
NeuroImage 59 (2012) 3784–3804

Contents lists available at SciVerse ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img
Hierarchical topological network analysis of anatomical human brain connectivity
and differences related to sex and kinship

Julio M. Duarte-Carvajalino a, Neda Jahanshad b,c, Christophe Lenglet d, Katie L. McMahon e,
Greig I. de Zubicaray f, Nicholas G. Martin g, Margaret J. Wright f,g, Paul M. Thompson b, Guillermo Sapiro a,⁎
a Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
b Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
c Medical Imaging Informatics, Department of Radiology, UCLA School of Medicine, Los Angeles, CA, USA
d Department of Radiology, University of Minnesota, Minneapolis MN, USA
e Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
f School of Psychology, University of Queensland, Brisbane, Australia
g Queensland Institute of Medical Research, Brisbane, Australia
⁎ Corresponding author.
E-mail addresses: duart022@umn.edu (J.M. Duarte-C

neda.jahanshad@loni.ucla.edu (N. Jahanshad), clenglet@
katie.mcmahon@cai.uq.edu.au (K.L. McMahon), greig.de
(G.I. de Zubicaray), Nick.Martin@qimr.edu.au (N.G. Mar
Margie.Wright@qimr.edu.au (M.J. Wright), thompson@l
guille@umn.edu (G. Sapiro).

1053-8119/$ – see front matter © 2011 Elsevier Inc. All
doi:10.1016/j.neuroimage.2011.10.096
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 7 June 2011
Revised 20 October 2011
Accepted 26 October 2011
Available online 12 November 2011

Keywords:
Anatomical brain connectivity
Complex networks
Diffusion weighted MRI
Topological analysis
Hierarchical analysis
False discovery rate
Sex and kinship brain network differences
Modern non-invasive brain imaging technologies, such as diffusion weighted magnetic resonance imaging
(DWI), enable the mapping of neural fiber tracts in the white matter, providing a basis to reconstruct a de-
tailed map of brain structural connectivity networks. Brain connectivity networks differ from random net-
works in their topology, which can be measured using small worldness, modularity, and high-degree
nodes (hubs). Still, little is known about how individual differences in structural brain network properties re-
late to age, sex, or genetic differences. Recently, some groups have reported brain network biomarkers that
enable differentiation among individuals, pairs of individuals, and groups of individuals. In addition to study-
ing new topological features, here we provide a unifying general method to investigate topological brain net-
works and connectivity differences between individuals, pairs of individuals, and groups of individuals at
several levels of the data hierarchy, while appropriately controlling false discovery rate (FDR) errors. We
apply our new method to a large dataset of high quality brain connectivity networks obtained from High An-
gular Resolution Diffusion Imaging (HARDI) tractography in 303 young adult twins, siblings, and unrelated
people. Our proposed approach can accurately classify brain connectivity networks based on sex (93% accu-
racy) and kinship (88.5% accuracy). We find statistically significant differences associated with sex and kin-
ship both in the brain connectivity networks and in derived topological metrics, such as the clustering
coefficient and the communicability matrix.

© 2011 Elsevier Inc. All rights reserved.
Introduction

Modern non-invasive imaging technologies such as Diffusion
Weighted Magnetic Resonance imaging (DWI) make it possible to esti-
mate the local orientation of neural fiber bundles in the white matter,
providing reliable anatomical information onbrain connectivity and an-
atomical networks (Bassett et al., 2011; Bullmore and Bassett, 2011;
Bullmore and Sporns, 2009; Gigandet et al., 2008; Hagmann et al.,
2007, 2008; Iturria-Medina et al., 2007). Topological properties of com-
plex networks, such as those describing brain connectivity, have been
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analyzed and compared to random networks using traditional
(Blondel et al., 2008; Boccaletti et al., 2006; Onnela et al., 2005;
Rubinov and Sporns, 2010; Sporns and Kotter, 2004) and new topolog-
ical metrics (Bassett et al., 2010, 2011; Bullmore and Bassett, 2011;
Easley and Kleinberg, 2010; Estrada, 2010; Estrada and Higham, 2010;
Lohmann et al., 2010; Shepelyansky and Zhirov, 2010). Still, relatively
little is known about how functional and structural brain networks dif-
fer between different populations, and how their properties are associ-
ated with, for example, age, sex, and genetic factors. Large datasets, as
presented here, are vital for making robust statements about network
properties and factors that consistently affect them.

Recent work has identified effects of sex, age, heritability, and neu-
rological disorders on some aspects of brain networks derived from
structural and functionalMRI. Pattern recognitionmethods, such as fea-
ture selection, dimension reduction, and classification, have been used
to predict brain maturity (Dosenbach et al., 2010; Thomason et al.,
2011) and activity (Richiardi et al., 2011) from functional MRI (fMRI),
and also the effects of aging on brain connectivity measured from
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Fig. 1. Hierarchy of multiple families of hypothesis testing.
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DWI scans (de Boer et al., 2011). In recentwork, we identified significant
sex and genetic differences using network data at the edge (node-to-
node connectivity) level, from Diffusion Tensor Imaging (DTI)
(Jahanshad et al., 2010) and High Angular Resolution Diffusion Imaging
(HARDI) scans (Jahanshad et al., 2011). In general, these anatomical
studies create a connectivity matrix that describes the proportion of
detected brain fibers that interconnect all pairs of regions, taken from a
set of regions of interest. This results in a matrix of connectivity values,
that can be treated as an N×N image and analyzed using voxel-based
statistical analysis approaches (Jahanshad et al., 2011). Additional stud-
ies have reported age and sex differences in DWI data and in global topo-
logical metrics (Gong et al., 2009); genetic effects (Fornito et al., 2011).
Abnormalities in patients with schizophrenia (Rubinov and Bassett,
2011) have also been reported in connectivity studies using fMRI.

Here we propose a unifying, robust and general method to investi-
gate brain connectivity differences among individuals, pairs of individ-
uals, and groups of individuals (classes), at several levels of the
network hierarchy: global, node, and node-to-node or network sub-
graphs. We use robust pattern recognition techniques to identify brain
connectivity/network differences at the individual level (which also in-
cludes pairs of individuals).We also describe families of hypothesis tests
to identify differences at the group or class level. We apply this method
to a large dataset of high quality brain connectivity networks, obtained
from HARDI. This allows us to study organizational differences between
the human brain and random networks, and brain connectivity differ-
ences associated with sex and kinship.

Our method has the following unique characteristics:

• Robust feature selection using Support Vector Machines (SVMs)
and n-fold cross-validation.

• Robust overall classification performance evaluation using n-fold
cross-validation and permutation tests.

• Hierarchical analysis of brain connectivity network differences,
simultaneously studying the networks at multiple structural levels.

• Robust overall control of the false discovery rate (FDR) error, especially
with hierarchies of multiple families of hypothesis tests.

• Analysis of a large high quality dataset that involves a robust nor-
malization step.

Using this method, we set out to answer the following questions
(research lines):

1. Can we classify individuals in terms of sex or pairs of individuals in
terms of kinship using the HARDI-derived connectivity matrices?
2. Can we classify individuals in terms of sex or pairs of individuals in
terms of kinship using topological measures of the associated net-
work digraphs?

3. Are there any differences in the connectivity matrices attributable
to sex differences or kinship?

4. Do brain connectivity networks and random networks differ in
topology?

5. Is some proportion of the variance in brain network topology at-
tributable to sex or kinship?

This study of sex and kinship from connectivity networks illus-
trates the framework and address key biological questions.

The topological metrics considered here can be arranged in a hier-
archical tree, from global to node-to-node (Fig. 1). Network differ-
ences at the individual level (including pairs of individuals) are
covered by the proposed research lines 1 and 2. Research lines 3
and 5 refer to class (sex and kinship) properties. We also look for
global topological differences between real and random networks, re-
search line 4, as these have been frequently reported in the literature
(Bassett et al., 2010, 2011; Fornito et al., 2011; Gong et al., 2009;
Iturria-Medina et al., 2007). Here, we study brain connectivity differ-
ences using a wide variety of traditional and recent global, cortical
(node), and inter-cortical (node to node) topological metrics not
used before on a single large scale study of high quality diffusion
MRI data.

Our relatively large number of high quality diffusion MRI data al-
lows us to consider more related individuals than have been studied
before for analyzing structural connectivity. We consider all possible
pair-wise comparisons between the different kinships.

The rest of the paper is organized as follows: Estimation of brain
structural connectivity section describes the diffusion MRI data we
analyze. We describe how the data is processed to produce the ana-
tomical brain connectivity information and networks. Methods sec-
tion introduces the questions we address and our proposed
approach using robust pattern recognition methods and multiple hy-
pothesis testing, while controlling the FDR. Results section reports re-
sults for sex and kinship classification based on the brain connectivity
matrices and network topology measures. Results section also pre-
sents results of hypothesis tests on the brain connectivity and brain
topological network differences due to sex and kinship, as well as to-
pological differences between human and random brain networks.
Discussion section discusses the results, and some caveats and limita-
tions. Conclusion section presents the conclusions of this work.
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Estimation of brain structural connectivity

Diffusion MRI data acquisition and processing

The raw dataset consists of 4 T HARDI and standard T1-weighted
structural MRI images, for 303 individuals (193 women and 110
men), between 20 and 30 years old (mean age: 23.5±1.9 SD years).
From these subjects, we are able to form different pair-wise kinship
relationships between identical twins (50), non-identical multiples
(64 non-identical twins and a non-identical triplet, forming 67 pair-
wise relationships), and non-twin siblings (35).1 In addition, there
are 35 unrelated individuals, from whom we can obtain (35×34)/
2=595 pairs of unrelated people, but we only choose at random
100 of them, to avoid unbalancing the number of pairs chosen for
each class. In summary, we have 50+67+35+100=252 pair-
wise relationships for our kinship analysis.

All MR images were collected using a 4 T Bruker Medspec MRI
scanner, with a transverse electromagnetic (TEM) head coil, at the
Center for Magnetic Resonance, University of Queensland, Australia.
T1-weighted images were acquired with an inversion recovery rapid
gradient echo sequence (TI/TR/TE=700/1500/3.35 ms; flip
angle=8°; slice thickness=0.9 mm, with a 2563 acquisition matrix).
Diffusion-weighted images were acquired using single-shot echo pla-
nar imaging with a twice-refocused spin echo sequence to reduce
eddy-current induced distortions. Imaging parameters were: TR/
TE=6090/91.7 ms, 23 cm FOV, with a 128×128 acquisition matrix.
Each 3D volume consisted of 55 2-mm thick axial slices with no
gap, and a 1.79×1.79 mm2 in-plane resolution. We acquired 105 im-
ages per subject: 11 with no diffusion sensitization (i.e., b0 images)
and 94 diffusion-weighted (DW) images (b=1159 s/mm2) with gra-
dient directions evenly distributed on the hemisphere, as is required
for unbiased estimation of white matter fiber orientations. Scan
time was 14.2 min. Non-brain regions were automatically removed
from each T1-weighted MRI scan, and from a b0 image obtained
from the DWI dataset using the BET FSL tool.2 A trained neuroana-
tomical expert manually edited the T1-weighted scans to further re-
fine the brain extraction. All T1-weighted images were linearly
aligned using FSL (with 9 DOF3) to a common space, (Holmes et al.,
1998), with 1 mm isotropic voxels and a 220×220×220 voxel
matrix.

Rawdiffusion-weighted imageswere corrected for eddy current dis-
tortions using the eddy current distortions correction FSL tool. For each
subject, the 11 non-diffusion-weighted images (with nodiffusion sensi-
tization) were averaged and resampled and linearly aligned to a down-
sampled version of the same subject, corresponding to a T1-weighted
anatomical image (110×110×110, 2×2×2 mm). Averaged b0 maps
were then elastically registered to the structural scan using an inverse
consistent registration algorithm with a mutual information cost func-
tion (Leow et al., 2005), to compensate for high-field echo-planar imag-
ing (EPI) induced susceptibility artifacts. This elastic registration further
refines the linear intra-subject registration.

Thirty-five cortical labels per hemisphere (Table S1, in the supple-
mentary material) were automatically extracted from all high resolu-
tion aligned T1-weighted structural MRI scans using FreeSurfer4

(Fischl et al., 2004). The output labels from FreeSurfer (1–35) for each
hemisphere were combined into a single image. As a linear registration
is performed within the software, the resulting T1-weighted images
and cortical models were aligned to the original T1 input image space
and down-sampled using nearest neighbor interpolation (to avoid
1 The group of non-twin siblings overlaps the group of twins and triplets, since an
individual can have 2 or more siblings that are twins (or triplets).

2 http://fsl.fmrib.ox.ac.uk/fsl/.
3 The expected deformations are only translation, rotation, and anisotropic scaling;

no shearing between T1s of the same subject.
4 http://surfer.nmr.mgh.harvard.edu/.
intermixing of labels) to the space of the DWIs. To ensure tracts
would intersect labeled cortical boundaries, labelswere dilated simulta-
neously (to prevent overlap) with an isotropic box kernel of 5 voxels.

Tractography is performed by randomly choosing seed voxels of the
white matter with a prior probability based on the fractional anisotropy
(FA) value derived from the diffusion tensormodel (Basser and Pierpaoli,
1996).We use a global probabilistic approach inspired by the voting pro-
cedure of the popular Hough transform (Duda and Hart, 1972; Gonzales
and Woods, 2008). The tractography algorithm tests a large number of
candidate 3D curves originating from each seed voxel, assigning a score
to each, and returns the curve with the highest score as the estimated
pathway. The score of each curve is computed from the agreement be-
tween the estimated curve and fiber orientations as derived from the
Orientation Distribution Functions (ODFs) (Aganj et al., 2010). At each
voxel of the DWI dataset, ODFs are computed using the normalized
and dimensionless ODF estimator, derived for HARDI in Aganj et al.
(2010), which is mathematically more accurate and also outperforms
the original Q-Ball Imaging (QBI) definition (Tuch, Dec., 2004), e.g., it im-
proves the resolution of multiple fiber orientations (Aganj et al., 2010).

As it is an exhaustive search, this algorithm avoids entrapment in
local minima within the discretization resolution of the parameter
space. Furthermore, the specific definition of the candidate's tract
score attenuates noise by integrating the real-valued local votes de-
rived from the diffusion data.5 Further details of the method can be
found in Aganj et al. (2010).

Elastic deformations obtained from the EPI distortion correction,
mapping the average b0 image to the T1-weighted image, were
then applied to the tracts 3D coordinates. To avoid considering
small noisy tracts, tracts with fewer than 15 fibers were filtered out.

Computing connectivity matrices and brain networks

From the cortical labeling and tractography, symmetric matrices
of connectivity (70×70) are built, one per subject. Each entry con-
tains the number of fibers connecting each pair of cortical regions
(Table S1) within and across each brain hemisphere. Connectivity
matrices based on fiber counts should always be normalized to the
[0, 1] range, as the number of fibers detected varies from individual
to individual. In addition, there is a bias in the number of fibers
detected by tractography that starts or end in any given cortical re-
gion, due to fiber crossings, fiber tract length, volume of the cortical
region, and proximity to large tracts like the corpus callosum
(Bassett et al., 2011; Hagmann et al., 2007, 2008; Jahanshad et al.,
2011). However, there is no unique way to normalize the fiber tract
count (Bassett et al., 2011).

We decided not to use the normalizations proposed in Bassett et
al. (2011), and Hagmann et al. (2007, 2008), as they involve geomet-
ric measures including the volume of the cortical regions and the
mean path length of fibers connecting each two regions. Instead, we
considered three purely topological normalizations, since, as in
Gong et al. (2009), we want to find pure topological network differ-
ences due to, e.g., sex and kinship:

wij ¼
aij

∑ijaij
; ð1Þ

wij ¼
aijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑jaij∑iaij
q ; ð2Þ

wij ¼
aij

∑jaij
; ð3Þ
5 In the near future, this algorithm will be released through the Neuroimaging Infor-
matics Tools and Resources Clearinghouse (NITRC) online repository, and is available
upon request.

http://fsl.fmrib.ox.ac.uk/fsl/
http://surfer.nmr.mgh.harvard.edu/
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where, aij represents the entries in the originalfiber countmatrix,A, and
wij the entries (weights) of the now normalized 70×70 connectivity
matrix,W.

Eq. (1) (used in our previous work, Jahanshad et al., 2011) nor-
malizes the fiber count for each pair of regions by the total number
of fibers in the entire brain, reducing variability among the connectiv-
ity matrices due to differences in the total number of fibers found. In
practice, this normalization can provide biased weights, since it does
not take into account that a higher number of fibers will be found in
some regions, e.g., in the vicinity of the corpus callosum, and also
more fibers would be counted in cortical regions with larger areas
(Bassett et al., 2011; Hagmann et al., 2008).

Eq. (3), first proposed by Behrens et al. (2007) in the context of trac-
tography, can be interpreted as the probability of connecting cortical re-
gions i and j, given that there are aij fibers between them and there are
∑j aij fibers available on cortical region i. Eq. (2), (Crofts and Higham,
2009), divides the number of fibers between any two cortical regions
by the geometric mean of the number of fibers leaving either region.
The assumption here is stronger than that of Eq. (3), as it assumes the
same total number of fibers on each pair of brain regions. This can
lead to bias due to large differences in the total number of fibers on
each region (locally), but it should be correct on average (globally).
An equivalent normalization was used in Gong et al. (2009), where in-
stead of the geometric mean, they used an arithmetic mean, averaging
wij and wji on Eq. (3).

Eqs. (1) and (2) lead to undirected connectivity graphs, which are
typical in structural brain connectivity analysis. Eq. (3), on the other
hand, leads to directed graphs (digraphs). To see this, note that in
general∑iaij≠∑jaij, i.e. the total number of fibers on cortical regions
i and j can be different on either side of the connection, hence, in gen-
eral, wij≠wji on Eq. (3). Normalizations (1)–(3) are further modified

as wij

max wijf g, wherewij is defined as indicated in Eqs. (1)–(3), in order to

reduce the differences among different connectivity matrices (differ-
ent subjects), thereby making max{wij}=1. Eqs. (2), (3), modulated
by max{wij}, reduce significantly the mean effect of brain size differ-
ences between men and women (see the regression analysis in
Appendix A), which is a known confounding factor in analyses of
sex differences (Leonard et al., 2008).

Here, we work with the normalization provided by Eq. (3),6 be-
cause it reduces the effect of brain size. Connectivity matrices are
asymmetric—this coming from the normalization and not from the
tractography results. This is beneficial as it uses all available entries
in the matrix, while traditional symmetric matrices, as obtained
from the other two normalizations, only use half of the matrix to
store network information. This extra information is not an artifact
of the normalization—it provides more information about differences
between two connected brain regions. Two cortical regions are con-
nected by the same number of fibers, but the proportion of fibers ded-
icated to that particular connection can be very different within each
cortical region. For instance, consider the case where cortical region i
connects exclusively to region j, but region j connects not only to i, but
also to many other regions. In terms of probability of connection,
pij=1,pik=0,k≠ j, since i connects exclusively to j (pij being the
probability of connecting region i with region j). However, pjib1,
and pjk≠0 for some k regions, satisfying in both cases ∑i pij ¼
∑j pjk ¼ 1 (all the regions must be connected), hence, pij≠pji. In
the general case, each cortical region connects to a different number
of other cortical regions, so in general, pij≠pji, as on Eq. (3). We con-
sider that capturing this asymmetry in the connectivity matrices W is
important, and this is validated in the experimental results.
6 The basic method introduced later for analyzing brain networks, in particular the
features for undirected networks and the statistical analysis, can still be applied to
the other possible normalizations as well.
In summary, we derived 303, one per subject, normalized connec-
tivity (network) 70×70 matrices W, by applying probabilistic tracto-
graphy to HARDI at 4 T. These matrices provide our basis for studying
anatomical brain connectivity, as described next.

Methods

The research lines addressed here (see the Introduction) are inde-
pendent as they answer different questions and there is no interaction
or inference among them. It is important to state the independence of
these research lines, as it implies that there is no need for an overall
FDR error control, other than the FDR control on each research line
(Benjamini andHochberg, 1995; Yekutieli, 2008). The first two research
lines are addressed simultaneously using robust pattern recognition
methods that extend well to unobserved data (Classification section).
The last three research lines are going to be addressed using statistical
hypothesis testing (non-parametric bootstrap), where the correspond-
ing null hypotheses are stated as:

1. There are no differences in the connectivity matrix. Given that
there are O(n2) weights on a connectivity matrix of n nodes,
there are O(n2) local null hypothesis to be tested, one for each con-
nection, forming a large family of hypothesis testing. As n=70 in
our case, we could have up to 4900 hypotheses to test for differ-
ences in the connectivity matrices.7

2. There are no global topological differences between real networks
and random networks. In general, we can have m global topologi-
cal metrics (see Fig. 1 and Topological metrics section for details),
forming a single family of hypothesis testing.

3. There are no topological differences, at any scale, on the directed
networks due to sex or kinship (Fig. 1). Hence, we have m hypoth-
eses to test at the global level, possibly m families of hypothesis at
the node level (one for each global hypothesis), having each one
O(n), n=70, null hypothesis to test for differences at each node,
and several families of hypotheses at the node-to-node level,
where each family corresponds to a topological metric at the
node-to-node level (Fig. 1), and each family consists of O(n2) hy-
pothesis to test, one for each pair of nodes.

The first two null hypotheses require only a single (albeit possibly
large) family of hypothesis tests, while the last one requires several
families of hierarchically related hypothesis tests, where families of
hypotheses at the node-to-node level can consist of O(n2) local hy-
potheses (up to 4900 hypotheses in our case, n=70).

At the population level, we consider only average network differ-
ences in the connectivity matrix (research line 3, see Introduction), or
in the topological metrics of the associated graphs (research line 5 in
the Introduction), resulting from sex and kinship, as we know a priori
that the variability between the connectivity matrices of individuals
can be as large as the variability between the connectivity matrices
within the same group (same sex or same kinship relationship)—an
observation derived both from previous studies (Bassett et al.,
2011), and from our own dataset.

We consider the two classes women and men, based on sex; and
the four classes identical twins, non-identical multiples, non-twin sib-
lings, and unrelated individuals, based on kinship relationships. These
are used for classification at the individual (including pairs of individ-
uals for kinship) level and for hypothesis testing at the group level.

Our analysis of kinship follows previous genetic studies of brain con-
nectivity (Fornito et al., 2011; Jahanshad et al., 2010, 2011; Rubinov and
Bassett, 2011; Thompson et al., 2001). One traditional line of analysis in
genetic studies uses a classical twin design to compute intra-pair (or
intra-class) correlations between measures of cortical gray matter den-
sity (Thompson et al., 2001), connectivity matrices (Jahanshad et al.,
7 Of course, we only look for statistically significant differences where the number of
connections detected is more than zero.



8 PCA for instance is a projection of the original features onto the matrix eigen-space,
and hence is a linear combination of the original features.

9 Training with 90% of the data and testing on the remaining 10%, and repeating the
process 10 times with randomly selected training and testing samples.
10 As it is usual in binary classification, we report sensitivity and specificity for wom-
en only, given that the sensitivity for men is numerically the same as the specificity for
women and the specificity for men is numerically the same as the sensitivity for
women.
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2010, 2011), or wavelets representing the connectivity matrices
(Fornito et al., 2011), however, these correlation operations reduce
the data to a single matrix of correlations, and heritability statistics for
all pairs of subjects in the same group.

For kinship analysis, we work with the absolute value of the differ-
ences in the connectivity matrix and with network differences in the
topological metrics considered, between pairs of individuals. These
pair-wise differences are differences between pairs of identical
twins, differences between pairs of non-identical multiples, differ-
ences between siblings who are not twins, and finally differences be-
tween pairs of unrelated people. We use pairwise differences within
and across families, as they allow us to detect genetically-mediated
effects in pairings with different degrees of known genetic affinity
(Thompson et al., 2001).

To avoid losing pairs of subjects in the kinship analyses, we did not
constrain the pairwise differences between individuals to be of the
same sex, which in our study corresponds approximately to half the
non-identical multiples considered. The statistical power of the tests
of kinship differences might be reduced by the confounding effects
of sex differences, but at the same time, we are also increasing the
statistical power of the test (Winer, 1971), by considering a larger
number of pairwise differences.

Classification

Here, we want to classify individual brain connectivity networks
in terms of sex (women and men) and pairs of individuals in terms
of kinship, using the connectivity matrices or the associated network
topology metrics at the node or node-to-node level.

In classification, we encounter the multiple comparisons problem
(MCP), which arises whenever we test multiple hypotheses simulta-
neously. If we do not correct for this, then the more hypotheses test-
ed, the higher the probability of obtaining at least one false positive.

This can be dealt with in classification via n-fold cross-validation.
In fact, cross-validation can be more effective than Bonferroni-type
corrections (Jensen and Cohen, 2000), as it does not test on the
same data used to derive the model. Here we use 10-fold cross-
validation, a good trade-off between robustness to unobserved data
and using as much data as possible to train the classifiers
(Refaeilzadeh et al., 2009). In addition to cross-validation, we also
use permutation tests (see Appendix A for details), to non-
parametrically evaluate the null hypothesis that the classifiers might
have obtained good classification accuracies just by chance (Ojala
and Garriga, 2010). In this work, we use Support Vector Machine
(SVM) classifiers, as they extend well to unobserved data, (Vapnik,
1998), and deal with the MCP problem by reducing the number of
comparisons to the number of support vectors.

Given the high dimensionality (Rn2
;n ¼ 70 nodes) of the brain con-

nectivity networks and associated topological metrics consider here
(see Topological metrics section for their full description), we use fea-
ture selection methods to reduce the effective dimensionality of the
data. We call here feature, any of the connectivity or topological net-
work differences at the node-to-node and single node levels. Feature se-
lection methods can significantly improve classification accuracy, even
for classifiers that exploit the higher discrimination possibilities in
high dimensional spaces, such as SVMs (Guyon and Eliseeff, 2003;
Vapnik, 1998). In general, there are three methods used for feature se-
lection: filters, wrappers, and embedded methods (Guyon and Eliseeff,
2003). Filter methods employ ranking criteria such as the Pearson
cross-correlation (used for example in Dosenbach et al. (2010)),Mutual
Information, Fisher criterion, and so on, and a given threshold to filter
out low ranked features. Wrappers use the classifier itself to evaluate
the importance of each feature and explore the whole feature space
using for instance, gradient based methods, genetic algorithms or
greedy algorithms. Filter methods are very fast and independent of
the selected classifier, however, they can lead to the selection of
redundant features (Guyon and Eliseeff, 2003). They also disregard fea-
tureswith relatively small individual influence that can potentially have
an influential effect as a group. Wrappers, on the other hand, can avoid
redundant features and identify influential subgroups of features. How-
ever, they are computationally intensive, since the subset feature selec-
tion problem is NP-hard (Amaldi and Kann, 1998), and are strongly
dependent on the classifier used (Guyon and Eliseeff, 2003). Embedded
methods also use a classifier to evaluate the importance of subgroup of
features. Hence, they are wrappers. However, they provide a trade-off
between other wrappers and filter methods, in terms of computational
efficiency and reduced number of features, since they introduce a pen-
alty term that enforces small number of features (Guyon and Eliseeff,
2003).

An alternative to feature selectionmethods are dimension reduction
methods such as Principal Components Analysis (PCA) and Indepen-
dent Component Analysis (ICA). See Hartmann (2006), for a compari-
son of both methods in the context of machine learning. Here, we
preferred feature selection methods, as the features in dimension re-
duction methods are in general functions of the original features,8 and
cannot be associated to a unique “physical” feature in the original data
space. In particular, we use the SVM-based embedded feature selection
algorithm proposed by Guyon et al. (2002). When selecting features
with a classifier there is a risk of “double-dipping,” i.e., training the fea-
ture selection algorithm and testing it with the same data, which leads
to unrealistic high accuracies (over-fitting) that do not extend well to
unseen data (Kriegeskorte et al., 2009; Refaeilzadeh et al., 2009). To
avoid this, the feature selection algorithm uses 10-fold cross-
validation,9 selecting the features that contribute more to classification,
but that are alsomore stable across the different cross-validation sets of
data (Kriegeskorte et al., 2009; Refaeilzadeh et al., 2009). In the pro-
posed framework, feature selection algorithms extract the m≪n2

most relevant features from the digraph matrices taken as high-
dimensional vectors in Rn2 ;n ¼ 70, then use the m selected features to
classify the reduced features in Rm.

We tested classification performance using the following standard
measures:

• The overall classification accuracy.
• The sensitivity and specificity.10

• The balanced error rate (BER), which corresponds to the average of
the errors on each class.

• The area under the receiver operating characteristic (ROC) curve,
which measures the probability that the classifier can actually dis-
criminate the true class from the incorrect one(s).

• The kappa statistic, which measures the agreement of the classifier
with the labels taking into account the probability that the agree-
ment has been obtained by chance. It uses the confusion matrix to
make this assessment.

• Permutation tests p-values, which non-parametrically assess the
probability that the classification results were obtained by chance
by estimating the null hypothesis distribution.

For space considerations, the confusion matrices were not included
here, and can be found in the supplementary material.

Topological metrics

In addition to studying node-to-node connections, e.g., just the
entries of the matrix W as stand-alone features, we would like to
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consider features that indicate higher levels of interactions between
the studied regions.

As we do not know a priori which topological metrics would pro-
vide statistically significant differences between different classes of
brain connectivity networks, we have to limit ourselves to a few se-
lected ones, to control the FDR error within each research line. We
consider 11 representative topological metrics at the global, node,
and node-to-node level (Fig. 1). While some have been studied for
brain networks, all these topological features have found relevance
in other disciplines, such as social networks (Easley and Kleinberg,
2010), and provide interesting insights into the overall organization
of the brain.

Node-to-node level
At the node-to-node level we consider the edge betweenness cen-

trality (EBC), a new subgraph based centrality (SGC), and the communi-
cability measures (COM) (Estrada, 2010; Estrada and Higham, 2010).
The weighted edge betweenness centrality is defined as (Rubinov and
Sporns, 2010),

EBCij ¼ ∑
hk

ρij
hk

ρhk
; ð4Þ

where ρhkij is the number of shortest paths between nodes h and k that
contain edge ij and ρhk is the number of shortest paths between h and
k. EBC measures the fraction of all shortest paths in the network that
contain edge ij, and hence, the importance of each edge in the commu-
nication among cortical regions.

To understand the subgraph centrality (SGC) and communicability
(COM) measures (Estrada, 2010; Estrada and Higham, 2010), let us
first decompose the connectivity matrix as W ¼ ΛW þ ~W , where ΛW

is a diagonal matrix, with non-zero entries corresponding to the diag-
onal of W, and ~W is the resulting matrix of making zero the diagonal
ofW. Notice that ΛW contains the self-connections of each node, while
~W the connections between each pair of nodes. Let us define (Estrada,
2010; Estrada and Higham, 2010),

~P ¼
X∞
k¼1

~Wk

k!
¼ e ~W−In; ~Wk

h i
ij
¼ ∑

i;h1 ;…;hk−1 ;j
~wih1

~wh1h2
… ~whk−1 j

; ð5Þ

where, In is the identity matrix of size n×n and we have used the def-
inition of the exponential of a matrix. The product ~wih1

~wh1h2
… ~whk−1 j

measures the strength of the walk (i,h1,ots,hk−1, j) of length k, be-
tween nodes i and j. A walk is a list of connected nodes that can be
visited more than once, contrary to a path, where the nodes are visit-
ed at most once. Hence, the elements of ~Wk account for the strength
of all possible walks of length k between nodes i and j. Also, the en-
tries of ~P correspond to the weighted sum of the strength of all possi-
ble walks of length one and higher, between nodes i and j, providing
thus a measure of how strong the communication is between them
(communicability, Estrada and Higham, 2010; Estrada, 2010). Given
that the number of walks increases with length, the weight k! is se-
lected to compensate for this effect, penalizing long walks.

Now, we can define (Estrada, 2010; Estrada and Higham, 2010),

SGCi ¼ Λ ~P
h i

ii
; COMij ¼ ~Pij; i≠j: ð6Þ

Hence, the subgraph centrality of a node SGCi corresponds to the
communicability of a node with itself, while COMij corresponds to
the communicability between two different nodes i≠ j.

Notice that the diagonal of matrix ~P is a weighted sum of all closed
walks (information transfer) of lengths two and higher around each
node. The information provided by the closed walks of length zero
in the connectivity matrix (ΛW) is lost, however, since it is not used
anywhere. To recover it, we define here P ¼ ~P þ ΛW as the generalized
communicability matrix, since it provides all possible communications
among all nodes of length zero and above, without including self-
loops other than the one in the starting node itself.

The communicability matrix has no zero entries, except along the
diagonal, which implies 4900–70 (4830) hypothesis tests for our data
(n=70), one for each non-zero entry. Hence, a spectral analysis of
the communicability matrix can be performed, (Crofts and Higham,
2009; Estrada, 2010), to obtain a family of tests of order O(n),
where n are the number of eigenvalues of the communicability ma-
trix. In particular, the above defined matrix COM can be decomposed
in terms of its eigenvalues and eigenvectors as

COM ¼
Xn
k¼1

λkv
T
kvk; ð7Þ

where λk are the eigenvalues of COM, and vk its eigenvectors, k=1,
…,n.

Global and node levels
The undirected network efficiency (E) and clustering coefficient (C),

have been previously reported as indicative of sex and age differences
(Gong et al., 2009). Here, we use the directed weighted versions, de-
fined as (Rubinov and Sporns, 2010),

E ¼ 1
n
∑
i
Ei; Ei ¼

∑j≠id
−1
ij

n−1
; ð8Þ

C ¼ 1
n
∑
i
Ci; Ci ¼

1
2 ∑j;h∈Ni

wihwhjwji

� �1=3

k k−1ð Þ−2∑jδijδji
; ð9Þ

δij ¼
0 if wij ¼ 0
1 if wij > 0 ; k ¼ ∑

j
δij þ δji

� �(

where, n represents the number of nodes, dij the weighted directed
shortest path length between nodes i and j, and Ni the neighborhood of
node i (nodes connected to node i by a single link). Network efficiency
measures how fast information can be transmitted in the network, glob-
ally (E), and locally at each node (Ei). The clustering coefficientmeasures
howmuch nodes in a graph tend to cluster together, globally (C) and lo-
cally at the node level (Ci). Basically, the directedweighted clustering co-
efficient measures the probability that neighbors of a node are also
connected between themselves, hence, forming clusters around a node.

Additional traditional topological metrics at the global and node
levels are the weighted directed betweenness centrality (BC), weighted
modularity (Q), and motifs (Rubinov and Sporns, 2010). The weighted
directed node betweenness centrality is defined as (Rubinov and
Sporns, 2010),

BC ¼ 1
n−1ð Þ n−2ð Þ∑i

BCi; BCi ¼ ∑
h;j∈Ni ;i≠j≠h

ρi
hj

ρhj
; ð10Þ

where, ρhji represents the number of shortest paths from nodes h and j
that go through i, and ρhj the total number of shortest paths between h
and j. The directed weighted node betweenness centrality measures
how important each node is in the communication between neighboring
nodes.

The weighted modularity (Q) is defined as (Rubinov and Sporns,
2010),

Q ¼ 1
lw

∑
ij

wij−
∑iwij∑jwij

lw

" #
δMi ;Mj

; lw ¼ ∑
ij
wij; ð11Þ

where the network is assumed to be fully subdivided into non-
overlapping clusters or modules (M), with Mi being the module that
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contains node i, and δMi,Mj=1 if Mi=Mj and zero otherwise. This is a
global measure of the modularity of the network, that is, how tightly
nodes are connected within a module. Identifying modules is of
course a first step in analyzing the structure of the brain at a higher
scale. This global topological measure has a local hierarchical repre-
sentation, where we can have hierarchies of modules (clusters). Mod-
ules can be found using, for instance, the Louvain hierarchical
modularity algorithm (Blondel et al., 2008), a graph partitioning algo-
rithm that tries to find the partition maximizing Eq. (11). Since graph
partitioning is in general an NP-complete problem, the Louvain algo-
rithm computes a local optimum by greedy optimization. Fig. S1, in
the supplementary material, is an example of hierarchical module
graph partitioning using the full dataset.

Network motifs (Onnela et al., 2005; Rubinov and Sporns, 2010),
are also topological metrics that measure the intensity or frequency
of certain subgraph patterns such as directed connections forming a
triangle, a square, etc. The intensity of a weighted motif (Fmotif) is de-
fined as,

Fmotif ¼ ∑
h
Fhmotif ; Fhmotif ¼ ∏

i;jð Þ∈Lhmotif

wij

0
@

1
A

1
Lmotifj j

; ð12Þ

where motif indicates a given motif, h a node, Lmotif
h the set of nodes

forming the motif at node h, and |Lmotif| the number of directed links
in the motif. Motifs are considered the building blocks of information
processing in the network and can be measured globally (Fmotif) or lo-
cally at the node level (Fmotif

h ). Fig. S2, in the supplementary material,
shows the 13 possible directed motifs of size three.

New topological metrics, while popular in studies of other net-
work data, have not yet been used for anatomical brain networks.
We will also consider the PageRank (PR) (Easley and Kleinberg,
2010; Lohmann et al., 2010; Shepelyansky and Zhirov, 2010) and
the Rentian scale, (Bassett et al., 2010) here. In essence, the PageRank
(critical in Internet network analysis and search engines perfor-
mance) is a measure of how important a node is, based on the impor-
tance of its neighbors. Hence, this is a recursive metric that starts with
all the nodes having the same measure of importance. More formally
(Brin and Page, 1998),

PR tð Þ ¼ ∑i PRi tð Þ

PRi t þ 1ð Þ ¼ 1−αð Þ þ α∑j∈Ni

PRj tð Þ
∑kwjk

; PRi 0ð Þ ¼ 1
n
;

ð13Þ

where again n is the number of nodes, Ni the neighborhood of node i,
α is a damping parameter set in the [0,1] range, and t=1,2,… the it-
erations until convergence, defined as |PR(t+1)−PR(t)|≤silon, for
some small number ε. The PageRank tries to identify nodes that are
influential in the network, not only because they have many connec-
tions with other nodes, but also because those neighboring nodes are
influential themselves. This may be a better definition of node impor-
tance than traditional hubs, which account only for the number of
connections of a node (node degree).

The Rentian scale11 is a measure of the wiring modular complexity
of the network that is self similar (fractal) at different scales. This is a
metric of modularity that differs from the previous one (Q) in that it is
hierarchically represented as modules within modules at different
network scales. More formally (Bassett et al., 2010),

EC ¼ kNr
; ð14Þ

where EC is the number of external connections to a module, k a pro-
portionality constant, N the number of nodes in the module, and r the
Rentian exponent. Here, we use the physical Rentian scale, which
11 The Rentian scale does not use actual the weights or the direction information.
uses the physical coordinates of the brain cortical regions. In order
to avoid introducing the obvious differences in the brain size due to
sex, we use the same physical coordinates for all brain cortical re-
gions, corresponding to a single brain.

The Rentian scale is computed as the mean Rentian exponent on
Eq. (14), by partitioning the network into halves, quarters, and so on
in physical space, providing EC andN values at different scales. The con-
stant k and Rentian scale r are computed by least squares minimization
of the linearized Eq. (14), log(EC)= log(k)+r log(N) for all values of EC
and N obtained from such partition (Bassett et al., 2010).

Some node-to-node topological metrics can lead to global metrics.
For instance, the trace of Λ ~P is a global measure of node importance
called the Estrada index. The EBC can also be made global, by averag-
ing it over the entire network. Nevertheless, this kind of large averag-
ing might destroy local differences at the edge level and will not be
considered here.

FDR error control

Single family of hypothesis testing
To control the FDR for the single families of hypothesis corre-

sponding to the research lines “are there any global topological differ-
ences between real brain connectivity networks and random
networks;” and “are there any mean differences between connectivi-
ty matrices due to sex and kinship?,” we use here the linear step-up
algorithm of Benjamini–Hochberg (Benjamini and Hochberg, 1995),
hereafter BH-FDR. The BH-FDR algorithm has been applied in many
recent multiple hypothesis testing studies, including brain connectiv-
ity analysis (Gong et al., 2009; He et al., 2007; Jahanshad et al., 2010).

Other approaches to control the FDR in multiple hypothesis testing
that are less conservative than the BH-FDR algorithm have been pro-
posed in the literature (Benjamini and Hochberg, 2000; Benjamini and
Yekuteli, 2001, 2005; Storey, 2002; Storey et al., 2004; Westfall et al.,
1997), but they require either independence of the hypotheses being
tested or a known correlation structure (Reiner-Benaim, 2007). The
BH-FDR algorithm is still themostwidely used, as it is simple and it con-
trols the FDR for normally distributed tests with any correlation struc-
ture (Benjamini et al., 2009; Reiner-Benaim, 2007). As we are working
with mean differences in a large number of connectivity matrices, we
can assume that the mean follows a normal distribution, by the central
limit theorem (Fisher, 2011). Hence, the simple BH-FDR error control is
quite appropriate here. For completeness, we provide here the basic
BH-FDR algorithm (Benjamini and Hochberg, 1995; Yekutieli, 2008):

Algorithm 1. BH-FDR

1. Sort in increasing order all the p-values of the null hypothesis:
p1≤p2≤…≤pL.

2. Let r=maxi{pi≤q/L}, define the threshold pth=pr. If no r could be
found, define pth=q/L (pure Bonferroni).

3. Reject all null hypothesis with pi≤pth.

where, L is the number of null hypothesis and q the desired family-wise
confidence level.

Multiple families of hypothesis testing
As explained before, we have a tree of topological metrics at dif-

ferent levels of resolution (Fig. 1). Hence, we need to test each topo-
logical metric at the global, node-to-node, and node levels.
Nevertheless, testing the topological metrics at the node-to-node
and node levels consists of testing families of hypothesis of sizes
O(n) and O(n2), respectively, where n corresponds to the number of
nodes in the network. Hence, we have multiple families of hypothesis
testing and we need to control the overall FDR on each of the pro-
posed research lines.

The FDR error control has been limited so far to a single family of
multiple hypothesis testing. The implicit assumption in many large
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studies has been that there is no need to control the FDR when mul-
tiple families of hypotheses are being performed on the same dataset,
other than the FDR control on each family of hypotheses (Yekutieli,
2008). However, in general, the FDR control separately applied to
each family of hypothesis does not imply FDR control for the entire
study (Benjamini and Yekutieli, 2005; Yekutieli, 2008). If a separate
control of the FDR is performed on each family of hypotheses, then
the overall FDR error corresponds to the sum of FDR errors of each
family, which can quickly make the overall p-value of the study too
large to be of any use. As we compare different topological metrics
at different levels, we have different families of multiple hypothesis
tests that require overall control of the FDR for each research line.

To control the overall FDR error, we proceed in a hierarchical way,
testing from lower to higher resolutions, as suggested by Yekutieli
(2008) and Yekutieli et al. (2006). This strategy makes sense since it
avoids testing first at higher resolutions, where the number of hy-
potheses to be tested on each family could go up to 4900 (n=70).
If the fraction of null rejections is small, then the FDR error control be-
comes as stringent as Bonferroni correction (Yekutieli, 2008), which
significantly increases the chance of not rejecting any false null hy-
potheses (false negatives or Type II error).

Fig. 1 shows the tree of possible hypotheses while testing the to-
pological differences due to sex and kinship at three levels: global,
node (cortical regions), and node-to-node (shortest paths and com-
municability). The dashed lines in Fig. 1 indicate that the higher res-
olution hypotheses are only tested if the parent null hypothesis was
rejected, as indicated by Yekutieli (2008).

A specific example (see Fig. 1) is the communicability matrix
(COM), which contains O(n2) non-zero entries, and hence, O(n2) hy-
potheses to test. We can test instead its eigenvectors (Eq. (7)),
which requires only O(n) hypothesis tests to determine if COM
might be significant.

Let H0={Hi
0, i=1,…,L0} be the set of hypothesis to be tested at

the lowest resolution level, and Hk={Hij
k, i=1,…,Lk, j∈Hk−1} be

the set of hypothesis at resolution levels k=1,…,K. In our case,
K=2, where K=0 corresponds to the topological metrics at the glob-
al level, K=1 to the topological metrics at the node level, and K=2 to
the topological metrics at the node-to-node level (again, see Fig. 1).
Hence, we have a hierarchy of hypotheses, where the FDR error is
controlled at each level simultaneously on all families of hypotheses,
using the BH-FDR algorithm (see Single family of hypothesis testing
section), imposing as mentioned above the condition that higher res-
olution hypotheses are tested only if the parent hypothesis has been
rejected.

If the p-values corresponding to the hypotheses being tested are
independently distributed, true null hypotheses p-values have uni-
form distributions, and for false null hypotheses, the conditional mar-
ginal distribution of all the p-values is uniform, orstochastically
smaller than uniform (Yekutieli, 2008). In such cases, the overall
FDR for the whole tree of hypotheses is bounded to FDR ≤2δq,
where q is the family-wise confidence level and δ≈1.0 for most
cases, but can be as large as δ≈1.4 for thousands of hypothesis
with few discoveries. Hence, controlling the FDR on each level at
q=0.05 will bound the overall FDR at 0.1 in most cases or at 0.14,
when thousands of hypotheses are tested and the number of discov-
eries is relatively small compared to the number of hypothesis tested
(see Yekutieli, 2008).

Testing for all the required conditions on the p-values and com-
puting δ to bound the overall FDR as defined before, are daunting
tasks that have been tackled in the past by modeling and multiple
simulations with synthetic data (Reiner-Benaim et al., 2007;
Yekutieli, 2008). Instead, we can use the fact that the bound of the
overall FDR is the sum over k=0,…,K of the bounds for the FDR at
each level, FDR(k) (Yekutieli, 2008; Yekutieli et al., 2006). Hence,
the overall tree FDR ≤(K+1)q, where K+1 is the number of levels
in the tree. Here K=2, hence, FDR ≤3q=0.15, for a family-wise
confidence level of 0.05 at each level, which is quite close to the pre-
dicted (most conservative) theoretical overall bound with δ=1.4.

Screening
Despite the overall control of the FDR described before, for large

studies, it is quite possible that the BH-FDR control would become
equivalent to a simple (too conservative) Bonferroni correction, and
no single null hypothesis could be rejected (Benjamini and
Yekutieli, 2005). Most large studies, e.g., the expression levels of
thousands of genes in microarrays, nowadays use screening methods
to reduce the number of hypotheses tested, improving the overall sta-
tistical power of the FDR control, especially when the fraction of re-
jections of the null hypothesis is small (Benjamini and Yekutieli,
2005). Screening to eliminate some uninteresting hypotheses is
valid, so long as the null hypothesis of the screening method is inde-
pendent of the null hypothesis being tested (Yekutieli, 2008). Since
the null hypothesis in most tests is that mean differences are zero, a
valid screening method is an ANOVA single effects F-ratio screening
(Reiner-Benaim et al., 2007), in which the null hypothesis depends
on the variance of the data (see details in Appendix A).

In addition to reducing the number of hypotheses to be tested, it
has been also proposed to use thresholds on the connectivity matrices
themselves to get rid of noisy connections, avoiding thus unnecessary
tests on those connections. To avoid ad-hoc thresholds, we screen the
connectivity matrix using a set of increasing thresholds that produce
different connectivity matrices at different sparsity levels (Achard
and Bullmore, 2007; Bassett et al., 2008; Bullmore and Bassett,
2011; Rubinov and Sporns, 2010). This data screening technique re-
veals statistical differences at different levels of sparsity that are not
seen with a single ad-hoc threshold (Gong et al., 2009). Optionally,
a single robust threshold can be used on the connectivity matrices
themselves, using the BH-FDR error control (Abramovich and
Benjamini, 1996). Here, we screen the normalized connectivity matri-
ces with thresholds in the [0, 0.05] range,12 as in Gong et al. (2009)
given that the BH-FDR based threshold is too stringent and may
miss important discoveries. Fig. S3 illustrates how these thresholds
affect the sparsity of the thresholded matrices.

Here, we use then the simple screening method of thresholding
the connectivity matrices at different sparsity levels proposed by
Achard and Bullmore (2007), Bassett et al. (2008), Bullmore and
Bassett (2011), and Rubinov and Sporns (2010), given its simplicity
and independence of the hypothesis being tested. Then, we apply an
ANOVA single effects F-ratio screening test to eliminate remaining
uninteresting hypotheses (see Appendix A for details). This kind of
selective inference has not yet received proper theoretical or practical
consideration in the context of screening uninteresting hypotheses
and the less obvious connection between the screening test and the
follow-up one (Benjamini et al., 2009; Reiner-Benaim, 2007). Better
FDR error control algorithms are needed, especially for cases where
the number of null hypotheses is large and the FDR methods reduce
to a simple Bonferroni correction.

Bootstrapping
We need to describe how are we going to compute the p-values

that the BH-FDR error control requires. As we are working with aver-
age connectivity and topological network differences between differ-
ent groups of individuals (including pairs of individuals), then by the
central limit theorem, those averages should asymptotically follow a
Gaussian distribution (Fisher, 2011). Nevertheless, there could be
some small variations from the Gaussian distribution on real finite
samples, so we use a non-parametric approach. Bootstrapping can
improve the reliability of inference compared with conventional as-
ymptotic tests (Davison and MacKinnon, 1999). We use



Table 1
Sex classification performance (see Classification section) obtained from the connectiv-
ity matrix (node-to-node level). We observe significantly improved results when fea-
ture selection is incorporated.

Test All features (2763) Feature selection (297)

Classification accuracy (%) 49.5 93.0
Sensitivity (%) 56.5 95.5
Specificity (%) 37.3 88.5
Balanced error rate (BER) 0.5313 0.0797
Area under the ROC curve 0.473 0.9203
Kappa statistic −0.067 0.8470
p-value – 0.001
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bootstrapping with replacement to obtain 20,000 samples of the
mean for each metric, scale, and class. The p-values (p) required by
the BH-FDR error control can be easily computed from the boot-
strapped distribution of the mean differences,

p ¼ c
B
min

XB
i¼1

I sið Þs:t:si > 0;
XB
i¼1

I sið Þs:t:sib0Þ
( )

; ð15Þ

where B is the number of bootstrapped samples, c=1 for single-tailed
tests, c=2 for double-tailed tests, si are the bootstrapped sample differ-
ences, and I(si) the frequency of those samples. Sample differences are
for instance differences in the clustering coefficient at a given brain re-
gion (node) i, or differences in the communicability matrix taken as a
columnvector at the entry i, due to sex. As inGong et al. (2009), we con-
sider positive and negative differences in the connectivity matrices and
topological metrics of the associated digraphs for both sex and kinship
differences, so we will use one-tailed p-values.

Z-scores global topological metrics
As the global topological metrics of the brain connectivity net-

works and their corresponding random networks are independent,
the Z-score of their differences is

Z ¼ M−MRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2M þ δ2MR

q ; ð16Þ

whereM indicates the mean of metric M andMR the mean metric for
the corresponding random network. Here we use a parametric t-test,
as there are enough samples of the population to assume Gaussianity,
and being consistent with previous results comparing real and ran-
dom networks (Boccaletti et al., 2006; Rubinov and Sporns, 2010).

Results

We show here the results obtained from the 303 HARDI-derived
connectivity matrices, with a formal statistical analysis of the topo-
logical features as described before. For space considerations, the de-
tailed lists of features are presented in the supplement, with
corresponding p-values and mean differences.

The figures in the next sections showing the features selected by the
machine learning methods described in Classification section are color
coded according to the score provided by the feature selection algo-
rithm. This score accounts for the effects of each feature on the classifi-
cation accuracy and its stability across the n-fold cross-validation runs
(see more details on the tools employed in Appendix A). We do not in-
dicate here which are the top ranked features, since all the features se-
lected are important for classification purposes, even if they ranked the
lowest. For instance, if we only take the 10 top ranked features and use
them for classification, the performance would be relatively poor.

Figures in the next sections showing the statistically significant
features found in hypothesis testing (FDR error control section) are
color coded according to their Z-score and the sign of the difference,
magenta for positive and cyan for negative. As the sign of the differ-
ence depends on the order of the operands, we specify in the corre-
sponding text and on each figure what is the meaning of each color.13

Classification

Tables S2–S4 compare the classification results for the three node-
to-node level metrics considered here, the “raw” connectivity
13 Recall that for the kinship classes, we will be comparing connectivity matrices that
represent the absolute connectivity differences within each group, and not the connec-
tivity of each individual or pairs of individuals. Hence, differences between two kinship
classes refer here to differences between the two means of the within-group
differences.
matrices, generalized communicability matrix (P), and edge be-
tweenness (EBC), using the three normalizations indicated in
Estimation of brain structural connectivity section. The performances
of sex classification for the connectivity matrices, generalized com-
municability, and edge betweenness, using Eq. (3), are 93%, 92.2%,
and 92.5%, respectively. The corresponding performances for Eq. (1)
are 88.1%, 88.1%, and 93.7%, respectively, and for Eq. (2) are 89.9%,
88.3%, and 80.7%, respectively. The performances of kinship classifica-
tion for the connectivity matrices, generalized communicability, and
edge betweenness, using Eq. (3), are 88.5%, 88.5%, and 87.3%, respec-
tively. The corresponding performances for Eq. (1) are 89.7%, 85.8%,
and 75.2%, respectively, and for Eq. (2) are 87.4%, 83.6%, and 75.5%,
respectively.

Notice, that in some cases, Eq. (1) produces slightly better classifi-
cation results than Eq. (3), however, as indicated in Appendix A, only
Eqs. (2)–(3) reduce significantly the confounding effects of brain size.
In addition, Eq. (3) produces the best overall classification results,
considering all the classes and topological metrics.

Classification performance was just slightly better than chance for
all topological metrics at the node level (Fig. 1), and hence, they were
not compared here using Eqs. (1)–(3). Next sections show in more
detail the classification results using Eq. (3).

Connectivity matrices
We start with the classification results when the “raw” connectiv-

ity matrices are used, one per individual and one per pair of individ-
uals. Tables 1 and S5 (for the confusion matrix, provided in the
supplementary material) compare sex classification performance
using all features (probabilities of connection between the n=70 cor-
tical regions) of the connectivity matrix against feature selection. Fea-
ture selection greatly improves classification performance—the
selected features provide more information to distinguish between
sexes. Overall, classification accuracy improved from 49.5% using up
to 2763 features of the connectivity matrices, to 93% after feature se-
lection that reduced the number of features to 297. According to our
permutation tests, the probability of achieving this classification per-
formance by chance is 0.001 or lower. Fig. 2a shows the features that
provide the best classification results for sex, in the raw connectivity
matrix. Table S7 in the supplement lists the selected features in more
detail.

The feature selection algorithm selected 70 inter-hemispheric fea-
tures as influential for sex classification purposes and about the same
number of features on the left (113) and right (114) hemispheres
(Fig. 2a).

Tables 2 and S6 (for the confusion matrix, in the supplementary
material) compare kinship classification performance using all fea-
tures of the connectivity matrix versus feature selection. Here, the
overall classification accuracy improved from 63.5% using up to
2763 features of the connectivity matrix to 88.5% using the 250 fea-
tures, automatically selected by feature selection. Permutation tests
indicate that the probability of arriving to this classification perfor-
mance by chance is equal or below to 0.001. Fig. 2b shows the fea-
tures that provide the best classification results for kinship, in the



Fig. 2. Selected features on the connectivity matrix for a) sex and b) kinship
classification.

Table 3
Sex classification performance (see Classification section) using the clustering coeffi-
cient (node level).

Test All features (70) Feature selection (53)

Classification accuracy (%) 55.4 62.7
Sensitivity (%) 64.8 89.6
Specificity (%) 37.0 25.2
Balanced error rate (BER) 0.4983 0.4261
Area under the ROC curve 0.502 0.7309
Kappa statistic 0.0035 0.5214
p-value – 0.001

Table 4
Sex classification performance (see Classification section) using the generalized com-
municability matrix (node-to-node level).

Test All features
(4900)

FDR thresholding
(935)

Feature selection
(298)

Accuracy (%) 51.8 46.2 92.2
Sensitivity (%) 58.0 45.1 93.7
Specificity (%) 26.4 30.9 89.6
BER 0.5268 0.5780 0.0835
ROC area 0.473 0.429 0.917
Kappa −0.054 −0.139 0.832
p-val – – 0.001
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connectivity matrix. Table S8 in the supplementary material list the
corresponding selected features in more detail.

The feature selection algorithm selected 59 inter-hemispheric fea-
tures as influential for kinship classification purposes and about the
Table 2
Kinship classification performance (see Classification section) obtained from the con-
nectivity matrix (node-to-node level).

Test All features (2763) Feature selection (250)

Accuracy (%) 63.49 88.5 (0.010)
Sensitivity identical twins (%) 28.0 80.4
Specificity identical twins (%) 88.2 94.5
Sensitivity non-identical twins (%) 46.8 86.2
Specificity non-identical twins (%) 77.8 96.0
Sensitivity siblings (%) 28.6 72.2
Specificity siblings (%) 92.5 97.4
Sensitivity unrelated people (%) 100.0 99.9
Specificity unrelated people (%) 88.3 96.9
BER 0.3671 0.1535 (0.016)
ROC area 0.759 0.904 (0.01)
Kappa 0.4796 0.838 (0.017)
p-value – 0.001(0)
same number of features selected on the left (97) and right (94)
hemispheres (Fig. 2b).

Topological metrics
The best results at the node level correspond to the clustering co-

efficient and for sex classification, as indicated in Table 3. Overall clas-
sification accuracy improved from 55.4% using the clustering
coefficient on all 70 nodes to 62.7% using the 53 (not a significant re-
duction) nodes selected using automatic feature selection.

On the other hand, good classification results were obtained for sex
and kinship using the node-to-node topological metrics: edge between-
ness centrality (EBC) and the generalized communicability matrix (P),
respectively. The results from the generalized communicability matrix
are slightly better than those using EBC for sex, while those from EBC
are slightly better for kinship. Hence, we present here the best classifica-
tion performances.

Tables 4 andS9 in the supplement (confusionmatrices) show the sex
classification performance using the generalized communicability ma-
trix. For comparison purposes,we also compute the classification perfor-
mance using FDR (Abramovich and Benjamini, 1996) to select the most
statistically significant elements of the generalized communicability
Table 5
Kinship classification performance (see Classification section) using edge betweenness
centrality (node-to-node level).

Test All features
(2388)

FDR
thresholding
(1031)

Feature
selection
(251)

Accuracy (%) 57.1 32.14 87.3
Sensitivity identical twins (%) 22.0 16.0 76.4
Specificity identical twins (%) 84.7 85.6 97.0
Sensitivity non-Identical Twins (%) 40.3 31.3 86.7
Specificity non-Identical Twins (%) 82.2 71.9 92.0
Sensitivity siblings (%) 25.7 11.4 70.9
Specificity siblings (%) 91.2 90.8 97.5
Sensitivity unrelated people (%) 97.0 48.0 98.8
Specificity unrelated people (%) 83.6 53.9 96.1
BER 0.5636 0.8870 0.1677
ROC area 0.708 0.511 0.8945
Kappa 0.3843 0.0234 0.820
p-val – – 0.001
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Fig. 3. a) Selected features on the communicabilitymatrix for sex classification, b) selected
features on the edge betweenness centrality matrix for kinship classification. Color code
corresponds to the score given by the feature selection algorithm.
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matrix at the q=0.05 level. Sex classification accuracy improved from
51.8% using all 4900 features of the generalized communicability matrix
to 92.2%14 using the 301 features automatically selected by feature se-
lection. The overall accuracy of sex classification degraded to 46.2%
using the 935 features selected by FDR thresholding.

Tables 5 and S10 in the supplement show the kinship classification
performance using edge betweenness centrality, where as before, we
included the classification performance using FDR for feature selection.
The overall kinship classification accuracy improved from 57.1% using
2388 features of P to 87.3% using the 251 features selected by feature se-
lection. The overall accuracy of kinship classification degraded to 32.1%
using the 1031 features selected by FDR thresholding.

Fig. 3a shows the 301 features (entries) of the generalized com-
municability matrix that provide the best classification results for
sex (listed in more detail on Table S11), while Fig. 3b shows the 251
features (edges) of the EBC metric that provide the best classification
14 Notice in Tables S3–S4 that EBC has a slightly higher classification than communi-
cability, but it has a higher BER error, hence we choose here the generalized communi-
cability matrix.
results for kinship (listed in more detail on Table S12). The 301 best
entries of the communicability matrix for sex classification represent
weighted walks of different lengths (or subgraphs, see Node-to-node
level section) centered on the connections indicated on Fig. 3a.

The total number of automatically selected entries of the commu-
nicability matrix was distributed as 99 centered on inter-hemispheric
connections, 116 centered on the left hemisphere, and 86 on the right
hemisphere. On the other hand, the 251 entries of the EBC for zygosity
classification represent (see Node-to-node level section) the impor-
tance of each connection in the connectivity matrix in terms of short-
est paths using such connections. In particular, the selected entries of
the EBC were distributed as (Fig. 3b) 51 inter-hemispheric, 94 in the
left hemisphere, and 107 in the right hemisphere.

Even though classification with cross-validation does not require
Bonferroni correction, the p-values of the permutation tests do re-
quire correction, as each permutation test corresponds to testing
the null hypothesis that the reported classification performance was
obtained by chance (Ojala and Garriga, 2010). In these two lines of re-
search (sex and kinship), we performed permutation tests for the 11
proposed topological metrics (not all shown here) indicated in Fig. 1
at the node and node-to-node levels, plus the permutation tests per-
formed to compare Eqs. (1)–(3) and those to compare the general-
ized communicability matrix with the communicability matrix (also
not shown for space reduction). Hence, we did in total 13 permuta-
tion tests for sex and 13 for kinship. The BH-FDR correction keeps
the overall false discovery rate for the permutation tests to 0.001,
since all tests rejected the null hypothesis at this confidence level.

Hypothesis testing

Connectivity matrices
Wenowpresent the results of hypothesis testing on differences in the

connectivity matrix due to sex and kinship. Prior work on connectivity
matrices for differentiating sex and kinship classes have focused on just
a few connections (10) (Jahanshad et al., 2011). Previous work also did
not consider all possible pair-wise comparisons between identical
twins, non-identical multiples, non-twin siblings, and unrelated subjects.

Sex Differences. Fig. 4 shows the 36 statistically significant sex differ-
ences found in the connectivity matrices after BH-FDR error control,
requiring a Z-score 1.75 or higher (p-value of 0.0405 or lower, for a
Fig. 4. Z-score sex differences from the connectivity matrix. The color map indicates
where the probability of connection is higher for women (magenta) or for men
(cyan). Color code corresponds to the score given by the feature selection algorithm.
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Fig. 5. Z-score Kinship differences using the connectivity matrix. a) Identical twins vs non-identical multiples, b) identical twins vs siblings, c) identical twins vs unrelated, d) non-
identical multiples vs siblings, e) non-identical multiples vs unrelated, and f) siblings vs unrelated. The color map indicates where the differences are higher for the first group (ma-
genta) or for the second (cyan).
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single tailed normal distribution). The color map indicates where the
probability of connection is higher for women (magenta) than for men
(cyan). As seen in this figure, on average, women have higher brain con-
nectivity than men in both hemispheres, on the directed connection
pairs shown. Fig. 4 also shows that women have higher inter-
hemispheric connectivity than men, in agreement with Jahanshad et
al. (2011). Nevertheless, men have some higher probabilities of connec-
tion than women, mainly on the right hemisphere (Fig. 4). Table S13 in
the supplement shows in more detail each pair of connection statistics
(36) with their means and p-values. The first five largest relative differ-
ences with the lowest p-values were in the following connections: Pars
Opercularis–Post Central and Frontal Pole–Caudal Anterior Cingulate, in
the left hemisphere, Inferior Parietal–Corpus Callosum, in the right
hemisphere, and the inter-hemispheric connectionsCuneus (right)–Lat-
eral Occipital (left) and Inferior Parietal (left)–Corpus Callosum (right).

Kinship differences. Fig. 5 shows the statistically significant differences
between a) identical twins and non-identical multiples, b) identical
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twins and non-twin siblings, c) identical twins and unrelated pairs of
individuals, d) non-identical multiples and non-twin siblings, e) non-
identical multiples and unrelated pairs of individuals, and f) non-twin
siblings and unrelated pairs of individuals; covering thus all possible
pair-wise comparisons between these four groups. The reported dif-
ferences have a Z-score of 2.67 or higher as required by the FDR
error control overall possible pair-wise comparisons. As may be
expected for a genetically influenced trait (Thompson et al., 2001),
greater differences are found between unrelated pairs of individuals
and siblings than between non-twin siblings and twins. Also, greater
differences are found between siblings and twins than between identical
twins and non-identical multiples. The color map indicates where the
differences are higher for the first group (magenta) or for the second
(cyan).

Of special interest are the connections that show the highest Z-score
differences between identical twins and non-identical twins (Fig. 5):
Lateral Orbitofrontal–Middle Temporal, Rostral middle frontal–Supra-
marginal, and Supra–marginal–Rostral middle frontal, in the left hemi-
sphere, and the inter-hemispheric connection Corpus callosum (left)–
Medial Orbitofrontal (right). Most of the differentiating connections be-
tween identical twins and non-identical twins are either in the left
hemisphere or in the inter-hemispheric connections. A similar behavior
can be observed on the differences between identical twins and non-
twin siblings.

Topological metrics
We now concentrate on the topological metrics and study their

strength in distinguishing between the different groups and between
real brain networks and random ones.

Random networks. We first report differences between real brain con-
nectivity networks and random networks, obtained by rewiring, at
random, the original brain connectivity networks while preserving
the in and out node degrees (recall that following the normalization,
the obtained networks are directed). Table 6 shows the mean and
standard deviation (within parenthesis) of the topological metrics
tested, and the Z-score for the difference between the real networks
and the corresponding random networks for each topological metric.

The exponent γ of the scale-free, node degree truncated power law
distribution (Boccaletti et al., 2006; Bullmore and Bassett, 2011), is also
shown. From the 13 possible directed motifs of size three mentioned
before (Fig. S2), onlymotifs 9 and 13 are present in the brain connectiv-
itymatrices analyzed here, and therefore only the intensity (Global and
node levels section) of these two motifs are compared in the table.

The FDR multiple hypothesis testing error control rejects all null hy-
pothesis with a Z-score equal or above 2.12, at a family-wise error con-
trol level of 0.05. Hence, the global clustering coefficient, modularity,
and motifs 9 and 13, can be used to differentiate real brain connectivity
networks from their corresponding random network.

As the nodes' degree in the brain connectivity networks follows a
truncated power law, we can say that these networks are scale-free.
Table 6
Global topological metrics comparing brain connectivity with random networks.

Metric Human brain Random Z-score

γ 2.84 (1.44) – –

Clustering coefficient 0.0766 (0.0130) 0.0148 (0.0019) 13.6
Characteristic path 77.50 (18.9) 77.5 (18.9) 0
Node betweenness 155.17 (12) 147.64 (8.72) 0.51
Modularity 0.7029 (0.0195) 0.3380 (0.0187) 13.51
Rentian scale 0.6958 (0.0394) 0.7957 (0.031) 2.0
PageRank 0.0143 (0.0096) 0.0143 (0.084) 0
Estrada index 73.1 (0.87) 71.78 (0.55) 1.28
Triangular motif 9 3.8680 (0.7077) 0.589 (0.173) 4.50
Triangular motif 13 1.8591 (0.4685) 0.042 (0.0253) 3.87
Since the characteristic path of these networks is as efficient as
that of the corresponding random networks, while the clustering co-
efficient and modularity are higher, we can infer that brain networks
satisfy the small-world property, i.e., they combine high modularity
with a robust number of inter-modular short paths (Boccaletti et al.,
2006; Rubinov and Sporns, 2010).

We have then demonstrated small-worldness of anatomical brain
connectivity networks using a relatively large number of samples, and
found that, according to other topological metrics, the networks are
non-random.

Sex differences. Following the hierarchical scheme of Multiple families
of hypothesis testing section (see also Fig. 1), we threshold the con-
nectivity matrices at different screening values and compute the
one-tailed p-values obtained from the bootstrapped distributions of
the mean (Eq. (15)), for each one of the 9 topological metrics consid-
ered. Fig. S4 details these results in terms of the Z-score for each topo-
logical metric, when the connectivity matrices are thresholded in the
[0, 0.05] range, as well as the BH-FDR threshold. The BH-FDR method
requires a minimum Z-score of 2.5, fromwhich we conclude that only
Fig. 6. Sex differences considering a) the clustering coefficient, b) the communicability
eigenvalues.
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Fig. 7. Sex differences considering a) the edge betweenness centrality, b) the commu-
nicability matrix.
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the clustering coefficient satisfies the FDR error control at the node
level. In addition, the eigenvalues of the communicability matrix
may be tested for statistical significance at this level (Fig. 1), to
check if the communicability matrix should be tested at the node-
to-node level.

Fig. 6a shows the Z-score for the differences in the clustering coef-
ficient, due to sex, on each node; while Fig. 6b shows the Z-score for
the eigenvalue differences of the communicability matrix, also due
to sex. Higher clustering coefficients for women are shown in magen-
ta, while higher clustering coefficients in men are indicated in cyan.
Figs. 6a and b also indicate, in black dashed lines, the minimum Z-
score (2.13) required by the BH-FDR error control on both families
of tests, at q=0.05. Table S14 in the supplement details the sex differ-
ences in the clustering coefficient. In this figure, most differences are
in the left hemisphere, which agrees with previous results indicating
women have a higher brain connectivity than men in the left hemi-
sphere (Gong et al., 2009; Jahanshad et al., 2011). Here, we obtained
similar results with a relatively larger number of HARDI images and
using all the brain regions indicated in Table S1.

We found that the following cortical regions in the left hemisphere
have a larger clustering coefficient in women than in men: Caudal Ante-
rior Cingulate, Pars Orbitalis, Rostral Anterior Cingulate, Rostral Middle
Frontal. In the right hemisphere, we found that the Cuneus and Middle
Temporal cortical regions have also a larger clustering coefficient in
women than in men.

Fig. 6b indicates that in the spectral decomposition of the commu-
nicability matrix (Node-to-node level section), one eigenvalue was
found to be statistically significant for the differences between
women (magenta) and men (cyan), so there are sex differences in
the communicability matrix at the node-to-node level.

Figs. 7a and b show the Z-score for the statistically significant sex dif-
ferences in the edge betweenness centrality (EBC) and the communica-
bility matrix, respectively, due to sex. For simplicity, the figures only
show the Z-scores for the sex differences exceeding the minimum Z-
score (3.29) required by the BH-FDR error control over both families
of hypothesis tests at the 0.05 level. In both figures, higher EBC or com-
municability values for women are indicated in magenta, while higher
EBC or communicability values for men are indicated in cyan.

As seen in Fig. 7a, only five entries in the EBCmatrix are statistical-
ly significant at this confidence level, and are indicated in more detail
in Table S15 (Supplementary material). In particular, the EBCmetric is
higher in women than in men for the following connections in the left
hemisphere: Non-cortical–Lingual and Lingual–Parahippocampal. In
the right hemisphere, we found that the EBC metric is higher in
women than in men for the Precuneus–Corpus Callosum
connection. Finally, the EBC metric on the inter-hemispheric connec-
tion Supra-marginal (left)–Peri-calcarine (right) is also higher in
women than in men. The p-values are around 10−4, indicating a
very high confidence level.

Fig. 7b shows that 12 differences in the directed communicability
matrix are statistically significant. These differences are explained in
more detail in Table S16 (supplementary material). In general, women
have higher directed communicability values, in the inter-hemispheric
region, than men. These communicability values are very small
(3×10−8 to 7×10−4); this is because only long walks are present be-
tween the indicated nodes, and the contribution of those walks to the
communicability matrix are significantly reduced by the factorial of
the walk length on Eq. (15). For subsequent studies that focus on the
communicability matrix, we recommend zooming in on longer walks,
as suggested in Estrada (2010).

Most of the statistically significant differences found between
women and men in the communicability matrix are in the inter-
hemispheric region and the p-values of these differences are of the
order of 10−4. In particular, the highest differences found were Middle
Temporal (left)–Medial Orbitofrontal (right), Frontal pole (right)–
Parahippocampal (left), Superior Temporal (left)–Medial Orbitofrontal
(right), Transverse temporal (right)–Parahippocampal (left), and
Lingual (right)–Parahippocampal (left).

Finally, the overall FDR for this line of research is FDR ≤3q=0.15
(see Topological metrics section).

Kinship differences. As in the previous section, we thresholded the con-
nectivity matrices at different screening values and compute the one-
tailed p-values obtained from the bootstrapped distributions of the
mean (Eq. (15)), for each one of the 9 topological metrics considered
and for all pair-wise comparisons of kinship groups. The BH-FDR meth-
od requires a minimum Z-score in the 2.8–3.0 range, depending on the
threshold used (Fig. S5 shows these results in greater detail). None of
the global topologicalmetricswas statistically significant, when control-
ling the false discoveries at the 0.05 or even at the 0.1 level. This is likely
because there are 9×6=54 hypothesis tests for all possible pair-wise
comparisons of kinship. ANOVA single factor F-ratio reduces this num-
ber to 34 on average, but still there are too many comparisons and
most global metrics have very low Z-scores (high p-values). One possi-
bility for future analysis would be to consider each case independently,
providing different metrics for each pair-wise comparison. However,
we decided to follow the hierarchical screening process (see Fig. 1),
and test only the communicability matrix eigenvalues at the node level.
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Fig. 8. Z-score kinship differences considering the communicability eigenvalues: a) Identical twins vs non-identical multiples, b) identical twins vs siblings, c) identical twins vs
unrelated, d) non-identical multiples vs siblings, e) non-identical multiples vs unrelated, and f) siblings vs unrelated.
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Fig. 8 shows the communicability eigenvalues for all possible pair-
wise comparisons. The communicability eigenvalues do not provide dif-
ferentiation between identical twins and unrelated pairs of individuals
at the minimum Z-score (2.12) required by the BH-FDR error control.
This indicates that the communicability matrix might not be able to dis-
tinguish kinship relationships at the node-to-node level. The fact that
the eigenvalues of the communicability matrix could not distinguish
all kinship pair-wise comparisons does not necessarily imply that we
cannot find differences using the communicability matrix. However, as
explained in Multiple families of hypothesis testing section, we follow
a conservative approach, and do not test the communicability matrix
at the highest resolution. A complementary study focusing just on the
communicability matrix could test it directly to see if it provides statis-
tically significant differences in kinship.

Fig. 9 shows the statistically significant edge betweenness centrality
(EBC) differences for all pair-wise kinship comparisons. The EBCmatrix
does provide significant differences for kinship identification at the re-
quired BH-FDR error control (Z-score above 2.87). In particular, the
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Fig. 9. Z-score kinship differences considering edge betweenness centrality: a) Identical twins vs non-identical multiples, b) identical twins vs siblings, c) identical twins vs unre-
lated, d) non-identical multiples vs siblings, e) non-identical multiples vs unrelated, and f) siblings vs unrelated.
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connections that show the highest Z-score differences between identi-
cal twins and non-identical twins were (Fig. 9): Superior Frontal
(right)–Caudal Anterior Cingulate (left), Middle temporal (right)–Para-
hippocampal (right), Precuneus (left)–Precuneus (right), Corpus Callo-
sum (right)–Rostral Middle Frontal (right), and Parahippocampal
(left)–Middle temporal (left).

The overall FDR for this line of research is FDR ≤3q=0.15 (see
Topological metrics section).
Discussion

Normalization

In Computing connectivity matrices and brain networks section,
we chose a normalization (Eq. (3)) that aims to reduce cortical vol-
ume differences (caused by brain size differences for instance). It
would be very interesting to study how this normalization affects
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the results if there are global differences in brain size between groups.
In a degenerative disease such as Alzheimer's disease, for example,
there is interest in whether network measures of brain connectivity
are altered by the disease. If they are, it is incumbent on those analyz-
ing the data to find out if the network differences are reducible to a
simpler effect, such as the absolute or relative size of a cortical region
becoming smaller. In Alzheimer's disease and mild cognitive impair-
ment, for example, we know that there is disproportionate atrophy
in the temporal, entorhinal, and cingulate cortices (Apostolova and
Thompson, 2008; Thompson et al., 2003), and so any changes in the
counts and density of fibers innervating those areas should be tested
to see if the changes are due to volume differences in the cortical pro-
jection areas. If the proportion of fibers connecting a given cortical re-
gion to the other cortical regions remains the same in an atrophic
brain relative to a healthy brain, then the network properties of con-
nectivity would not differ after such a normalization. However, if we
do normalize the connectivity matrices for the sizes in the cortical re-
gions, it would be possible to infer if the disease affects connectivity
above and beyond what would be expected from the size of the cor-
tical regions alone. Alzheimer's disease is thought to preferentially
impair temporal and limbic connectivity, at least early in the disease,
and it is interesting to know if the level of cortical disconnection goes
beyond what would be seen in a normal person with smaller cortical
subregions in these areas. Normalization of network measures to cor-
tical ROI size can achieve this. Most neurodegenerative diseases are
expected to influence some connections more than others, generating
a change in the proportion of fibers dedicated to each connection,
when compared to the same cortical region and corresponding con-
nections on a healthy brain. The overall network analysis framework
here developed is currently under investigation for such studies, such
as neurodenegeration in HIV where basal ganglia, motor and frontal
circuits tend to be more greatly impaired than others (Thompson et
al., 2005).

Classification using machine learning methods

Best overall classification performance was obtained using the
normalization indicated by Eq. (3) (Estimation of brain structural
connectivity and Classification sections). With this normalization,
we classified brain connectivity networks, according to sex and kin-
ship classes, with high accuracy, based on the raw connectivity matri-
ces and their associated topological metrics, mainly at the node-to-
node level. In particular, the edge betweenness and the generalized
communicability matrix were powerful for this task. These results
should extend well to unobserved data, as evaluated by the formal
10-fold cross-validation and permutation tests. On the other hand,
sex and kinship classification results were weak using topological
metrics at the node level. This makes sense due to the large variability
of the connectivity matrices that live in a very high dimensional space
(Rn2 ;n ¼ 70), requiring a higher number of features at the node-to-
node resolution.

We cannot numerically compare our sex and kinship machine
learning based classification results with previous work, since to the
best of our knowledge, no previous work has performed such studies,
starting from the raw connectivity matrices or associated topological
metrics.15

A key advantage in achieving the classification results reported
here was provided by the embedded SVM-based automatic feature
selection algorithm (Classification section). This feature selection al-
gorithm evaluates subgroups of features, eliminating redundancies
and identifying features, that when considered individually might
not be very influential, but can be so as a group. The number of fea-
tures selected by this feature selection method is close to (but lower
15 Of course, other studies focusing on sex and inheritance differences have been con-
ducted in the past, as mentioned in the text and cited in the bibliography.
than) the number of samples. This hints that each connectivity matrix
provides distinctive features, unobtainable from the remaining ones.
Therefore, it will be interesting to investigate, as we increase the
number of samples, where the number of features increases to a
point where it saturates.

Of interest, also, would be to compare ranking versus wrappers
feature selection methods; in combination with different classifiers
such as logistic, Bayesian, neural networks. A larger study should be
conducted to test these classifiers on different datasets and with dif-
ferent tractography algorithms (see Dependence on the tractography
algorithm section for a discussion).

Hypothesis testing

Sex differences
We found significant statistical differences, due to sex, in the mean

values of 36 edges in the connectivity matrices. In line with prior
work, we found that there are, on average, structural brain connectiv-
ity differences between women and men. In particular, women have
higher probability of inter-hemispheric connections than men, as
well as higher probabilities of connections on both hemispheres (as
defined in Estimation of brain structural connectivity section), with
some exceptions of course (Fig. 4). This seems to suggest that on av-
erage, women have great structural connectivity supporting inter-
hemispheric communication than men. The higher strength of the
connections in both hemispheres seems to suggest that the commu-
nication between the cortical regions associated with those connec-
tions is slightly better supported structurally in women than in men.

We must point out here however that these differences are on av-
erage. Given the large variability of brain connectivity networks, we
can always find individual men with higher connectivity values than
some women, e.g., for the features indicated in Fig. 4 (and Table S10).

We also found here that the topological metrics mean clustering
coefficient, communicability matrix, and edge betweenness centrali-
ty, allow us to distinguish between men and women. In particular,
the mean clustering coefficient is higher in women than in men, espe-
cially in the left hemisphere and in the cortical regions indicated in
Topological metrics section. On average, the neighborhood of these
cortical regions is more strongly connected for women than for
men. We also find that women have a statistically significant higher
edge betweenness centrality metric in five connections (Topological
metrics section). This means that these connections are more fre-
quently used on shortest path communications in women than in
men. Finally, we found that women have also statistically significant
higher communicability values centered on the inter-hemispheric
connections indicated in Topological metrics section. This suggest
that the inter-hemispheric communication is stronger in women
than in men, supporting the results from the connectivity matrices,
but now at a higher scale that includes walks of any length.

Previous results on structural differences in the brain connectivity
matrix (Jahanshad et al., 2011) and some topological metrics (differ-
ent from the ones used here), on the associated graph (Gong et al.,
2009), agree with the results of this work. In particular, these studies
indicate that women have stronger inter-hemispheric connections
than men (Jahanshad et al., 2011), that women show greater overall
cortical connectivity, and that the underlying organization of their
cortical networks is more efficient, both locally and globally (Gong
et al., 2009), all in agreement with our results. We arrived here at
the same overall conclusions using a larger number of high quality
HARDI images, a larger number of topological metrics, and formal
control of the overall FDR.

Kinship differences
We found significant statistical differences in the mean distribu-

tion of the pair-wise absolute differences in the connectivity matrices
and associated topological metrics, allowing us to distinguish among
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the kinship classes of identical twins, nonidentical twins, non-twin
siblings, and unrelated pairs of individuals. As expected from a genet-
ically influenced trait, these differences increase as the pair of sub-
jects is less and less related. For instance, the structural differences
between identical twins and non-identical twins are less than the
structural differences between twins and non-twin siblings. We can-
not make the same kind of comparisons we did between females and
males, since the differences reported correspond to differences
among classes, where each class is constituted by within-class pair-
wise differences. The differences reported here were made explicitly
for classification purposes, using machine learning methods and hy-
pothesis testing.

Previous and complementary studies on structural brain connec-
tivity differences due to inheritance (Jahanshad et al., 2010;
Thompson et al., 2001) cannot be directly compared with our results,
since those studies do not work directly with the raw connectivity
matrices.

Overall the sex and kinship classification performances (with au-
tomatic feature selection) are very good using the communicability
and edge betweenness topological metrics, but slightly inferior to
using the connectivity matrices directly. We believe that the reason
for this is that topological metrics are at a higher scale and offer less
detail than edges.

Dependence on the tractography algorithm

A key issue in the repeatability of the findings of any study on
structural brain differences based on the DWI-derived connectivity
matrix, is the (possible) strong dependence on the tractography algo-
rithm, and the parameters used for such algorithm. Indeed, this study,
as well as previous studies on structural brain connectivity, assumes
that the number of pathways connecting any pair of cortical regions
has been correctly identified by tractography. Nevertheless, tracto-
graphy results can vary significantly depending on the algorithm
and its parameters, the signal to noise ratio of the data, and registra-
tion (see for instance Hagmann et al., 2006; Shimony et al., 2006). In
particular, simple tensor-based tractography algorithms produce
quite different results from ODF-based models (Hagmann et al.,
2006), and even the most sophisticated tractography algorithms can
produce different results when different parameters are employed.

Taking into account this caveat, we used a state-of-the-art proba-
bilistic HARDI tractography algorithm (Estimation of brain structural
connectivity section), performing an exhaustive search of all the pos-
sible anatomical connections, avoiding thus local minima, and hence
being robust to the variability with respect to different parameters.
The results presented here, as well as previous similar studies, are
subject to the (unknown) accuracy of the tractography algorithm,
and thus statistical results may vary.

In order to further increase the confidence on our results, in addi-
tion to the ODF-based probabilistic tractography algorithm used here,
we tested a simpler, less robust but very popular tensor-based tracto-
graphy algorithm implemented in the Trackvis toolbox.16 We do not
report in detail the results from this tractography, since in general
probabilistic tractography algorithms are superior (Hagmann et al.,
2006), and in particular the one used here (Aganj et al., 2010). Never-
theless, we now briefly discuss how the results using this tensor-
based tractography model compare with the detailed results reported
in Results section. Selected snapshots of the results with this tracto-
graphy are presented in the supplementary material, Figs. S6–S8.

Overall, the classification accuracies are similar using both tracto-
graphymodels. In addition, the overall sex differences are qualitative-
ly the same: higher inter-hemispheric and overall within hemisphere
connections in females than in males. We also obtained statistically
16 http://trackvis.org/.
significant features to discriminate all the kinship classes using the
same topological metrics indicated before. However, the particular
features identified as significant for classification, and using hypothe-
sis testing, are different for both tractography algorithms. This is
clearly not a failure of the methodology proposed here, but a limita-
tion of the current state-of-the-art tractography algorithms. More-
over, the lower robustness of the tensor-based tractography
algorithms is expected to lead to such difference in selected features,
since for example, certain less-complex pathways can be more con-
sistent and less affected by such lower tractography performance.
Features selected by ODF-based probabilistic tractography are
expected to be more reliable.

While the methodology here proposed is expected to be robust to
small variations in the connectivity matrices, it can certainly be affect-
ed by artifacts coming from tractography or other sources that could
seriously bias the connectivity matrices. The robustness of the pro-
posedmethod relies in turn on the robustness of the feature selection,
classification, performance evaluation, and FDR error control
methods, that as shown in the Methods, have strong theoretical and
practical foundations.

FDR error control

There is a general consensus in the scientific community that the
FDR must be controlled when multiple hypotheses are being tested
on the same data. There is however no general agreement on how
to control the FDR when multiple families of hypotheses are tested
along the same line of research. As shown in Hypothesis testing sec-
tion, a strict FDR error control on multiple families of hypotheses
can significantly reduce the number of null-hypotheses that are
rejected, hence, the making of more discoveries.

This is an issue that has been seriously addressed recently, espe-
cially in gene expression studies, where multiple families of thou-
sands of hypotheses must be tested on each gene (Yekutieli, 2008).
We combined the screening method proposed by Rubinov and
Sporns (2010), Bullmore and Bassett (2011), Achard and Bullmore
(2007), Bassett et al. (2008), and the ANOVA F-ratio test, to reduce
the number of uninteresting null-hypotheses, with the novel hierar-
chical approach of Yekutieli (2008), Benjamini and Yekutieli (2005),
Yekutieli et al. (2006), to control the FDR, increasing thus the statisti-
cal power when compared to a naive overall FDR error control. In
spite of this, we cannot reject any null-hypothesis on the kinship clas-
ses, at the topological global level, and only one of the hypotheses
tested at this level was significant for sex differences. We could
have dropped the control of the overall FDR error considering that
is was too strict, but did not, because that undermines the essence
of the FDR error control. Indeed, the same reason why we must con-
trol the false discovery rate on single families of hypotheses testing,
subsists on multiple families of hypotheses testing (on the same re-
search line): the higher the number of hypotheses being tested on
the same data, the higher the probability of rejecting null-
hypotheses by chance, especially, when most of the null-hypotheses
are true or can barely be rejected either individually or at the family
level.

There is however a need for less conservative FDR error control,
especially when the expected proportion of true null-hypotheses is
high, i.e., we expect few true discoveries among many true null-
hypotheses. The high number of individuals considered here im-
proves the accuracy of the estimated distribution of the mean (via
bootstrapping). However, the FDR error control is blind to this,
since the number of hypotheses being tested depends only on the
number of features at each scale (see Methods), which, in our case,
can be O(n2), n being the number of nodes in the network. The FDR
error control penalizes all the same smaller and larger studies. Fur-
ther studies should be conducted to make the FDR error control less
conservative, especially, on larger population studies.

http://trackvis.org/
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Conclusion

In this large scale HARDI study of 303 individuals, we introduced a
unifying, robust and general method to investigate brain connectivity
differences among individuals (including pairs of individuals) using
machine learning and hypothesis testing methods. We also reported
differences among groups or classes of individuals using multiple hy-
potheses tests at several levels of data hierarchy.

We considered both: raw connectivity matrices and derived topo-
logical metrics, at multiple levels: global, single node, and node-to-
node. Feature selection using a wrapper (or embedded method)
was critical to eliminate, for classification purposes, uninformative
connections in the connectivity matrix or topological metrics on the
associated digraphs.

Future work will focus on metrics at different scales and at the
highest resolution scale (as was done with the connectivity matrices).
The study will also be extended to larger datasets, permitting other
kinds of genetic studies, and to denser connectivity matrices derived
from various tractography methods. Of great interest is a formal
study of the sensitivity of classification, feature selection, and multi-
ple hypotheses testing to the tractography model.
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Appendix A. Additional implementation details

We used the publicly available implementations of topological
metrics in the Brain Connectivity Toolbox (BCT),17 that works with
weighted directed graphs. Newer metrics such as the PageRank and
centrality and communicability measures, based on subgraphs, are
not available in the BCT toolbox. Nevertheless, a free implementation
of the PageRank can be found on the web,18 and Ernesto's centrality
and communicability measures can be easily obtained using the
new matrix exponential function (expm) in Matlab.19

In this work, we use the Waikato Environment for Knowledge
Analysis (weka) data mining software,20 which provides feature se-
lection, classification, regression and n-fold cross-validation tools.21

Permutation tests were implemented in JAVA using the weka,
libsvm,22 and Java Statistical Classes23 (jsc) libraries. The permutation
17 https://sites.google.com/a/brain-connectivity-toolbox.net/bct/Home.
18 http://read.pudn.com/downloads149/sourcecode/math/642925/pagerank.m__.
htm or http://www.levmuchnik.net/Content/Networks/NetworkPackageReference.
html#Algorithms.
19 http://www.mathworks.com/help/techdoc/ref/expm.html.
20 http://www.cs.waikato.ac.nz/ml/weka/.
21 Alternatively, the rapidMiner package provides multithreading andmore flexibility
than weka, at the expense of a steeper learning curve.
22 http://www.csie.ntu.edu.tw/cjlin/libsvm/.
23 http://www.jsc.nildram.co.uk/.
tests consist on training the classifier with the selected features and
10-fold cross-validation, over 1000 random permutations of the data-
set labels, in order to generate the null-hypothesis distribution. Since,
the computed p-values of the permutation tests strongly depends on
the performance of the classification being tested (Ojala and Garriga,
2010), we used the average of the classification performance over
1000 different random splittings of the dataset.24 In addition, the
classification performance is not evaluated using a single parameter.
We used here overall classification accuracy, Balanced Error Rate
(BER)25 area under the Receiver Operating Characteristic (ROC),
kappa statistic, and confusion matrices.

In general, classifier performance can be biased due to large differ-
ences in the number of samples for each class. The weka toolbox al-
lows the use of a weight to compensate for the differences in the
number of samples. Nevertheless, this weight did not produce signif-
icant classification differences as compared to the unweighted sam-
ples, as SVMs are less dependent on sample size, because they rely
on a few support vectors.

Single effects F-ratio

Here, we will refer to populations, factors and treatments as it is
usual in experimental design. The population here refers to the boot-
strapped mean differences, due to sex for instance. Factors refer here
to sex differences measured by each one of the topological metrics
considered (Topological metrics section, Fig. 1), while treatments
refer to the differences on each node or node to node that produce
differences in the mean value of the topological metric at those scales.
For instance, a factor is the clustering difference (measured by the
clustering coefficient) due to sex, while the treatments correspond
to the clustering differences on each node that lead to differences in
the clustering coefficient on each node. Here, we use single factor
ANOVA F-ratios to screen out treatments that are not statistically
significant.

The single effects F-ratio is computed as the ratio of the mean
square treatment (main) effect and the mean square (variance with-
in) treatment error (Winer, 1971),

Fi ¼
Mean Squaretreatment i

Mean Squareerror i
¼

�di:−�d ::

� �2
∑j dij−�di:ð Þ2

B−1

;

where dij are the observed differences at the ith node or node to node
i=1,…,n and jth bootstrapped sample j=1,…,B, �di: the mean value
of the bootstrapped samples at i, and �d ::, the overall population
mean. Now, F-ratios where Fi≥F(q, 1,B−1), being F the F-distribution,
are considered statistically significant at the error control level q.

The usual ANOVA F-ratios divide main effects by the pooled exper-
imental error, assuming that error variances (within treatment vari-
ability) are all equal, which is a strong assumption not usually met
in practice. The F-ratio used here allows differences in the experimen-
tal error on each treatment. This implies that this F-ratio does not fol-
low exactly an F-distribution, however, the sampling distribution of
these F-ratios can be approximated by the F-distribution (Winer,
1971). In addition, ANOVA F-ratios also assume independence (no in-
teraction) on each treatment. In general, this independence is not met
in our case, since nodes are neighbors of other nodes. For instance the
neighbors of a node with a high clustering coefficient might also have
high clustering coefficient, since the neighbors are also in the same
cluster. However, we are working here with differences and differ-
ences reduce or eliminate these positive interaction effects. Hence,
in our case dependence among treatments should be weak. Neverthe-
less, if there is dependence among treatments, the results of the F-
24 This is achieved in weka by changing at random the seed.
25 Chosen in the NIPS 2003 feature selection challenge as the main judging criterion.

https://sites.google.com/a/brain-connectivity-toolbox.net/bct/Home
http://read.pudn.com/downloads149/sourcecode/math/642925/pagerank.m__.htm
http://read.pudn.com/downloads149/sourcecode/math/642925/pagerank.m__.htm
http://www.levmuchnik.net/Content/Networks/NetworkPackageReference.html#Algorithms
http://www.levmuchnik.net/Content/Networks/NetworkPackageReference.html#Algorithms
http://www.mathworks.com/help/techdoc/ref/expm.html
http://www.cs.waikato.ac.nz/ml/weka/
http://www.csie.ntu.edu.tw/cjlin/libsvm/
http://www.jsc.nildram.co.uk/
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ratio test are optimistic (Winer, 1971), meaning that more treatments
are accepted as influential. In our case, it means that the test never re-
jects a true influential effect, while non-influential treatments will be
rejected by the subsequent FDR tests. The only purpose of this screen-
ing test is to reduce the number of non-interesting hypotheses to test
using FDR error control, and as we have seen here, this test does just
that despite its simplicity and assumptions.

The single effects F-ratio screening is performed here controlling
the error rate at q=0.15 at the global and node level in order to
avoid overly reducing the number of hypotheses to be tested, and a
0.05 level of significance at the node-to-node level, when thousands
of hypotheses are present.

Regression analysis

We tested the statistical significance of different linear regression
models including the variables sex (coded as −1 men, +1 women),
brain volumes,26 age, and different degrees of interactions, in model-
ing the probability of connection on the whole dataset. We found that
the following model has statistical significance modeling the connec-
tivity matrices, on average,

y ¼ β0 þ β1Sþ β2Bþ β3Aþ β4SB; ð17Þ

where predictors S,B,A represent sex, brain volume, and age respec-
tively, while SB represents the interaction between sex and brain vol-
ume. Given the strong correlation between sex and brain size, we
employed ridge regression that provides regularization when there
is strong collinearity between predictors. The used Matlab implemen-
tation of ridge regression also centers and standardizes the predictors
internally, which improves stability and allow for proper comparison
of the regression coefficients.

Using the normalization provided by Eq. (3), the regression coeffi-
cients were β1=6.15×10−3,β2=−1.87×10−5,β3=−2.12×10−4,
β4=−6.23×10−3. Where we can see that the effect of sex is about
328 times larger than that of brain size and about 30 times larger than
that of age. However, there is still strong negative interaction due to
brain size.

We perform an F-test of significance of the regression model using
the un-centered and un-standardized predictors. We found that we
can reject the null hypothesis that all regression coefficients in the
model are zero, with a level of significance of 0.002. Now, testing
the significance of each factor (using standard t-test), we found that
the sex and age coefficients are statistically significant with a level
of significance of 2.8×10−4 and 0.048, respectively, but the brain vol-
ume coefficient and interaction term are not statistically significant.
Given that the effect of age and interaction with brain volume are
both negative and much lower than the effect of sex, we disregard
those effects in the analysis. The effect of age and brain size (through
interaction) causes a reduction in the statistical power of the analysis
performed (since their effect is negative), which means that some
brain connectivity differences due to sex that might have been influ-
ential could not be detected. This is a small price to pay in exchange
for simplicity in the analysis and proves the importance of the nor-
malization chosen.

The regression coefficients for the centered and standardized predic-
tors using the normalization provided by Eq. (1) were
β1=1.52×10−3,β2=7.93×10−4,β3=2.07×10−4,β4=−8.9×10−3,
whichmeans that the sex effect is about 2 times larger than that of brain
size, 7 times larger than that of age, and about 2 times the interaction
with brain size. Formally, the model is statistically significant, with a sig-
nificance level of 7.5×10−4, and the t-test on each factor reveals that the
coefficients of brain size and age are statistically significant with a
26 The brain volume was calculated from the manually skull-stripped images in mm3

and then converted to liters.
significance level of 1.5×10−7 and 0.035, respectively, while the sex co-
efficient is only statistically significant at a significance level of 0.18. This
means that the brain volume and age are more significant than sex dif-
ferences and hence any differences found using this normalization
alone (without further processing) could be false.

The regression coefficients for the centered and standardized pre-
dictors using the normalization provided by Eq. (2) were
β1=7.58×10−3,β2=4.49×10−5,β3=3.7×10−4,β4=−7.6×10−3,
which means that the sex effect is about 170 times larger than that of
brain size, 20 times larger than that of age, and there is strong interac-
tion with brain size. Formally, the model is statistically significant,
with a significance level of 0.05, and the t-test on each factor reveals
that the regression coefficients of sex and age are statistically significant
with a significance level of 0.007 and 0.046, respectively, while brain
size and its interaction with sex are not statistically significant. As can
be seen this normalization is almost as good as Eq. (3), but we preferred
Eq. (3), since it is also superior in terms of classification performance
(see Classification section) and holds the interpretation described
above.

Appendix B. Supplementary data

Supplementary data to this article can be found online at doi:10.
1016/j.neuroimage.2011.10.096.
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