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Abstract

It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and
genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological
intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain
small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in
biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach’s properties,
we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index,
C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents
and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the
explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to
which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from
hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of
interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended
to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for
which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the
analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method
represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal
relationships with disease without having to expensively measure these variables in individual disease collections.
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Introduction

It is common practice within genome-wide association studies

(GWAS) and their meta-analyses to focus on the relationship

between disease risk and single nucleotide polymorphisms (SNPs)

one genetic variant at a time. This strategy is often very

informative in terms of identifying biological intermediates and/

or pathways likely to be important in disease pathogenesis. For

example, the association between coronary heart disease and

genetic variants located within genes regulating levels of low
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density lipoprotein (LDLc) [1–4], confirms low density cholesterol as

a key player in the aetiology of coronary heart disease. Likewise, it is

now common practice to follow up disease associated variants in

gene expression studies. If the disease associated variant is also

related to levels of gene expression in a relevant target tissue, then

this is often interpreted as prima facie evidence that the variant

exerts at least part of its functional effect by altering transcription

levels of that gene, which downstream subsequently predisposes to

disease. Using a similar rationale, the absence of genetic association

can also be informative in providing evidence against biological

intermediates playing a role in disease aetiology so long as the study

is adequately powered. For example, Mendelian Randomization [5]

studies have shown that variants within the CRP gene appear to be

unrelated to hypertension, type 2 diabetes and coronary heart

disease, suggesting that CRP is unlikely to be important in the

aetiology of these conditions, but rather that observational

associations between CRP and these diseases are more likely to

represent confounding and/or reverse causation [6–8].

Given that genetic variants can highlight potentially important

relationships between biological mediators/environmental expo-

sures and disease, it would seem a worthwhile exercise to screen

GWAS of as many diseases as possible for SNPs known to be

related to biological intermediates. However single variants

typically explain only a small proportion of the variance in these

biological intermediates, and so it might be expected that the SNPs

indexing these variables, may not show strong evidence of

association, particularly in smaller GWAS. Potentially, a more

powerful strategy would be to look at the combined effect of

several genetic variants that together explain greater variance in

the intermediate of interest, and consequently may be more

strongly related to disease. In other words, our idea is to invert the

GWAS paradigm. Rather than investigate SNPs which are

associated with disease and then see if they are related to

intermediates, take combinations of SNPs known to be related to

biological intermediates and test to see if they are related to

disease.

One might ask the obvious question, if the interest is on the

relationship between biological intermediates and disease, then

why not measure these quantities directly in the observational

studies themselves? Whilst this is certainly possible, and may have

many benefits, we argue that our strategy has several advantages

that make it a worthwhile approach to consider. First, our method

provides a way to efficiently screen many different biological

intermediates quickly and inexpensively without having to

measure them in the disease cohort of interest. All that is required

is knowledge of the genetic variants that relate to the biological

intermediate of interest and that these same SNPs have been

genotyped on a sample of disease cases and controls (in practice

this will most likely mean using GWAS data). An added benefit is

that due to the existence of GWAS consortia, the strategy could in

theory be applied to the tens of thousands of individuals that have

been genotyped as part of these consortia making the method

potentially very powerful.

Second, the same allelic scores could be used to screen an

unlimited number of different collections and/or diseases so long

as (genome-wide) SNP data is available in these cohorts and

includes variants related to the intermediates of interest. Third,

allelic scores are more likely to represent individuals’ lifetime

exposure to the factor of interest rather than a one off

measurement of the intermediate, which in contrast, might be

susceptible to considerable measurement error and time depen-

dency [2]. Fourth, whilst measurements of biological intermediates

in disease populations may be influenced by medications and/or

reverse causality, we expect that genetic variants/allele scores are

not influenced by many confounders (including medications and/

or reverse causality), although we stress that even in this case,

correlation does not necessarily imply causation.

Finally, and most importantly, the approach is in theory

extendable to any variable of interest, not just single biological

intermediates, but potentially multiple molecular phenotypes as

well (e.g. levels of gene expression, methylation, metabolomic data

etc). This means that in principle tens of thousands of molecular

phenotypes could be screened simultaneously for possible causal

relationships with the disease of interest, and in so doing flag

biological pathways that deserve attention. These associations

could then be followed up in more detail e.g. by formal Mendelian

Randomization to investigate the possibility of a causal relation-

ship further [5]. We emphasize, however, that the approach will

not identify observational associations which are due to environ-

mental factors which affect both the intermediate and disease, nor

will it identify associations which are due to the disease causing the

intermediate (i.e. reverse causality). This is advantageous if one is

only interested in factors which potentially cause disease, but will

also by definition exclude non-causal associations which could

potentially be of utility such as non-causal biomarkers. For

example, assuming that elevated levels of CRP is not a

contributing causal factor for coronary heart disease [8], then

genetic variants which index CRP, should not be related to

coronary heart disease, even though levels of CRP may serve as a

useful biomarker of disease risk.

One obvious limitation of what we have proposed so far is that

the genetic variants related to the biological intermediate need to

be known a priori in order for the approach to work. In addition, in

the case of intermediates where known variants exist, they may

explain only a small amount of the total phenotypic variance in

that variable. However, we and others have previously shown that

genome-wide allelic scores generated by simply counting up

hundreds of thousands of anonymous ‘‘risk’’ alleles in genome-

wide SNP data are capable of explaining meaningful amounts of

phenotypic variance in traits of interest [9,10]. Our idea is to use

these genome-wide allelic scores in situations where there are no

known confirmed genetic variants and/or in situations where the

Author Summary

The standard approach in genome-wide association
studies is to analyse the relationship between genetic
variants and disease one marker at a time. Significant
associations between markers and disease are then used
as evidence to implicate biological intermediates and
pathways likely to be involved in disease aetiology.
However, single genetic variants typically only explain
small amounts of disease risk. Our idea is to construct
allelic scores that explain greater proportions of the
variance in biological intermediates than single markers,
and then use these scores to data mine genome-wide
association studies. We show how allelic scores derived
from known variants as well as allelic scores derived from
hundreds of thousands of genetic markers across the
genome explain significant portions of the variance in
body mass index, levels of C-reactive protein, and LDLc
cholesterol, and many of these scores show expected
correlations with disease. Power calculations confirm the
feasibility of scaling our strategy to the analysis of tens of
thousands of molecular phenotypes in large genome-wide
meta-analyses. Our method represents a simple way in
which tens of thousands of molecular phenotypes could
be screened for potential causal relationships with disease.
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known variants explain inadequate proportions of the pheno-

typic variance in the biological intermediates of interest. In

fact, our previous work has shown that these scores can

explain more phenotypic variance than allelic scores con-

structed from confirmed variants only [9,10]. This is because

many complex phenotypes (including biological intermediates)

are influenced by hundreds, if not thousands of common

variants of small effect scattered across the genome [11,12].

There is thus considerable information in the lower part of

the genome-wide distribution of association test statistics that

could be utilized to explain more of the phenotypic variance

in the modifiable exposures of interest (i.e. SNPs that exhibit

p values.561028 which do not meet the stringent criterion

for genome-wide significance also provide important predictive

information).

In this manuscript we investigate the possibility of using

allelic scores that index biological intermediates as a method

of screening for potentially causal associations between these

variables and disease. We begin first by investigating the

ability of allelic scores to explain variance in modifiable

exposures/biological intermediates of interest in a large

population based cohort- the Avon Longitudinal Study of

Parents and Children (ALSPAC). We compare the explana-

tory ability of allelic scores constructed from confirmed

variants only, to genome-wide allelic scores generated from

up to hundreds of thousands of anonymous SNPs. In order to

investigate the properties of our approach, we attempt to

index three biological intermediates of interest where the

results of large GWAS meta-analyses are available: body mass

index (BMI), C-reactive protein (CRP) and LDLc [3,13,14].

In order to replicate our pattern of associations, we perform

the same set of analyses in an independent cohort of

Australian twins (QIMR Twins) [15,16]. We subsequently

generate these allelic scores which index BMI, CRP and

LDLc in publicly available data from the first Wellcome Trust

Case Control Consortium [17], and investigate the extent to

which the scores are associated with case control status across

seven common diseases (Bipolar disorder, Coronary Artery

Disease, Crohn’s Disease, Hypertension, Rheumatoid Arthri-

tis, Type I Diabetes, Type II Diabetes).

For several of the intermediate variable - disease pairings

there exists strong evidence of a causal relationship between the

two e.g. from randomized controlled trials, Mendelian Ran-

domization studies etc. These include LDLc with coronary heart

disease [1,18], and BMI and both coronary heart disease [19]

and type 2 diabetes [20,21]. We therefore expect that at least

some of these allelic scores indexing biological intermediates will

show association with disease, even in a relatively small sample

like the WTCCC. In contrast, for other pairings, even though

observational research has shown that the two variables are

related, the pairing is unlikely to reflect a causal effect of the

intermediate/exposure variable on the disease (e.g. CRP and

type 2 diabetes [6] or coronary heart disease [8]), and thus we

expect that allelic scores should not show correlation with

disease in these cases. If we can show that the approach

produces coherent results in situations where we are relatively

confident of a causal relationship between the intermediate and

disease, then the implication is that the method may also be

useful in those situations where we are less certain of the

underlying relationship between the variables, such as in a

screen of tens of thousands of molecular phenotypes. Finally we

investigate the power of the approach, and discuss the likely

challenges involved in scaling the strategy up to investigate tens

of thousands of molecular phenotypes.

Results

Performance of allelic scores in the ALSPAC cohort
Figures 1 through 3 display the proportion of variance in each

of the different intermediate variables (i.e. BMI, CRP, and LDLc

respectively) within the ALSPAC cohort explained by a genome-

wide allelic score of variants constructed according to different

SNP inclusion thresholds. Figure 1 shows the results for BMI when

all the observed genotypes were used in calculation of the scores

and when regions around known variants were excluded from

construction of the scores. In the case of the genome-wide scores

including the known regions, the weighted score explained from

2.3% to 4.9% of the phenotypic variance in BMI depending on

the SNP inclusion threshold, whereas the unweighted score

explained from 2.1% to 3.9% of the variance. The weighted

score explained more of the phenotypic variance in BMI than the

unweighted score across all SNP inclusion thresholds tested. In the

case of the weighted score, the proportion of variance explained

tended to be greatest when the SNP inclusion threshold was liberal

(i.e. the more SNPs included in construction of the score the

better). In contrast, the predictive ability of the unweighted score

reached a maximum at the p,0.2 selection threshold, but

decreased either side of this maximum as the threshold became

more or less conservative. Constructing an allelic score using only

the known variants explained 3.2% of the variance in BMI when

weighted and 2.3% of the variance in BMI when using an

unweighted score. Interestingly using known variants explained

smaller amounts of the phenotypic variance than that explained by

the best weighted genome-wide predictors- even with the known

regions removed.

Figure 2 shows the results for CRP levels, which appear quite

different to the results for BMI. In the case of the genome-wide

scores including the known variants, the weighted score explained

from 2.0% to 4.7% of the phenotypic variance in CRP depending

on the SNP inclusion threshold, whereas the unweighted score

explained from 0.7% to 3.4% of the variance. The weighted score

explained more of the phenotypic variance in CRP than the

unweighted score across all SNP inclusion thresholds tested. For

both the weighted and unweighted scores, the proportion of

variance explained was greatest when the SNP inclusion threshold

was conservative (i.e. only SNPs with strong evidence of

association included in construction of the score). Similarly, the

greatest variance in CRP levels was explained using a weighted

allelic score derived from the known variants only. When the

known regions were removed from the construction of the scores,

the greatest variance was explained using a SNP inclusion cut-off

of around p,0.2, whilst the addition of SNPs with higher p values

decreased the scores’ explanatory ability slightly.

Figure 3 shows the results for LDLc levels. The pattern of results

appeared similar to that for CRP in that the proportion of

variance explained was greatest when the SNP inclusion threshold

was conservative. In the case of the genome-wide scores including

the known variants, the weighted score explained from 3.2% to

5.5% of the phenotypic variance in LDLc depending on the SNP

inclusion threshold, whereas the unweighted score explained from

1.1% to 4.2% of the variance. The weighted score explained more

of the phenotypic variance in LDLc than the unweighted score

across all SNP inclusion thresholds tested. Similarly, the most

variance in LDLc levels was explained using an allelic score

derived from known variants only. When the known regions were

removed from the construction of the scores, the most variance

explained was obtained using cut-offs in the range 0.4,p,0.6,

although the inclusion of extra genotype information decreased

the scores’ explanatory ability slightly.

Mining the Human Phenome Using Allelic Scores
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We also examined the effect of pruning our data for linkage

disequilibrium (LD) before constructing the allelic scores (Figures

S1 through S3). All three variables showed similar patterns of

results, namely thinning the SNP data improved the amount of

variance explained in the biological intermediate when the SNP

inclusion threshold was conservative (low p value), but decreased

the predictive ability of genome-wide scores at liberal SNP

thresholds. The corollary was that the best prediction for CRP and

LDLc was produced at conservative SNP inclusion thresholds,

whereas the best prediction occurred for BMI at high thresholds.

In particular, the LDLc and CRP score thinned for LD showed

marked improvement over an allelic score that had not been

thinned for LD at conservative SNP inclusion thresholds.

Performance of allelic scores in the QIMR twins
replication cohort

We attempted to ‘‘replicate’’ the pattern of associations

observed in the ALSPAC cohort by performing similar analyses

in a sample of Australian twins (QIMR twins) who did not

participate in the original meta-analyses of CRP, BMI and LDL.

The results of these replication analyses are presented in Figures

S4 through S6. In general, the proportion of variance explained by

the allelic scores for these traits was lower than that explained in

ALSPAC, but the pattern of results were roughly similar (i.e.

weighted scores performed better than unweighted scores; allelic

scores consisting of known variants performed better than

genome-wide scores for LDLc and CRP, whereas genome-wide

scores explained more phenotypic variance than scores consisting

of known variants for BMI etc.; complement scores with the

known variants removed could still explain significant amounts of

the phenotypic variance etc).

Performance of allelic scores in the WTCCC
Table 1 and Tables S1 through S3 display the results of the test

of association between case-control status in the WTCCC and

weighted genome-wide allelic scores calculated from all SNPs

across the genome (i.e. the columns in Table 1 labelled ‘‘GW

Score’’), a weighted allelic score constructed from variants in

known regions which met p,561028 in the relevant GWAS

meta-analysis (i.e. the columns in Table 1 labelled ‘‘Known’’), and

a weighted genome-wide score with SNPs from known regions

removed from its construction (i.e. the columns in Table 1 labelled

‘‘Complement’’). In the case of BMI, an allelic score consisting of

known variants only showed strong evidence of being related to

type 2 diabetes in the expected direction. As the threshold for SNP

inclusion became more relaxed, the BMI score also showed

nominal evidence of association with other diseases most notably

bipolar disorder. These genome-wide scores were also very

strongly related to risk of type 2 diabetes, more so than the score

constructed from the known regions only. This is expected if the

relationship between BMI and type 2 diabetes is causal, since the

known variants explained less variation in the BMI intermediate

Figure 1. Association between polygene score and BMI measured at age nine in the ALSPAC cohort. Association between polygene
score and BMI measured at age nine using different p-value thresholds for the construction of the score in ALSPAC children (N = 5819). The lines
joining the circles display the results for allelic scores calculated by using genotyped variants from across the genome in either a weighted (unbroken
line) or an unweighted (dashed line) fashion. The lines joining the triangles display scores calculated similarly but excluding all variants +/21 MB
around 32 known BMI variants, and using either a weighted (unbroken line) or unweighted (dashed line) strategy. The histogram in the background
displays the number of SNPs involved in construction of the allelic score at each corresponding SNP inclusion threshold for the ‘‘All variants’’
condition.
doi:10.1371/journal.pgen.1003919.g001
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than the genome-wide allelic scores. The fact that the genome-

wide score with the known regions removed also showed strong

association with type 2 diabetes shows that these associations do

not solely reflect the effect of variants within FTO and other BMI

genes known to be reliably associated with type 2 diabetes.

As expected, the allelic scores indexing CRP derived from the

known regions did not show strong evidence of association with

coronary heart disease or type 2 diabetes, but did show nominal

evidence of association with the auto-immune disease rheumatoid

arthritis (Table 1). In sharp contrast, the genome-wide allelic

scores indexing CRP showed strong evidence of association with

some diseases (Table 1 and Table S2) especially types 1 and 2

diabetes, Crohn’s disease, rheumatoid arthritis and coronary heart

disease- depending on the threshold chosen for score construction

(note that almost all allelic scores were associated with increased

risk of disease). It is important to note that in most cases the

strength of evidence for association with affection status tended to

increase as the inclusion threshold became more liberal, yet the

proportion of variance explained in the biological intermediate is

likely to have decreased (Figure 2). Likewise, for some thresholds,

the unweighted score provided stronger evidence of association

with disease than the weighted score, even though the weighted

score is likely to have explained more variance in the CRP

intermediate (Figure 2 and Table S2).

The allelic scores indexing LDLc constructed from the known

regions only, were associated with coronary heart disease (in the

expected direction), but were not associated with any of the other

diseases. In contrast, the genome-wide allelic scores showed

unexpected nominal associations with hypertension (decreased

risk), type I diabetes (reduced risk), and bipolar disorder (decreased

risk) at some of the inclusion thresholds (Table S3). Similar to the

case with CRP, as the SNP inclusion threshold became more

liberal, the number of likely spurious associations increased, whilst

the proportion of variance explained in LDLc is likely to have

decreased (Figure 3).

We also examined the effect of pruning our data for LD before

constructing the allelic scores (Tables S4 through S6). Results were

similar to that obtained using un-pruned scores in that scores

constructed from known variants tended to strongly predict one

disease only (e.g. BMI score and type II diabetes, LDLc score and

coronary heart disease), whereas genome-wide scores were

associated with many different conditions. Interestingly a thinned

weighted score of robustly associated LDLc variants predicted

CHD very strongly (p = 2.361028) consistent with the enhanced

ability of this score to predict intermediate LDLc levels.

The results of our power calculations are displayed in Table 2.

As expected, power to detect association increased as the

proportion of variance explained in the biological intermediate

increased, the causal effect of the intermediate on the disease

became stronger, and as the prevalence of disease decreased. In

the case of allelic scores for BMI/CRP/LDLc comprised entirely

of known variants (which explain in the vicinity of 5% of the

Figure 2. Association between polygene score and CRP measured at age nine in the ALSPAC cohort. Association between polygene
score and CRP measured at age nine using different p-value thresholds for the construction of the score in ALSPAC children (N = 4251). The lines
joining the circles display the results for allelic scores calculated by using genotyped variants from across the genome in either a weighted (unbroken
line) or an unweighted (dashed line) fashion. The lines joining the triangles display scores calculated similarly but excluding all variants +/21 MB
around 18 known CRP variants, and using either a weighted (unbroken line) or unweighted (dashed line) strategy. The histogram in the background
displays the number of SNPs involved in construction of the allelic score at each corresponding SNP inclusion threshold for the ‘‘All variants’’
condition.
doi:10.1371/journal.pgen.1003919.g002
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Figure 3. Association between polygene score and LDLc measured at age nine in the ALSPAC cohort. Association between polygene
score and LDLc measured at age nine using different p-value thresholds for the construction of the score in ALSPAC children (N = 4251). The lines
joining the circles display the results for allelic scores calculated by using genotyped variants from across the genome in either a weighted (unbroken
line) or an unweighted (dashed line) fashion. The lines joining the triangles display scores calculated similarly but excluding all variants +/21 MB
around 37 known LDLc variants, and using either a weighted (unbroken line) or unweighted (dashed line) strategy. The histogram in the background
displays the number of SNPs involved in construction of the allelic score at each corresponding SNP inclusion threshold for the ‘‘All variants’’
condition.
doi:10.1371/journal.pgen.1003919.g003

Table 1. Association between case-control status in the WTCCC and either a weighted genome-wide score consisting of all SNPs
across the genome (‘‘GW Score’’), a weighted allelic score consisting of highly significant SNPs (p,561028) from known regions
only (‘‘Known’’), or a weighted genome-wide score consisting of all SNPs across the genome with SNPs from known regions
removed from its construction (‘‘Complement’’).

BMI CRP LDLc

GW Score Known Complement GW Score Known Complement GW Score Known Complement

Dir P Dir P Dir P Dir P value Dir P value Dir P Dir P value Dir P value Dir P

BD 2 0.051 2 0.62 2 0.026 + 0.37 + 0.11 + 0.96 2 0.049 2 0.88 2 0.059

CHD + 0.37 + 0.17 + 0.57 + 0.028 + 0.80 + 0.079 + 1.761023 + 9.261023 + 0.049

HT 2 0.76 2 0.58 + 0.76 + 0.20 + 0.23 + 0.53 2 0.011 2 0.75 2 0.012

CD 2 0.97 + 0.90 + 0.99 + 2.961024 + 0.051 + 0.011 2 0.73 2 0.76 2 0.71

RA 2 0.18 + 0.15 2 0.085 + 0.17 + 0.028 + 0.69 2 0.26 2 0.25 2 0.50

T1D 2 0.97 + 0.77 + 0.85 + 0.020 + 0.15 + 0.033 2 0.018 + 0.58 2 0.20

T2D + ,2610216 + 4.361027 + 1.8610212 + 7.661028 + 0.50 + 2.161027 + 0.66 2 0.12 + 0.48

See Tables S1 through S3 for a complete list of results.
BD = Bipolar Disorder; CHD = Coronary Heart Disease; HT = Hypertension; CD = Crohn’s Disease; RA = Rheumatoid Arthritis; T1D = Type 1 Diabetes; T2D = Type 2 Diabetes.
Dir = Direction of effect; P = P value.
doi:10.1371/journal.pgen.1003919.t001
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Table 2. Approximate power to detect association between an allelic score indexing a biological exposure and disease.

2000 Cases
3000 Controls

50000 Cases
50000 Controls

sG
2 b sL

2 Disease Prevalence Power Power

10% .1 0.1% 1% 83.8% 100%

10% .2 0.4% 1% 100% 100%

10% .5 2.5% 1% 100% 100%

10% .1 0.1% 5% 66.2% 100%

10% .2 0.4% 5% 99.7% 100%

10% .5 2.5% 5% 100% 100%

10% .1 0.1% 10% 57.0% 100%

10% .2 0.4% 10% 99.0% 100%

10% .5 2.5% 10% 100% 100%

10% .1 0.1% 20% 48.3% 100%

10% .2 0.4% 20% 97.0% 100%

10% .5 2.5% 20% 100% 100%

5% .1 0.05% 1% 55.0% 100%

5% .2 0.2% 1% 98.6% 100%

5% .5 1.25% 1% 100% 100%

5% .1 0.05% 5% 39.1% 99.1%

5% .2 0.2% 5% 92.0% 100%

5% .5 1.25% 5% 100% 100%

5% .1 0.05% 10% 32.7% 94.3%

5% .2 0.2% 10% 85.6% 100%

5% .5 1.25% 10% 100% 100%

5% .1 0.05% 20% 27.3% 81.0%

5% .2 0.2% 20% 77.4% 100%

5% .5 1.25% 20% 100% 100%

1% .1 0.01% 1% 15.4% 14.6%

1% .2 0.04% 1% 46.2% 99.9%

1% .5 0.25% 1% 99.7% 100%

1% .1 0.01% 5% 11.7% 3.0%

1% .2 0.04% 5% 32.5% 94.0%

1% .5 0.25% 5% 96.4% 100%

1% .1 0.01% 10% 10.4% 1.3%

1% .2 0.04% 10% 27.2% 80.4%

1% .5 0.25% 10% 92.2% 100%

1% .1 0.01% 20% 9.3% 0.5%

1% .2 0.04% 20% 22.8% 58.8%

1% .5 0.25% 20% 85.8% 100%

0.1% .1 0.001% 1% 6.0% 0%

0.1% .2 0.004% 1% 9.1% 0.4%

0.1% .5 0.025% 1% 31.4% 92.2%

0.1% .1 0.001% 5% 5.7% 0%

0.1% .2 0.004% 5% 7.6% 0.1%

0.1% .5 0.025% 5% 22.1% 54.7%

0.1% .1 0.001% 10% 5.5% 0%

0.1% .2 0.004% 10% 7.1% 0%

0.1% .5 0.025% 10% 18.7% 33.1%

0.1% .1 0.001% 20% 5.4% 0%

0.1% .2 0.004% 20% 6.7% 0%

0.1% .5 0.025% 20% 16% 17.5%
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phenotypic variance in the intermediate), we expect 2000 cases

and 3000 controls to provide good power to detect moderate to

strong causal effects of the biological intermediate on disease. In

contrast, using single variants which might typically explain 0.1%

of the phenotypic variance in the biological intermediate would

offer poor power to detect association. We expect 50000 cases and

50000 controls to provide high power to detect association in the

case of allelic scores which explain .5% of the phenotypic

variance in the biological intermediate. Similarly, allelic scores

which explain 1% of the variance in the intermediate should still

be sufficient to detect moderate or strong causal links between the

intermediate and disease in this scenario. Again testing individual

SNP variants which explain small proportions of the variance

would provide very little power to detect association.

Discussion

In this paper we investigated whether it might be possible to

correlate allelic scores which reference biological intermediates

with disease status in case control studies, and in so doing provide

proof of principle for a method which could be used to screen for

thousands of possible associations between intermediate variables

and disease. We began by demonstrating that allelic scores

explained non-trivial proportions of the phenotypic variance in

BMI, CRP, and LDLc, even when known loci were taken into

account and removed from the construction of those scores. This

result confirms the existence of many common variants of small

effect scattered across the genome that were tagged by SNPs on

the genome-wide platform, but did not reach genome-wide levels

of significance in the meta-analysis. Our results are also consistent

with studies using analogous methodologies in other complex traits

and diseases, and were a key motivating force in our development

of this approach [9,11,22].

The proportion of variance explained in CRP by a weighted

score of known variants in ALSPAC (5.1%) was similar to that

reported in the CRP meta-analysis by Dehghan et al. (2011) who

also estimate that a weighted score of confirmed variants explained

around 5% of the phenotypic variance in CRP [14]. Teslovich et

al. (2010) report that a weighted score of genome-wide significant

LDLc associated variants explained 12.2% of the phenotypic

variance in LDLc [3]. The lower figure in ALSPAC (6.6%) is

probably due to a combination of factors including the ALSPAC

analysis not being performed on fasting bloods, the ALSPAC

analysis not including secondary loci in the calculation of variance

explained by known variants, and the possibility that true

differences exist in the size and identity of genetic variants that

affect LDLc levels in adults and children. Speliotes et al. (2010)

reported that a weighted score of all known BMI associated loci

explained 1.45% of the variance in BMI [13]. The proportion of

variance explained in the ALSPAC cohort was higher, at 3.2% for

the known variants. It is unclear why the proportion of variance

explained was greater in ALSPAC but may have to do with the

fact that participants were all young children of the same age (9

years) and so there was little variation due to differences in age,

sex, puberty, growth in later life etc. In terms of the proportion of

phenotypic variance explained in the intermediate variable, a

weighted allelic score generally yielded superior performance to an

unweighted score. This was expected since weighting includes

prior information in that SNPs with large estimated effect sizes

contribute more to the overall score. We also note that in the case

of the BMI, and CRP analyses, the difference in variance

explained between using weighted and unweighted scores became

less apparent when the known SNPs (i.e. SNPs with the largest

effect sizes) were excluded from the calculations. This was also

expected since smaller effects are less likely to be estimated

precisely and hence it is more difficult to weight these SNPs

appropriately.

The SNP selection threshold producing the allelic score that

explained the most variance in the intermediate differed across the

variables. This is not surprising since different phenotypes have

different underlying genetic architectures and differ in the extent

to which the variants that influence them are tagged by SNPs on

genome-wide chips. In general, the best allelic scores for BMI were

produced using liberal cut-offs. In contrast, allelic scores for CRP

and LDLc tended to perform best when constructed from

conservative threshold cut-offs. A possible reason for the discrep-

ancy is that CRP and LDLc are both influenced by loci of major

effect in ALSPAC (i.e. the variants rs4420638 (R2 = 2.5%,

p = 1.7610225) and rs10401969 (R2 = 2.0%, p = 1.1610220)

explain disproportionately large proportions of the variance in

LDLc, whilst the variants. rs2794520 (R2 = 2.4%, p = 5.2610224)

and rs4420065 (R2 = 2.3%, p = 4.5610223) explain large portions

of the variance in CRP- see also the last two columns in Table S7).

At stringent p value cut-offs therefore, these scores primarily reflect

genuine quantitative trait loci of moderate effect which explain

decent proportions of the variance in these phenotypes. In

contrast, as the cut-offs become more liberal, it is likely that the

scores become contaminated by unassociated SNPs and markers

of small effect that have less precisely estimated contributions. As a

result, the amount of variance explained in the phenotype is

reduced. We note that the same pattern of association with a few

loci contributing disproportionately large effects for these pheno-

types was also seen in the QIMR twins replication cohort although

to a less pronounced degree (Table S8). A similar observation has

been noted in studies that have used genome-wide allelic scores to

predict disease status in auto-immune diseases that involve genetic

loci of large effect in the major histocompatibility region [9]. In

contrast, in the case of BMI, no single variant contributes

disproportionately to explaining trait variance (Table S7), and so

the explanatory power of the allelic scores is facilitated through the

addition of many variants of small effect scattered across the

genome [9,11,22].

Another contributing factor to the discrepancy between the

BMI and CRP/LDLc scores is that much more phenotypic

variance is explained by the residual polygenic score in the case of

BMI (,3%) than LDLc or CRP (,1%) (see the lower two lines in

Figures 1 through 3 which show the variance explained by the

polygenic scores when the effect of known loci are removed from

construction of the scores). It is unclear why this is the case, but

could be due to many factors including genuine differences in the

genetic architecture of the traits, a difference in the extent to which

loci that affect these traits are shared between adults and children

(i.e. the original GWA meta-analyses typically involve adults

whereas ALSPAC is a paediatric cohort, although the same

phenomenon was also found in the QIMR twins, all of whom are

adults), and differences in meta-analysis size (and hence power to

detect genuine effects) from which the scores were constructed (e.g.

the CRP meta-analysis was smaller than the other two studies). We

The model is parameterized in terms of the percentage of variance in the biological intermediate explained by the SNP (sG
2), the strength of the causal relationship

between the biological intermediate (b) and liability of disease, which together determine the amount of variance in disease liability explained by the SNP (sL
2), and the

prevalence of disease. Estimates of power are presented for 2000 cases and 3000 controls (a= 0.05), and for 50000 cases and controls (a= 1.161027).
doi:10.1371/journal.pgen.1003919.t002
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note that the same pattern of association is also seen in the QIMR

twins replication sample suggesting that the pattern of results is not

cohort specific.

Pruning for LD enhanced prediction of the biological interme-

diates at conservative but not liberal SNP construction thresholds.

This was most apparent for the CRP and LDLc associated allelic

scores. We argue that at conservative thresholds, the contribution

of individual variants to the biological intermediate is estimated

most precisely when data has been thinned for LD (i.e. the signal is

at its most ‘‘pure’’). In addition, such a score will also capture

secondary signals at known loci, which may help explain why the

thinned scores performed better than allelic scores consisting of

known variants only (additional secondary loci were not included

in the known variant scores in this study). However, in the case of

genome-wide allelic scores constructed from liberal thresholds, the

signal from loci of small effect scattered across the genome are not

estimated as precisely as signals from known variants, and so,

pruning for LD has the effect of removing the signal from these

scores.

Importantly we have demonstrated that genome-wide allelic

scores can still explain meaningful portions of the phenotypic

variance, even in situations where known variants have been

excluded from the calculation of the allelic score. For example, in

the case of BMI, a genome-wide allelic score still explained ,3.4%

of the variance in BMI even after known regions were removed

from construction of the scores (a high figure was also noted in the

QIMR twins replication set). The exciting implication is that in the

case of other biological intermediate variables of interest for

which there are currently no known genetic variants, genome-

wide allelic scores may still be able to proxy these variables and

could subsequently be used in tests of association with diseases of

interest.

We note that the present study has benefitted from very large

genome-wide association meta-analyses from which the SNPs that

comprise the genome-wide allelic scores were selected [3,13,14]. A

recent study by Demirkan et al. (2012) found that a polygenic

score only explained 2.6% of the phenotypic variance in LDLc

[23]. Demirkan et al suggested that this low figure might have

been a consequence of the small size of the discovery sample on

which their weighting scheme was based (i.e. ,20,000 individuals

as compared to the ,100,000 individuals used in Teslovich et al

which forms the basis of this study) and consequently decreased

precision in estimating effect sizes and direction of effects. These

factors (plus the existence of some loci of large effect in ALSPAC)

may also partially explain the comparatively better predictive

ability in our study (particularly at more liberal p value inclusion

thresholds) as construction of allelic scores in ALSPAC was based

on the much larger Teslovich et al meta-analysis. Although the

proportion of variance explained in ALSPAC was greater than

that found by Demirkan et al., we note that the pattern of variance

explained across the different SNP inclusion thresholds was similar

across both studies as well as the QIMR replication set (i.e. as the

threshold becomes less stringent, less variance is explained).

In addition, all of the intermediate variables that we examined

exhibit substantial heritability. Our method relies on these

preconditions and it remains to be seen how useful the approach

will be in scenarios where the genome-wide association meta-

analysis is small and/or the variables of interest have low

heritabilities. The corollary is that although our method may

have worked adequately in the case of these three variables, it

does not necessarily follow that our success will translate to

other phenotypes and we suggest that those wishing to apply

the approach proceed with caution in its application and

interpretation.

Finally, we note that whilst we have combined a simple

threshold based SNP selection procedure with a straightforward

weighting, considerable potential exists to make the approach

more powerful by tailoring the selection of SNPs and combining

them in more optimal ways. These approaches could include

machine learning or lasso regression for example [24].

Associations between allelic scores and WTCCC disease
status

Our method successfully identified established causal relation-

ships between BMI and type 2 diabetes, and LDLc and coronary

heart disease. This is consistent with the power calculations

presented in Table 2 which suggested that 2000 cases, 3000

controls and an allelic score explaining roughly 5% of the variance

in a biological intermediate provided good power to detect

moderate to strong relationships between the intermediate and the

disease outcome. Interestingly, in the case of BMI, the genome-

wide allele score was more strongly related to type 2 diabetes than

the allelic score constructed from the known variants only. This

observation is consistent with our demonstration that the genome-

wide allelic score explained greater proportions of the variance in

BMI than the allelic score comprised from the known variants

only. In fact, even the genome-wide allelic score indexing BMI

with the regions around the known BMI SNPs removed also

correlated strongly with type 2 diabetes. Taken together these

results suggest that the BMI-type 2 diabetes association does not

solely reflect the effect of variants within FTO and other BMI

genes known to be reliably associated with type 2 diabetes, and

also further strengthens the proposition that genome-wide allelic

scores may have promise in indexing intermediates, even in

situations where there are no known variants underlying the

intermediate (i.e. as we have artificially done here by removing the

variants from the known BMI associated regions).

It is noteworthy that our method did not appear to detect other

observational associations thought to reflect causal relationships.

For example, there have been associations reported between BMI

and coronary heart disease [25], and BMI and hypertension [26].

Table 2 implies that the most probable explanation for this failure

is statistical power in that 2000 cases and 3000 controls is unlikely

to provide sufficient power to detect weaker causal relationships

between biological intermediates and disease.

Another notable finding involves the relationship between allelic

scores that index CRP levels and disease. It is interesting that the

genome-wide allelic score that indexed CRP correlated with many

of the WTCCC diseases, whereas the allelic score constructed

from the known regions only, did not. Mendelian Randomization

studies have shown that CRP is unlikely to cause several diseases to

which it had been linked including type II diabetes and coronary

heart disease, but rather the observational associations are

probably a secondary consequence of the disease itself or due to

latent confounding [6–8]. Given that the genome-wide allelic score

actually explained less variance in CRP level than the known

variant score (i.e. 2% versus 5%), we suggest that a causal effect of

CRP on the different diseases is unlikely, but rather that genetic

pleiotropy and the lack of specificity of the genome-wide allelic

score is the most likely explanation for this difference. For

example, many BMI associated SNPs are present at quite low

levels of significance in the CRP GWAS meta-analysis (Table S9),

although in this case, not at genome-wide significant levels.

Furthermore bidirectional Mendelian Randomization studies have

demonstrated that higher BMI leads to elevated CRP, not vice

versa [27]. Scores created from these SNPs would therefore show

association with CRP level, BMI and consequently (through BMI)

greater risk of type 2 diabetes. A similar explanation probably
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underlies the apparent association between the CRP genome-wide

allele score and the auto-immune diseases except the mediating

variable is likely to be some immune parameter that affects both

CRP and risk of rheumatoid arthritis/type I diabetes/Crohn’s

disease.

Similar results were also seen for the allelic scores which indexed

LDLc. Whilst the allelic score consisting of known variants only

correlated with CHD as expected, the genome-wide allelic score

showed unexpected nominal correlations with other diseases

including hypertension and type I diabetes. As the genome-wide

score explained less variance in the intermediate than the allelic

score derived from the known variants, we believe that this

association also reflects unwanted genetic pleiotropy and lack of

specificity in the genome-wide score for similar reasons alluded to

above.

These results highlight the potential advantages and disadvan-

tages of using genome-wide allelic scores to index biological

intermediates. As the number of SNPs that comprise the allelic

score increases, the score may gain power in terms of explaining

variance in the exposure/mediator of interest (e.g. as in the case of

BMI and possibly also in the case of many other biological

intermediates for which no known variants exist), but the downside

is that the score potentially loses specificity and may produce

associations with disease that do not necessarily reflect causal

relationships. Our results also indicate that whilst thinning

genome-wide SNP data for LD might be useful in terms of

explaining more variance in the biological intermediate (and hence

power to detect a true causal relationship between intermediate

and disease) it is unlikely to mitigate the endemic issues of

pleiotropy and lack of specificity of the genome-wide scores (i.e.

likely spurious associations were observed with thinned data also).

A logical strategy therefore might be to use confirmed variants

only to generate allelic scores in those situations where there are

individual SNPs known to explain variance in the intermediate of

interest. In the absence of genetic pleiotropy, these allelic scores

should be powerful and specific to the biological intermediate of

interest. In contrast, in those situations where there are no variants

that are known to affect the intermediate, genome-wide allelic

scores could be employed to investigate a possible relationship with

disease. In this way a balance can be struck between maintaining

power and attempting to preserve specificity, although we note

that, even in the case of an allelic score constructed completely

from known variants, there is no guarantee that such a score will

be completely specific for the intermediate of interest and that

there will not exist other paths from SNP to disease. Thus, in the

presence of an association between an outcome of interest and an

allelic score of known variants that index an exposure, we strongly

suggest follow up using formal Mendelian Randomization

methodologies [5].

In the situation where there are no variants known to underlie

the biological intermediate of interest, formal Mendelian Ran-

domization will not be possible, and so it will be difficult to

determine whether an association between a genome-wide allelic

score and a disease of interest reflects a causal relationship. In

addition, our results suggest that lack of specificity and contam-

ination of genome-wide scores through genetic pleiotropy will

mean that many of these associations will be ‘‘spurious’’ and will

not reflect causal effects of the intermediate on the outcome.

However, it might still be possible to get some indication of

whether the data are consistent with a causal effect of the

intermediate on the disease by examining the pattern of

association across different SNP construction thresholds and

weighting schemes. For example, in the presence of a causal

influence of the biological intermediate on disease risk, we would

expect that the strongest evidence for a relationship between the

allelic score and affection status occurs at those conditions/

thresholds that simultaneously explain the greatest proportion of

phenotypic variance in the intermediate. If this pattern occurs in

the data, then the results are at least consistent with a causal effect

of the intermediate on disease risk (although this of course does not

prove a causal relationship). If this pattern of results is not present

in the data, then it suggests that the association is more likely due

to genetic pleiotropy and/or lack of specificity in the genome-wide

score. For example, in the present set of results, the strongest

evidence for associations between LDLc and coronary heart

disease occurred at those conditions where a thinned weighted

allelic score concurrently explained the greatest variance in the

intermediate phenotype, consistent with a causal relationship

between LDLc and coronary heart disease (Table S6). In contrast,

the strongest evidence for a relationship between CRP and type II

diabetes occurred at those thresholds where the variance explained

in CRP was at a minimum, suggesting a spurious relationship

between the two variables.

Whilst our approach has several similarities to Mendelian

Randomization [5], we stress that our method is designed as a

screening tool that provides preliminary evidence for a possible

causal relationship between an intermediate which may be worth

following up in focused future studies. The method is not intended

as a means of providing conclusive evidence for a causal

relationship between two variables. Specifically, our approach

does not rule out the possibility of a pleiotropic relationship

between the SNPs that index the intermediate and the disease, nor

does it rule out the possibility that an allelic score (particularly a

genome-wide allelic score) has been ‘‘contaminated’’ by SNPs as a

result of reverse causation. For example, if type 2 diabetes were to

cause an elevation of CRP levels, then it is conceivable that some

type 2 diabetes SNPs might show association in a GWAS meta-

analysis of CRP. Therefore, allelic scores indexing CRP which are

based on this GWAS meta-analysis will also show association with

type 2 diabetes even though the direction of causation may be

from the disease to the biological intermediate. The point we do

stress is that our method is useful for flagging putative causal

relationships across potentially thousands of biological intermedi-

ates, and we recommend following up interesting associations by

e.g. formal Mendelian Randomization analysis, randomized

controlled trials, mechanistic studies etc.

Possible biases
In this study we were careful to ensure that the cohorts used to

assess the amount of phenotypic variance explained in the

biological intermediates (i.e. ALSPAC and QIMR twins) were

not also present in the original discovery meta-analyses of CRP,

BMI and LDLc (NB. the QIMR twin individuals who contrib-

uted to the Teslovich et al. meta-analysis were from different

families to those used in the present study) [3]. Inclusion of the

same individuals who were in the discovery meta-analysis would

have inflated the proportion of variance explained in the

biological intermediate particularly when liberal significance

thresholds were used in construction of the genome-wide allelic

scores [28]. Likewise, we were also careful to exclude the 1958

birth cohort as a control group when examining the predictive

ability of allelic scores to determine case control status in the

WTCCC (the 1958 birth cohort contributed to the discovery

meta-analyses of BMI, LDLc and CRP). We were also able to

exclude the Wellcome Trust hypertension, coronary heart

disease, type 2 diabetes and control group results from the

original Speliotes et al. BMI meta-analysis so that the inclusion of

these groups did not bias our analyses of BMI SNPs and WT case
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control status. However, we were unable to remove the Well-

come Trust hypertension cohort from the Teslovich et al. meta-

analysis [3] so this fact should be borne in mind when

interpreting the results of these analyses (although LDLc score

failed to significantly correlate with hypertension status across

most thresholds).

Extending the allelic score approach to data mine
thousands of molecular phenotypes

The most exciting implication of our work, is that the approach

could be successfully extended to examine hundreds of thousands

of molecular phenotypes. GWAS of molecular technologies that

target the transcriptome [29], metabolome [30], and most

recently, the methylome [31] have begun to appear in the

literature with increasing frequency. Allelic scores which index

levels of transcription, methylation and levels of metabolites etc

could be constructed and subsequently used as instruments to

screen for possible associations with hundreds of traits and

diseases, in tens of thousands of individuals. Our power

calculations demonstrate that such an approach is realistic in the

very large GWA met-analyses that currently exist.

Conclusions
When genetic variants that affect a biological intermediate

are known a priori, we recommend using these SNPs exclusively

to construct allelic scores that proxy for the biological

intermediate of interest. If a subset of the known variants is

specific for the intermediate, then we recommend using these

variants solely in construction of the allelic score and excluding

variants with pleiotropic effects that may complicate interpre-

tation of the effect. This minimizes (although certainly does not

abolish) concerns due to genetic pleiotropy and lack of

specificity. We stress that a positive association between an

allelic score of known variants and disease does not prove a

causal relationship between the intermediate and disease but

merely flags an interesting association that may be worthy of

follow up by more formal methods (e.g. proper Mendelian

Randomization analysis etc).

In the situation where the identity of individual genetic variants

affecting the biological intermediate are unknown, a genome-wide

allelic score can be used to proxy the trait of interest. In this

situation we recommend employing the strictest p-value inclusion

threshold in construction of the genome-wide allelic score that

maximizes the amount of variance explained in the biological

intermediate. In this way, the amount of variance explained in the

intermediate is maximized, whilst simultaneously attempting to

minimize the number of SNPs with pleiotropic effects that go into

construction of the score. Since the potential for spurious

association due to pleiotropy is particularly high when using

hundreds or thousands of SNPs, we recommend that if genome-

wide scores are used, that their results are cautiously interpreted

and followed up with care.

In conclusion, whilst genome-wide association studies have

identified thousands of genetic variants underlying complex

traits and diseases, a criticism of the approach has been that in

many cases, knowledge of the risk variants underlying disease

has yet to be translated into interventions or information that

directly impacts clinical medicine and public health. Our idea is

to use allelic scores that proxy biological intermediates to data

mine genome-wide association studies. We would argue that our

simple approach is an easy to understand statistical method

which has the potential to identify possible causal relationships

between these variables and disease outcomes, and through this,

translate the findings from genetic research into information

that is relevant to public health as in the case of Mendelian

Randomization studies [32]. Our results suggest that our

approach may even be possible in the case of biological

intermediates where confirmed genetic variants are unknown a

priori through the application of genome-wide allelic scores. Our

method has the potential to revolutionize the way exposure-

disease associations are identified in observational epidemiolog-

ical studies and ensure that the considerable investment in

genome-wide association studies over the past decade is

maximized in terms of public health impact.

Materials and Methods

Participants
ALSPAC Cohort: ALSPAC is a population-based birth cohort

study consisting initially of over 13 000 women and their children

recruited in the county of Avon, UK in the early 1990s [33,34].

Both mothers and children have been extensively followed from

the mothers’ early pregnancy onwards using a combination of self-

reported questionnaires, medical records and physical examina-

tions. DNA has been extracted for 10121 of the children from this

cohort. Ethical approval for the study was obtained from the

ALSPAC Law and Ethics Committee (IRB# 00003312) and the

Local Research Ethics Committees (Bristol and Weston, South-

mead, and Frenchay Health Authorities). Written informed

consent was obtained from all participants in the study. Parents

provided written informed consent for their child. Children’s

standing height at age 9 years was measured using a Harpenden

Stadiometer. Weight was quantified using a Tanita Body Fat

Analyser at the same age. Body mass index (BMI) was calculated

as weight in kilograms divided by height in metres squared. Non-

fasting blood samples were taken using standard procedures when

the children were age 9 years, with samples immediately spun and

frozen at 280uC. The measurements were assayed in 2008 after a

median of 7.5 years in storage with no previous freeze–thaw cycles

during this period. Plasma lipids (total cholesterol, triglycerides,

and HDL cholesterol) were performed by modification of the

standard Lipid Research Clinics Protocol using enzymatic

reagents for lipid determination. C-reactive protein was measured

by automated particle-enhanced immunoturbidimetric assay

(Roche UK, Welwyn Garden City, UK). All assay coefficients of

variation were ,5%. All variables were inverse normal trans-

formed for males and females separately.

QIMR Twins Replication Cohort: Data for Australian subjects

were obtained from adult participants in twin and family studies

conducted by the Queensland Institute of Medical Research

[15,16,35]. BMI was calculated from clinically measured height

and weight supplemented with self-report for those participants

where clinical measurements were not available. CRP and LDL-C

(calculated from the Friedewald equation) measurements were

performed using Roche methods on Hitachi 917 or Modular P

analysers. The data used here represent 4781, 2767 and 2630

individuals who had genome-wide SNP information and informa-

tion on BMI, CRP and LDLc respectively. A maximum of one

individual per family was used in these analyses, yielding a set of

unrelated individuals who had not contributed any data to the

previous BMI, CRP or LDLc meta-analyses.

WTCCC: We employed previously published data from the

WTCCC in order to test the association between allelic scores

and disease status [17]. Briefly, the WTCCC is a GWAS invol-

ving individuals with one of seven diseases: bipolar disorder

(1868 individuals), coronary heart disease (1926 individuals),

Crohn’s disease (1748 individuals), hypertension (1952
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individuals), rheumatoid arthritis (1860 individuals), type I

diabetes (1963 individuals) or type II diabetes (1924 individuals),

as well as a common set of 1478 unselected controls from the 1958

British Birth Cohort and 1458 from the National Blood Service.

Genotyping
ALSPAC: A total of 9912 ALSPAC children were genotyped

using the Illumina HumanHap550 quad genome-wide SNP

genotyping platform by the Wellcome Trust Sanger Institute,

Cambridge, UK and the Laboratory Corporation of America,

Burlington, NC, USA. Individuals were excluded from further

analysis on the basis of having incorrect sex assignments; minimal

or excessive heterozygosity (,0.320 and .0.345 for the Sanger

data and ,0.310 and .0.330 for the LabCorp data); dispropor-

tionate levels of individual missingness (.3%); evidence of cryptic

relatedness (.10% IBD) and being of non-European ancestry (as

detected by a multidimensional scaling analysis seeded with

HapMap 2 individuals, EIGENSTRAT analysis revealed no

additional obvious population stratification and genome-wide

analyses with other phenotypes indicate a low lambda). The

resulting data set consisted of 8365 individuals and 488311

autosomal SNPs. SNPs with a minor allele frequency of ,1% and

call rate of ,95% were removed. Furthermore, only SNPs which

passed an exact test of Hardy–Weinberg equilibrium (p.561027)

were considered for analysis. Of these 8365 individuals, 5819 had

BMI data, and 4251 had CRP and LDLc levels measured. In

order to investigate the effect of specific SNPs from GWAS meta-

analyses of BMI, CRP, and LDLc we used autosomal genotypic

data that had been imputed using Markov Chain Haplotyping

software (MACH v.1.0.16) and phased haplotype data from CEU

individuals (Hapmap release 22, Phase II NCBI B36, dbSNP 126).

QIMR Twins Replication Cohort: Genotyping within this

cohort was performed in multiple waves using Illumina SNP chips

(317K ; 370K duo; 370K quad; 610K; or 660K). Details of

cleaning, data merging and imputation protocols have been

described extensively in Medland et al. (2009) [35]. Briefly, each

wave of genotyping was screened for call rate and quality,

following this the data sets were merged and checked for calling

consistency using a series of overlapping samples which were

included in multiple genotyping waves. The merged genotype sets

were then screened for call rate ,95% and quality (GenCall..7),

minor allele frequency ,1%, and Hardy–Weinberg equilibrium

(p.161026). In addition, as the QIMR cohort contains data from

nuclear families (including parents, twins, siblings, spouses and

offspring) we also screened the genotypes to confirm reported

relationships, check for unknown relatedness and identify Men-

delian errors taking the conservative approach of dropping a SNP

for all family members if the erroneous genotype could not be

identified.

WTCCC: Individuals were genotyped at the Wellcome Trust

Sanger Institute, Cambridge, UK using the Affymetrix 500K SNP

chip. Genotype data were subjected to rigorous quality control

measures (SNPs with MAF ,1%, missing rate .5% or Hardy

Weinberg p,561028 were excluded) in order to remove poor

quality SNPs as well as putatively related individuals and those of

non-European ancestry (for a full description of the cohorts see the

original WTCCC article [17]).

Construction and testing of allelic scores
We were interested in whether allelic scores constructed from

hundreds of thousands of SNPs across the genome might produce

powerful instruments that explained larger proportions of the

phenotypic variance in biological intermediates than allelic scores

derived from combinations of known variants. We used recent

large scale GWAS meta-analyses of BMI [13], CRP [14], and

LDLc [3] to select SNPs that went into the construction of the

genome-wide allelic scores. In other words, SNPs that met a

certain p-value threshold in the GWAS meta-analysis were then

used to construct an allelic score in the ALSPAC dataset (NB.

ALSPAC was not part of the BMI, CRP, or LDLc meta-analyses).

Genome-wide allelic scores were constructed from directly

genotyped SNPs in the ALSPAC children’s samples using the

profile scoring routine in the PLINK software package [36]. The

profile score for each individual was derived as a sum across SNPs

of the number of putative increaser alleles (0,1 or 2) at each locus

multiplied by a weight. In the case of missing genotype data for an

individual, expected dosage based upon allele frequency of the

increaser alleles at the locus was used instead of the number of

increaser alleles. We investigated two methods of constructing

allelic scores- an unweighted strategy where each copy of the

increaser allele provided a score of one, and a strategy where the

contribution of each SNP was weighted by its regression coefficient

from the relevant genome-wide meta-analysis [9]. We refer to

these strategies as the ‘‘unweighted’’ and ‘‘weighted’’ strategies

respectively. Allelic scores were constructed for BMI, CRP, and

LDLc separately. We also constructed allelic scores using 32

variants known to affect BMI [13], 18 variants known to affect

CRP levels [14], and 37 variants known to affect LDLc levels [3]

(Table S7). These analyses were based on best guess genotypes

from imputation using Markov Chain Haplotyping software

(MACH v.1.0.16) and phased haplotype data from CEU

individuals (Hapmap release 22, Phase II NCBI B36, dbSNP

126) as described previously.

In order to determine the amount of variance explained in the

biological intermediates using different strategies, we constructed

allelic scores using seventeen different p value inclusion thresholds

from the GWAS meta-analyses ranging from liberally including all

SNPs, to including only those SNPs that met a stringent genome-

wide significant criterion of p,561028. In order to separate the

effect of known genetic variation from residual polygenic variation

scattered across the genome, we also constructed genome-wide

allelic scores using the strategies above, but excluding SNPs within

one megabase either side of known variants (i.e. 32 regions in the

case of allelic scores indexing BMI; 18 regions in the case of allelic

scores indexing CRP; and 37 regions in the case of allelic scores

underlying LDLc- for a complete list of loci, please see Table S7)

and refer to these analyses as the ‘‘Complement’’ conditions.

Child’s phenotype (i.e. BMI, CRP or LDLc) was then regressed on

allelic score to determine the percentage of variance explained by

each of the scores. Similar analyses were also performed in the

QIMR twins cohort in order to test how robust the observed

patterns of associations were except that all analyses involving

‘‘known’’ variants used genotypic dosages rather than best guess

genotypes.

We also examined the effect that thinning the SNP data for LD

had on the predictive ability of the scores. We employed the ‘‘LD

based results clumping’’ routine from the PLINK software package

[36] to generate the thinned data. Briefly, this routine orders the

GWA meta-analysis association p values from strongest to weakest.

SNPs are then selected in this order, with the proviso that a variant

cannot be included, if it is in LD with a previously selected SNP.

For the purposes of this analysis we defined LD as the variants

being r2.0.2 and within 250 kb of each other.

The ability of the allelic scores to predict case control status was

tested using data from the WTCCC. Several disease groups from

the WTCCC were present in the original BMI discovery meta-

analysis [13]. Because of the possibility of inducing bias into the

results because of this, these groups were removed and the
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Speliotes et al. BMI meta-analysis repeated according to the same

protocols as outlined in the original paper [13]. In addition, since

the 1958 Birth Cohort controls were also included in the original

meta-analyses of CRP and LDL, we removed these individuals

from the WTCCC control set (i.e. only individuals from the

National Blood Donors Study remained as controls). Case-control

status for each disease was regressed on allelic score and the

direction of effect and p value were recorded. We tested a

weighted genome-wide score consisting of all variants across the

genome (unweighted in the case of LDLc), an allelic score

consisting of variants from known regions only (i.e. SNPs that met

p,561028 in the meta-analysis of the relevant phenotype), and a

weighted genome-wide allelic score with known variants (+/

2500 KB) removed from the score’s construction. This was to

contrast the performance of a completely agnostic strategy (i.e.

utilizing all the SNPs) versus the strategy of only using known

regions in construction of the scores. Finally, we examined the

performance of LD pruning (as defined above) on the ability of

weighted allelic scores to predict case-control status in the

WTCCC dataset.

Power calculations
In order to investigate the power of our approach, we

assumed the standard liability threshold model in which a

continuous normal distribution of liability underlies risk of

disease. Under this model, individuals who are affected have a

liability exceeding a certain threshold, the value of which being

determined by the prevalence of the disease in the population.

In the situation where a SNP (or an allelic score of SNPs) affects

a biological intermediate which then in turn affects likelihood of

disease, power to detect association between the SNP and

disease is determined by (a) the proportion of variance in the

biological intermediate explained by the allelic score (denoted

by sG
2), (b) the strength of the causal relationship between the

intermediate and the disease (denoted by b) which together with

sG
2 determines the proportion of liability in the disease that is

explained by the SNP (denoted by sL
2), (c) the disease

prevalence, (d) the sample size of the case-control study in

which the test is performed, and (e) the type I error level.

We calculated power using the ‘‘Case-control for threshold-

selected quantitative traits’’ module of the genetic power

calculator (c.f. http://pngu.mgh.harvard.edu/,purcell/gpc/

qcc.html; [37]) which approximates power in this situation, a

difference being that power is calculated assuming a single

equally frequent allele rather than a continuous allelic score. We

calculated power to detect association using 2000 cases and 3000

controls assuming a type I error level of a= 0.05 (these conditions

mimic the BMI analyses in the current manuscript and therefore

provide an indication of whether significant results are likely to

reflect true effects). We also investigated what our power might be

if we scaled our strategy up to investigate hundreds of thousands

of molecular phenotypes (e.g. 450000 methylation sites on the

Illumina 450K array) in a large genome-wide meta-analysis. We

therefore calculated power to detect association assuming a

conservative type I error level of a= 0.05/450000 = 1.161027 in

50000 cases and controls, which reflects the current sample size

of some of the larger international GWAS consortia. We

investigated the effect of varying the amount of variance the

allelic score explained in the biological intermediate (sG
2 = 10%,

5%, 1%, 0.1%), the strength of relationship (i.e. linear regression

coefficient) between the intermediate and underlying disease

liability (b= 0.1, 0.2 or 0.5), and the prevalence of disease

(K = 1%, 5%, 10%, 20%) in both scenarios.

Supporting Information

Figure S1 Association between polygene score and BMI

measured at age nine in the ALSPAC cohort before and after

pruning for linkage disequilibrium. Association between poly-

gene score and BMI measured at age nine using different p-

value thresholds for the construction of the score in ALSPAC

children (N = 5819). The lines joining the circles display the

results for weighted allelic scores calculated by using genotyped

variants from across the genome before (unbroken line) and

after pruning for linkage disequilibrium (dashed line). The

histogram in the background displays the number of SNPs

involved in construction of the allelic score for the ‘‘All

variants’’ condition at each corresponding SNP inclusion

threshold.

(PDF)

Figure S2 Association between polygene score and CRP

measured at age nine in the ALSPAC cohort before and after

pruning for linkage disequilibrium. Association between polygene

score and CRP measured at age nine using different p-value

thresholds for the construction of the score in ALSPAC children

(N = 4251). The lines joining the circles display the results for

weighted allelic scores calculated by using genotyped variants from

across the genome before (unbroken line) and after pruning for

linkage disequilibrium (dashed line). The histogram in the

background displays the number of SNPs involved in construction

of the allelic score for the ‘‘All variants’’ condition at each

corresponding SNP inclusion threshold.

(PDF)

Figure S3 Association between polygene score and LDLc

measured at age nine in the ALSPAC cohort before and after

pruning for linkage disequilibrium. Association between polygene

score and LDLc measured at age nine using different p-value

thresholds for the construction of the score in ALSPAC children

(N = 4251). The lines joining the circles display the results for

unweighted allelic scores calculated by using genotyped variants

from across the genome before (unbroken line) and after pruning

for linkage disequilibrium (dashed line). The histogram in the

background displays the number of SNPs involved in construction

of the allelic score for the ‘‘All variants’’ condition at each

corresponding SNP inclusion threshold.

(PDF)

Figure S4 Association between polygene score and BMI

measured at age nine in the QIMR twins replication sample.

Association between polygene score and BMI using different p-

value thresholds for the construction of the score in unrelated

individuals from the QIMR twins cohort (N = 4781). The lines

joining the circles display the results for allelic scores calculated by

using genotyped variants from across the genome in either a

weighted (unbroken line) or an unweighted (dashed line) fashion.

The lines joining the triangles display scores calculated similarly

but excluding all variants +/21 MB around 32 known BMI

variants, and using either a weighted (unbroken line) or

unweighted (dashed line) strategy. The histogram in the back-

ground displays the number of SNPs involved in construction of

the allelic score for the ‘‘All variants’’ condition at each

corresponding SNP inclusion threshold.

(PDF)

Figure S5 Association between polygene score and CRP

measured at age nine in the QIMR twins replication sample.

Association between polygene score and CRP using different p-

value thresholds for the construction of the score in unrelated

individuals from the QIMR twins cohort (N = 2767). The lines

Mining the Human Phenome Using Allelic Scores

PLOS Genetics | www.plosgenetics.org 13 October 2013 | Volume 9 | Issue 10 | e1003919



joining the circles display the results for allelic scores calculated by

using genotyped variants from across the genome in either a

weighted (unbroken line) or an unweighted (dashed line) fashion.

The lines joining the triangles display scores calculated similarly

but excluding all variants +/21 MB around 18 known CRP

variants, and using either a weighted (unbroken line) or

unweighted (dashed line) strategy. The histogram in the back-

ground displays the number of SNPs involved in construction of

the allelic score for the ‘‘All variants’’ condition at each

corresponding SNP inclusion threshold.

(PDF)

Figure S6 Association between polygene score and LDLc

measured at age nine in the QIMR twins replication sample.

Association between polygene score and LDLc using different

p-value thresholds for the construction of the score in

unrelated individuals from the QIMR twins cohort

(N = 2630). The lines joining the circles display the results for

allelic scores calculated by using genotyped variants from

across the genome in either a weighted (unbroken line) or an

unweighted (dashed line) fashion. The lines joining the

triangles display scores calculated similarly but excluding all

variants +/21 MB around 37 known LDLc variants, and

using either a weighted (unbroken line) or unweighted (dashed

line) strategy. The histogram in the background displays the

number of SNPs involved in construction of the allelic score

for the ‘‘All variants’’ condition at each corresponding SNP

inclusion threshold.

(PDF)

File S1 Members of the GIANT Consortium.

(PDF)

File S2 Members of the CRP Consortium.

(PDF)

File S3 Members of the TAG Consortium.

(PDF)

Table S1 Association between case-control status in the

WTCCC and an allelic score that proxies for BMI.

(PDF)

Table S2 Association between case-control status in the

WTCCC and an allelic score that proxies for CRP.

(PDF)

Table S3 Association between case-control status in the

WTCCC and an allelic score that proxies for LDL.

(PDF)

Table S4 Association between case-control status in the

WTCCC and an LD pruned allelic score that proxies for BMI.

(PDF)

Table S5 Association between case-control status in the

WTCCC and an LD pruned allelic score that proxies for CRP.

(PDF)

Table S6 Association between case-control status in the

WTCCC and an LD pruned allelic score that proxies for LDLc.

(PDF)

Table S7 Known SNPs contributing to the calculation of BMI,

LDLc, and CRP allelic scores in ALSPAC.

(PDF)

Table S8 Known SNPs contributing to the calculation of BMI,

LDLc, and CRP allelic scores in QIMR twins replication set.

(PDF)

Table S9 Performance of BMI SNPs in the CRP meta-analysis.

(PDF)
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