.05, LD 
window of 2 Mb) with each other. This procedure was repeated for each of 
the 94 study–tissue data sets listed in Supplementary Table 13. Finally, we 
identified as a likely target of a sentinel allergy risk variant any gene for which 
a sentinel eQTL in any of the 94 study–tissue data sets had LD r2 > 0.8 with 
the sentinel risk variant. That is, we only considered genes for which there 
was strong LD between a sentinel variant and a sentinel eQTL, which reduces 
the chance of spurious colocalization. We did not use statistical approaches 
developed to distinguish colocalization from shared genetic effects because 
these have very limited resolution at high LD levels (r2 > 0.8)33.

To help prioritize plausible target genes for functional validation in sub-
sequent studies, we identified genes for which publicly available functional 
data supported not just the presence of chromatin interactions between an 
enhancer and a gene promoter (based on 5C34, promoter capture Hi-C35, 
ChIA–PET36 or in situ Hi-C37 data), but also an association between varia-
tion in enhancer epigenetic marks and variation in gene transcription levels 
(based on PreSTIGE38, H3K27ac enhancer and super-enhancer annotations39, 
IM–PET40 or FANTOM5 (ref. 41 analyses). We considered data from immune 
cell types, lung and skin (Supplementary Table 16) and putative enhanc-
ers that overlapped a sentinel risk variant (or one of its proxies in high LD,  
r2 > 0.95).

Genes that were unlikely to have been previously implicated in the patho-
physiology of allergic disease were identified using the procedure described 
in the Supplementary Note.

Enrichment in tissue-specific gene expression. We used the TSEA approach9 
to identify tissues that were likely to be affected functionally by the biological 
effects of the sentinel risk variants. We implemented this approach locally 
using custom scripts. Specifically, for each of 25 broad tissue types stud-
ied by the GTEx Consortium, we tested whether genes with tissue-specific 

expression (based on a specificity index threshold9 (pSI) of 0.05; listed in 
file TableS3_NAR_Dougherty_Tissue_gene_pSI_v3-1.txt, downloaded from 
http://genetics.wustl.edu/jdlab/psi_package/) were enriched among the list of 
plausible target genes when compared to the rest of the genes in the genome.  
After excluding genes without a pSI value and in the MHC region, there were 
112 plausible target genes and 17,671 background genes available for analysis. 
To test whether the plausible target genes were enriched for genes with specific 
expression in a given tissue, we used Fisher’s exact test (one-sided). To rule 
out the possibility that a significant enrichment could arise because the list of 
plausible targets was enriched for genes with eQTLs, we repeated the analysis 
after restricting the background gene list to a subset of 12,804 genes that were 
found to have eQTLs in the same eQTL studies that were used to identify 
plausible target genes of sentinel variants.

We also tested whether a significant enrichment in tissue-specific expres-
sion could be a general feature of genes near sentinel risk variants and not 
specific to the list of genes identified as plausible targets. To address this pos-
sibility, we generated 1,000 arbitrary gene lists, each containing 112 random 
genes instead of the plausible target genes. We selected genes at random from 
the 17,783 with an available pSI value and not in the MHC region, using three 
strategies. First, genes were randomly drawn from allergy risk loci (±1 Mb 
with respect to a sentinel variant). To generate each list of random genes, for 
each non-MHC allergy risk locus L, we randomly selected a locus R from the 
subset of non-MHC allergy risk loci for which the number of genes available 
for selection was the same or greater than the actual number of plausible 
target genes (T) selected for locus L. Then, for locus R, we selected T genes at 
random from the available genes in that locus. This procedure was repeated for 
all non-MHC allergy risk loci, ensuring that the same locus was not selected 
twice in a given random data set.

In the second strategy, genes were randomly drawn from 2-Mb loci selected 
at random from the genome. In this case, to generate each list of random genes, 
we first partitioned the autosomes (excluding the MHC region) into 1,430 
consecutive 2-Mb loci and counted how many genes with an available pSI value 
were present in each of these loci. Then, for each non-MHC allergy risk locus 
L, we randomly selected a locus R from the subset of 2-Mb loci for which the 
number of genes available for selection satisfied the following criteria: (i) the 
number was the same or greater than the actual number of plausible target 
genes (T) selected for locus L and (ii) the number matched (within 10%) the 
number of genes available for selection for locus L. This was important to 
ensure that the randomly selected locus R was comparable to the allergy risk 
locus L in terms of the number of genes available for selection. Then, for locus 
R, we selected T genes at random from the available genes in that locus.

In the third and final strategy, we simply selected genes at random from 
all 17,783 non-MHC genes with an available pSI value, ignoring where the 
genes were located in the genome. As a result, for a given random list, the 
genes selected could only be in close proximity to other genes in that same 
list by chance alone.

The same approach used to test enrichment in tissue-specific expression 
for the plausible target genes was then used to analyze each of the 1,000 lists of 
random genes. For each of these lists, the smallest P value observed across all 
25 tissues tested was retained (Pmin). The proportion of random gene lists (out 
of 1,000) with a Pmin value that was the same or lower than the enrichment P 
value observed with the plausible target genes (Pobs) was then calculated. This 
corresponds to the probability of exceeding that enrichment when analyzing 
the random gene lists, after correcting for the 25 tissues tested. As we did 
for the analysis of the plausible target genes, we repeated the generation and 
analysis of random gene lists after restricting the genes available for selection 
(and the background gene list) to the subset of genes with a known eQTL.

Enrichment in tissue-specific SNP heritability. Finucane et al.10 developed 
an approach to identify tissues likely affected by the functional effects of dis-
ease risk variants, called stratified LD score regression. This approach quanti-
fies the contribution of SNPs located in tissue-specific regulatory annotations 
to the overall disease heritability. As such, it does not require the identifica-
tion of likely target genes of allergy risk variant and considers all SNPs in 
the genome, not just those with a genome-wide significant association with 
disease risk. Specifically, up to four histone marks (H3K4me1, H3K4me3, 
H3K9ac and H3K27ac) measured by the ENCODE project are used to define 
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regulatory annotations (for example, enhancers) in 100 different cell types. 
SNPs that overlap these regulatory annotations are then identified and their 
contribution as a group to the disease heritability is quantified. As recom-
mended by Finucane et al.10, we ranked cell types on the basis of the P value 
of the regression coefficient, rather than the P value of total enrichment. To 
ensure that significant SNP heritability enrichments were not explained by the 
effects of sentinel variants, we removed the top SNPs (and any variants with 
r2 > 0.05 with these) from the meta-analysis GWAS results and repeated the 
LD score regression analysis.

Enrichment of biological processes. To identify biological processes enriched 
among the non-MHC target genes, we used GeneNetwork12. With this 
approach, gene sets originally included in a given GO biological process (BP) 
were expanded to include other genes on the basis of a ‘guilt-by-association’ 
procedure12. After excluding BPs with <10 or >500 genes, 3,770 BPs were availa-
ble for analysis. For each BP, we tested its enrichment among the list of plausible 
target genes as follows. First, we downloaded a gene set file containing z scores 
for each of 19,976 unique genes in the genome from http://129.125.135.180:
8080/GeneNetwork/resources/ontology?ontology=GO_BP&term=[pathway], 
where “pathway” was replaced with the actual name of the BP being tested (for 
example, GO:0000002). The z score for gene X in that file reflects the prob-
ability that gene X is part of that BP. Second, we compared the distribution of 
z scores between the list of plausible target genes (107 non-MHC genes were 
in the GeneNetwork gene set files and so were available for analysis) and a 
background gene list of 18,193 genes (obtained after excluding MHC genes, the 
107 plausible target genes and genes not listed in GENCODE release 19), using 
a one-sided Wilcoxon rank-sum test. The P value from this test represents the 
probability that genes in that BP are enriched among the list of plausible target 
genes, when compared to the background gene list.

As for the enrichment analysis of tissue-specific expression, we estimated 
how often a BP enrichment observed with the list of plausible target genes would 
be expected had we sampled genes at random from the allergy risk loci or from 
random loci. This analysis addresses the possibility that an observed enrichment 
might not be a specific feature of the plausible target genes identified but instead 
a general feature of genes located near sentinel allergy risk variants or simply in 
close proximity to each other. We used the same three strategies described above 
to generate 1,000 lists of random genes, sampling from the 18,300 non-MHC 
genes with an available z score and in GENCODE release 19. To determine 
whether using eQTL information to identify plausible target genes could have 
biased the enrichment analysis, we generated and analyzed random gene lists 
after restricting the genes available for selection to the subset with known eQTLs 
(12,913) but found very similar results (data not shown).

Common traits and diseases associated with allergic disease risk variants. 
We first identified all variants in LD (r2 > 0.8) with a sentinel risk variant 
using data from Europeans in the 1000 Genomes Project27 (n = 294; release 
20130502_v5a) and extracted any associations with these reported in the 
NHGRI-EBI GWAS catalog database42 (queried on 13 December 2016) or by 
Astle et al.43, a large GWAS of blood cell counts (n = 173,480). To complement 
this analysis, we estimated the SNP-based genetic correlation between our 
GWAS and results reported for 229 common traits or diseases, using LD Hub44. 
In these analyses, results from our meta-analysis were not corrected for the LD 
score intercept, either at the study level or after the meta-analysis.

Identification of target genes considered as drug targets for human diseases. 
To identify genes encoding transcripts that are targets of drugs considered for 
clinical development, we queried the Thomson Reuters Cortellis Drug data-
base between 7 and 15 November 2016, which included 63,417 drugs. The drug 
search was carried out individually for each gene. First, a search query was 
built based on the following format: HGNC approved gene name OR alias_1 
OR … OR alias_N. Gene name aliases were obtained from the Bioconductor 
annotation package org.Hs.eg.db. For example, to find drugs that target IL6R, 
the search query used was: “CD126” OR “IL-6R-1” OR “IL-6RA” OR “IL6Q” 
OR “IL6RA” OR “IL6RQ” OR “gp80” OR “IL6R” OR “interleukin 6 receptor”. 
Second, after running the search query, results were filtered on the basis of the 
ascribed ‘target-based actions’, keeping only entries that corresponded to the 
gene name or an alias. For example, of the 65 results obtained with the IL6R 

query above, only for 20 did the target-based action mention IL6R or an alias. 
Third, drug results were downloaded and the gene and respective drug were 
allocated to one of three groups: (i) gene with at least one drug considered 
for the treatment of allergic diseases; (ii) gene considered for the treatment 
of immune-related conditions but not allergic diseases specifically; and (iii) 
gene considered for the treatment of other conditions.

Directional effect of the allergy-protective allele on target gene expression. 
In an attempt to predict whether existing drugs would be expected to attenuate 
or exacerbate allergic symptoms, we compared the effect on gene expression 
between the allergy-protective allele and the existing drug. We acknowledge that 
this is a simplistic comparison because it assumes that the directional effect of 
the protective allele on transcription levels is not dependent on tissue or context, 
which is true for most but not all expression-associated SNPs45–47, and extends 
to protein levels.

To determine whether the allergy-protective allele of a sentinel variant was 
associated with higher or lower target gene expression, we focused on the sub-
set of target genes identified via an eQTL (see above). It was straightforward to 
assess when the sentinel SNP and the expression-associated SNP were the same 
variant: for example, if the allergy-protective allele had a negative effect (β or 
z score) on gene expression in the published eQTL study, then that allele was 
associated with lower gene expression. On the other hand, when the two SNPs 
did not correspond to the same variant but were in high LD (r2 > 0.8) with each 
other, we first determined which allele of the expression-associated SNP was 
on the same haplotype as the allergy risk allele. Then we used that allele to infer 
the direction of effect of the allergy risk allele on gene expression.

Modulation of target gene methylation by environmental risk factors. We 
first tested whether variation in DNA CpG methylation was associated with 
variation in target gene expression, independently of SNP effects, using data 
from the Biobank-based Integrative Omics Study (BIOS) consortium that 
are described in detail elsewhere15,48. Methylation and expression levels in 
whole blood samples (n = 2,101) were quantified, respectively, with Illumina 
Infinium HumanMethylation450 BeadChip Kit arrays and RNA-seq (2 × 50-
bp paired-end reads; HiSeq 2000; >15 million read pairs per sample). For 
each target gene, we identified CpG sites in cis (<250 kb from the gene) for 
which methylation levels were significantly associated with gene expression 
levels (false discovery rate < 5%), after adjusting the methylation levels for 
methylation-associated SNPs and expression levels for expression-associated 
SNPs. Such CpG sites, called cis-eQTMs, were identified in a previous study15 
and downloaded from http://genenetwork.nl/biosqtlbrowser. For most genes, 
there were multiple cis-eQTMs, and so we selected the CpG site most strongly 
associated with variation in gene expression for downstream analyses.

Next, we tested the association between methylation levels at these sentinel 
CpGs with five established risk factors for allergic disease using data from 
unrelated individuals of the Netherlands Twin Register (NTR) study, which was 
included in the BIOS consortium studies15,48. The risk factors tested were cur-
rent smoking (n = 1,221), maternal smoking (n = 637), body mass index (BMI; 
n = 1,214), birth weight (n = 1,015) and number of older siblings (n = 775). 
Information on BMI and current smoking was collected as part of the NTR 
biobank project49 at blood draw. Birth weight was obtained in multiple NTR 
surveys as previously described50. Maternal smoking during pregnancy was 
measured in NTR Survey 10 (data collection in 2013) with the following ques-
tion: “Did your mother ever smoke during pregnancy?” with answer categories 
“no”, “yes” and “I don’t know”. Information on number of older siblings was 
obtained through self-report in NTR surveys 2, 3 and 6. For twin pairs, answers 
were checked for consistency and missing data for one twin were supplemented 
with data from the co-twin where possible. Linear or logistic regression was 
used to test the association between methylation (β value) and individual risk 
factors, with the following variables included as covariates: sex, age at blood 
sampling, methylation array row, bisulfite plate and white blood cell percent-
ages (% neutrophils, % monocytes and % eosinophils). The association with 
maternal smoking was tested while also adjusting for smoking status.

Data availability. Summary statistics of the meta-analysis without the 
23andMe study are available for download at https://genepi.qimr.edu.au/staff/
manuelf/gwas_results/main.html. The full GWAS summary statistics for the 
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23andMe discovery data set will be made available through 23andMe to quali-
fied researchers under an agreement with 23andMe that protects the privacy 
of the 23andMe participants. Please contact David Hinds (dhinds@23andme.
com) for more information and to apply to access the 23andMe data. A Life 
Sciences Reporting Summary is available for this paper.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Studies were invited to participate in the meta-analysis if: (1) genome-wide 
genotype data were available for >2,000 individuals (prior to final phenotype 
exclusions); and (2): information was available on asthma, hay fever and eczema 
status. 

2.   Data exclusions

Describe any data exclusions. Pre-defined exclusion criteria were applied at the study-level as part of standard 
GWAS quality control procedures. These included, for example, excluding samples 
and SNPs with high levels of missing data. 

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

No replication phase was included in this study.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Participants were allocated to the case or control groups based on available 
information for asthma, hay fever and eczema. Specifically, participants suffering 
from one or more allergic condition were considered as cases. Participants who 
had never suffered from any allergic condition were considered as controls.  

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

For most studies, investigators involved in blood collection and DNA genotyping 
were blinded to case-control status.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

Nature Genetics: doi:10.1038/ng.3985



2

nature research  |  life sciences reporting sum
m

ary
June 2017

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

R, PLINK, METAL, SNPTEST, BOLT-LMM, RAREMETALWORKER, GCTA, MACH2DAT, 
EPACTS, EIGENSTRAT

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

Summary statistics of the meta-analysis without the 23andMe study will be made 
publicly available at the time of publication. The full GWAS summary statistics for 
the 23andMe discovery data set will be made available through 23andMe to 
qualified researchers under an agreement with 23andMe that protects the privacy 
of the 23andMe participants. Please contact David Hinds (dhinds@23andme.com) 
for more information and to apply to access the 23andMe data.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No cell lines were used

b.  Describe the method of cell line authentication used. No cell lines were used

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No cell lines were used

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No cell lines were used
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

We studied 180,129 participants who reported having suffered from asthma and/
or hay fever and/or eczema, and 180,709 participants who reported not suffering 
from any of these diseases. Mean age within each contributing study varied 
between 4 and 62, with females representing 39% to 68% of the sample size.
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