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Triglycerides are transported in plasma by specific 
triglyceride-rich lipoproteins; in epidemiological studies, 
increased triglyceride levels correlate with higher risk for 
coronary artery disease (CAD). However, it is unclear whether 
this association reflects causal processes. We used 185 
common variants recently mapped for plasma lipids  
(P < 5 × 10−8 for each) to examine the role of triglycerides 
in risk for CAD. First, we highlight loci associated with both 
low-density lipoprotein cholesterol (LDL-C) and triglyceride 
levels, and we show that the direction and magnitude of the 
associations with both traits are factors in determining CAD 
risk. Second, we consider loci with only a strong association 
with triglycerides and show that these loci are also associated 
with CAD. Finally, in a model accounting for effects on LDL-C 
and/or high-density lipoprotein cholesterol (HDL-C) levels, 
the strength of a polymorphism’s effect on triglyceride levels is 
correlated with the magnitude of its effect on CAD risk. These 
results suggest that triglyceride-rich lipoproteins causally 
influence risk for CAD.

CAD is one of the leading causes of death and infirmity worldwide1. 
Plasma lipids such as cholesterol and triglycerides are associated with 
risk for CAD. Cholesterol is mostly carried in either LDL or HDL, 
whereas triglycerides are mostly transported in very-low-density lipo-
protein (VLDL), chylomicrons and remnants of their metabolism.

In observational epidemiological studies, 
increased triglyceride levels, increased LDL-
C levels and decreased HDL-C levels in the 
plasma are associated with increased risk for 
CAD2,3. However, it is difficult to establish 
causal inference in observational epidemiol-
ogy4, especially given the correlations among 
triglycerides, LDL-C and HDL-C3.

SNPs can be used as instruments to test 
whether a biomarker is causally related to dis-
ease risk5,6. Because genotypes are randomly 
assigned at meiosis and are fixed through-
out life, a genetic association may overcome 
some limitations of observational epidemiol-
ogy such as confounding and reverse causa-
tion7,8. Using gene variants that exclusively 
affect a biomarker of interest (i.e., that do 
not have pleiotropic effects on other factors),  

investigators have confirmed LDL-C as a causal risk factor for CAD9 
and have cast doubt on whether HDL-C directly influences risk  
for CAD10–15.

So far, however, it has been challenging to use a similar approach 
to define whether plasma triglyceride levels reflect processes that 
are causal in CAD. In contrast to variants associated with LDL-C 
and HDL-C, nearly all SNPs identified so far for plasma triglyc-
erides have additional effects on either plasma LDL-C or HDL-C 
levels16–18, violating the ‘no pleiotropy’ assumption of instrumental 
variable analysis8,19.

Here we use common variants and develop a statistical framework 
to dissect causal influences among a set of correlated biomarkers. As 
this approach requires a large set of SNPs for which precise measure-
ments of effects on the levels of triglycerides, LDL-C and HDL-C 
and on CAD risk are simultaneously available, we leveraged (i) 185 
common SNPs all representing independent loci that are associ-
ated with at least 1 lipid trait at genome-wide levels of significance;  
(ii) estimates of the effect of each SNP on plasma triglyceride, LDL-C  
and HDL-C levels in a sample exceeding 180,000 individuals; and  
(iii) estimates of the effect of each SNP on CAD in a sample exceeding 
86,000 individuals (22,233 cases and 64,762 controls).

We studied 185 SNPs at 157 1-Mb intervals with association P < 5 ×  
10−8 for triglyceride, LDL-C or HDL-C levels in a meta-analysis  
involving 188,577 genotyped individuals (see the companion man-
uscript; ref. 20). For each SNP, we obtained effect estimates for  
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Figure 1 Effect of a SNP on the levels of triglycerides and LDL-C and on risk for CAD. (a) Black dots 
represent SNPs with PCAD < 0.001. (b) Red dots represent SNPs with 0.01 < PCAD < 0.001.  
(c) Gray dots represent SNPs with PCAD > 0.10. Loci strongly associated with CAD tend to have 
consistent directions of effect for both triglyceride and LDL-C levels (bottom left and top right 
quadrants). In contrast to the gray dots, the black and red dots are concentrated in the bottom  
left and top right quadrants. β values are in s.d. SNPs with −0.10 < βLDL-C < 0.10 and  
−0.10 < βtriglycerides < 0.10 are shown.
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triglycerides (βtriglycerides), LDL-C (βLDL-C) and HDL-C (βHDL-C) (in 
s.d., estimated using inverse normal transformed residuals of lipid lev-
els after adjusting for covariates; see Supplementary Fig. 1 for study 
design). We also estimated the effect of each SNP on CAD risk (βCAD) 
using data from a recently published genome-wide association study 
(GWAS) involving 86,995 individuals (the CARDIoGRAM study)21. 
For the 185 SNPs, effect sizes (β values) and P values for triglycerides, 
LDL-C, HDL-C and CAD are shown in Supplementary Table 1.

We considered several analytical approaches to investigate whether 
plasma triglyceride levels reflect processes that are causal in CAD. 
First, we evaluated the direction and magnitude of βLDL-C and 
βtriglycerides in combination and then compared these values to βCAD 
(Fig. 1 and Supplementary Fig. 2). Second, to isolate the effects of 
triglycerides for the 185 SNPs, we restricted analysis to loci that had 
moderate to strong effects on triglyceride levels (large βtriglycerides) 
but minimal effects on LDL-C levels (small βLDL-C). Finally, across 
the 185 SNPs, we formally developed and applied a statistical frame-
work to test whether the effect size of a SNP on triglyceride levels was 
linearly related to its effect size on CAD, before and after accounting 
for the potential effect of the same SNP on plasma LDL-C and/or 
HDL-C levels.

For each of the 185 independent lipid-associated SNPs, we evalu-
ated joint patterns of associations for triglyceride and LDL-C levels by 
examining SNPs that had strong associations with both triglycerides 
and LDL-C (P < 5 × 10−8 for each). Among these, we examined SNPs 
with the same direction and a similar magnitude of association for 
both lipid traits (within a factor of 5 of each other). We observed 11 
loci with this pattern of association. Five loci conferred risk for CAD  
(P < 0.05), and 10 of the 11 loci showed a direc-
tion of effect that was consistent between the 
lipid traits and CAD (Table 1). For example, 
the A allele at rs2954022 in the TRIB1 gene 
was strongly associated with lower triglycer-
ide levels (βtriglycerides = −0.078; P = 2 × 10−124) 
and lower LDL-C levels (βLDL-C = −0.055;  
P = 4 × 10−51) and showed the expected asso-
ciation with lower CAD risk (βCAD = −0.056; 
P = 6 × 10−5).

Next, we identified SNPs that had strong 
associations with both triglyceride and 
LDL-C levels (P < 5 × 10−8 for each) but 

had opposite directions for βtriglycerides and 
βLDL-C (within a factor of 5 of each other; 
Table 2). Four SNPs showed this pattern, 
and none of these showed significant asso-
ciation with CAD (all P > 0.05). For example, 
the A allele at rs2255141 in the GPAM gene 
was associated with lower triglyceride levels  
(βtriglycerides = −0.021; P = 1 × 10−8) and 
higher LDL-C levels (βLDL-C = 0.030; P = 7 × 
10−14) but had no discernible effect on CAD 
risk (βCAD = −0.0076; P = 0.63).

Second, we considered a subset of the 185 
SNPs that had moderate to strong effects 
on triglyceride levels but minimal effect on 
LDL-C levels (n = 44 SNPs, all SNPs had large 
βtriglycerides (>0.01 or <–0.01) but small βLDL-C  
(between −0.01 and 0.01)). In regression 
analysis, we confirmed that βLDL-C was not 
associated with βCAD for this set of SNPs  
(P = 0.68; Supplementary Table 2). However, 

we observed a significant association between βtriglycerides and βCAD 
(P = 3 × 10−5; Supplementary Table 3). These observations suggest 
that the direction and magnitude of the effects of a SNP on both 
triglyceride and LDL-C levels affect risk for CAD.

To formally investigate whether the strength of a SNP’s association 
with triglyceride levels predicts CAD risk, we devised a statistical 
framework that controls for pleiotropic effects on secondary lipid 
traits. This approach is particularly important because SNP associa-
tion signals with triglyceride, LDL-C and/or HDL-C levels (βtriglycerides, 
βLDL-C and βHDL-C, respectively) are correlated (Supplementary Fig. 3 
and Supplementary Table 4).

We tested the role of triglyceride levels in CAD by first calculating 
residuals of βCAD after including βLDL-C and βHDL-C as covariates in 
our regression model (Supplementary Fig. 1). We then tested the 
association of βtriglycerides with βCAD residuals. Similar models were 
created to assess the independent roles of LDL-C and HDL-C levels.

We observed that, across the 185 SNPs, βLDL-C was strongly asso-
ciated with βCAD, after adjusting for either βtriglycerides individually, 
βHDL-C individually, or both βtriglycerides and βHDL-C (all P < 1 × 
10−18; Table 3). The pattern for βHDL-C was different. Across the 185 
SNPs, βHDL-C was associated with βCAD, after adjusting for βLDL-C 
(P = 0.005); however, this association was greatly attenuated after 
adjusting for βtriglycerides individually (P = 0.057) and was rendered 
non-significant after accounting for both βtriglycerides and βLDL-C  
(P = 0.35; Table 3).

The results for triglycerides were similar to those observed for LDL-C.  
Across the 185 SNPs, βtriglycerides was strongly associated with βCAD, 
after adjusting for both βLDL-C and βHDL-C (P = 1 × 10−9; Table 3).

table 1 sNPs with consistent direction of genetic effects on lDl-C and triglyceride levels 
and their relationship to risk for CAD

LDL-C Triglycerides CAD

Locus rs ID A1 βLDL-C P βtriglycerides P βCAD P

ANGPTL3 rs4587594 A −0.049 3 × 10−37 −0.069 3 × 10−87 0.017 0.26

APOB rs1367117 A 0.12 2 × 10−196 0.025 3 × 10−12 0.035 0.02

GCKR rs3817588 T 0.026 3 × 10−8 0.067 7 × 10−58 0.034 0.08

TIMD4 rs6882076 T −0.046 5 × 10−33 −0.029 1 × 10−16 −0.021 0.15

HLA-B rs2247056 T −0.025 6 × 10−9 −0.038 2 × 10−22 −0.030 0.06

TRIB1 rs2980885 A −0.031 4 × 10−12 −0.058 5 × 10−45 −0.041 0.02

TRIB1 rs2954022 A −0.055 4 × 10−51 −0.078 2 × 10−124 −0.056 6 × 10−5

ABCA1 rs1883025 T −0.030 1 × 10−11 −0.022 3 × 10−8 −0.014 0.41

APOA1 rs10790162 A 0.076 3 × 10−26 0.23 1 × 10−276 0.13 2 × 10−6

CETP rs9989419 A 0.028 8 × 10−13 0.024 3 × 10−12 0.010 0.61

CILP2 rs10401969 T 0.12 2 × 10−60 0.12 3 × 10−76 0.11 2 × 10−4

Shown are SNPs that have strong association with both LDL-C and triglyceride levels (P < 5 × 10−8 for each), have 
consistent direction of effect size for LDL-C and triglycerides, and have a ratio of magnitude of effect size of LDL-C 
to triglycerides within a factor of 5. Five loci confer risk for CAD (P < 0.05), and 10 of the 11 loci show consistent 
direction of effect for both lipid traits with the effect of CAD. All β estimates were calculated with respect to the  
A1 allele.

table 2 sNPs with opposite direction of genetic effects on lDl-C and triglyceride levels 
and their relationship to risk for CAD

LDL-C Triglycerides CAD

Locus rs ID A1 βLDL-C P βtriglycerides P βCAD P

MIR148A rs4722551 T −0.039 7 × 10−16 0.027 2 × 10−9 −0.033 0.23

GPAM rs2255141 A 0.030 7 × 10−14 −0.021 1 × 10−8 −0.0076 0.63

FADS1-2-3 rs1535 A 0.053 3 × 10−43 −0.046 1 × 10−40 0.0019 0.90

APOE rs7254892 A −0.49 8 × 10−365 0.12 4 × 10−31 −0.14 0.09

Shown are SNPs that have strong association with both LDL-C and triglyceride levels (P < 5 × 10−8 for each) but 
have opposite directions of effect for LDL-C and triglycerides and have a ratio of magnitude of effect size of LDL-C to 
triglycerides within a factor of 5. Four SNPs displayed this pattern, and none showed significant association with CAD 
(all P > 0.05). All β estimates were calculated with respect to the A1 allele.
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As an alternative to this approach using residuals, we also tested a 
single model with the outcome variable of βCAD and predictor variables 
of βtriglycerides, βLDL-C and βHDL-C considered jointly (Supplementary 
Table 5). Results were similar, with βtriglycerides and βLDL-C showing 
association with βCAD (P = 2 × 10−10 and 1 × 10−22, respectively), but 
with βHDL-C failing to show association (P = 0.32).

In summary, we have demonstrated that (i) SNPs with the same 
direction and a similar magnitude of association for both triglycer-
ides and LDL-C tend to associate with CAD risk; (ii) loci that have 
an exclusive effect on triglycerides are also associated with CAD; and 
(iii) the strength of a SNP’s effect on triglyceride levels is correlated 
with the magnitude of its effect on CAD risk, even after accounting 
for the same SNP’s effect on LDL-C and/or HDL-C levels.

Using an analytical approach that accounts for the potential pleio-
tropic effects of a SNP on triglyceride, LDL-C and/or HDL-C lev-
els, we provide evidence that plasma triglyceride levels likely reflect 
processes that are causal in CAD. This finding, based on data at 185 
common SNPs, is in line with recent reports of specific genes pre-
dominantly related to triglyceride levels also affecting risk for CAD.  
A SNP in the promoter of the APOA5 gene22, a common SNP upstream 
of the TRIB1 gene23 and a nonsense polymorphism in the APOC3 
gene24 all predominantly associate with plasma triglyceride levels, 
and each SNP has been convincingly related to clinical CAD18,25 or 
subclinical atherosclerosis24.

Our results raise several questions. First, if plasma triglyceride lev-
els reflect causal processes, what are the specific mechanistic direct 
links to atherosclerosis? Triglycerides are carried in plasma, mostly 
in VLDL, chylomicrons and remnants of their metabolism, and, as 
such, triglycerides capture several physiological processes that may 
promote atherosclerosis. One potential link is postprandial choles-
terol metabolism. Plasma triglyceride levels are highly correlated with 
the amount of cholesterol in remnant lipoproteins (i.e., VLDL and 
chylomicron particles after interaction with lipoprotein lipase), and 
a variety of evidence, ranging from the human mendelian disorder of 
type III hyperlipoproteinemia to experimental evidence in cell culture 
and animal models, suggests that cholesterol-rich remnant particles 
have proatherogenic properties similar to LDL (reviewed in ref. 26). 
Another process reflected by plasma triglyceride levels is the activ-
ity of lipoprotein lipase, a key enzyme that hydrolyzes triglycerides 

within triglyceride-rich lipoproteins. Higher enzymatic activity of 
lipoprotein lipase in the circulation leads to lower plasma triglyceride 
levels; a gain-of-function nonsense polymorphism in the LPL gene 
has been shown to not only reduce plasma triglyceride levels but also 
to lower risk for CAD27.

Second, why are plasma triglyceride levels not significantly associ-
ated with CAD in observational epidemiological studies when mul-
tiple risk factors are considered jointly to predict risk for future CAD 
(ref. 2)? Multivariate models have known limitations in assessing 
the etiological relevance of a given exposure. For example, an expo-
sure may be rendered non-significant after multivariate adjustment 
because of less precise measurement or greater biological variability 
compared with other factors. Plasma triglyceride measurements are 
more variable than those of other plasma lipids such as HDL-C26. 
Alternatively, downstream effects of an exposure may more com-
pletely capture the risk conferred. For example, body mass index 
does not predict CAD risk in the Framingham model after account-
ing for blood pressure and type 2 diabetes, despite the accepted 
causal influence of weight on blood pressure and type 2 diabetes28. 
Our approach using SNPs as proxies overcomes these limitations of 
observational epidemiology.

Finally, what are the implications of these data for the develop-
ment of drugs aimed at lowering plasma triglyceride levels with the 
hope of reducing CAD risk? Several recent randomized controlled 
trials have tested whether the lowering of plasma triglyceride levels 
with fish oils29 or with fibrates30–32 will decrease risk for CAD, and, 
in many cases, treatment did not reduce risk29,31,32. Possible expla-
nations for failed trials are the use of an incorrect study population, 
an incorrect mechanism of lowering triglyceride levels, an insuf-
ficient degree by which triglyceride levels are lowered and limited 
statistical power.

Our study has several limitations. SNPs associated with triglycer-
ide levels are also related to other lipid traits and, thus, are not ideal 
instruments for mendelian randomization analysis. Given that the 
plasma triglyceride levels measured in blood represent the end prod-
uct of several metabolic processes, it is not surprising that triglyceride- 
related SNPs affect at least one other lipid trait. We have attempted to 
address this complexity through our statistical approach.

We are unable to distinguish whether only specific mechanisms 
of altering triglyceride levels affect risk for CAD. Of note, there is 
strong evidence that at least three mechanisms that robustly influence 
triglycerides—loss of APOA5 function, loss of TRIB1 function and 
gain of APOC3 function—increase risk for CAD.

In summary, we use common polymorphisms and employ a statisti-
cal framework to dissect causal influences among a set of correlated 
biomarkers. By applying this framework to a correlated set of plasma 
lipid measures and CAD risk, we suggest a causal role of triglyceride-
rich lipoproteins in the development of CAD.

MeTHoDS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Transcript sequences are available in GenBank for 
ANGPTL3 (NM_014495), APOB (NM_000384), GCKR (NM_001486), 
TIMD4 (NM_138379), HLA-B (NM_005514), TRIB1 (NM_025195), 
ABCA1 (NM_005502), APOA1 (NM_000039), CETP (NM_000078), 
CILP2 (NM_153221), MIR148A (NR_029597), GPAM (NM_020918),  
FADS1, FADS2 and FADS3 (NM_013402, NM_004265 and  
NM_021727, respectively), APOE (NM_000041), APOA5  
(NM_052968) and APOC3 (NM_000040).

table 3 Association of the strength of a sNP’s effect on plasma 
lipid levels with its strength of effect on CAD risk
Outcome Predictor Covariate β s.e.m. P

– 0.41 0.039 4 × 10−20

βCAD βLDL-C βHDL-C 0.38 0.039 9 × 10−19

βtriglycerides 0.40 0.034 1 × 10−23

βHDL-C, βtriglycerides 0.38 0.034 2 × 10−22

– −0.18 0.052 0.0006

βCAD βHDL-C βLDL-C −0.12 0.041 0.005

βtriglycerides −0.09 0.048 0.057

βLDL-C, βtriglycerides −0.04 0.037 0.35

– 0.44 0.074 2 × 10−8

βCAD βtriglycerides βLDL-C 0.42 0.057 5 × 10−12

βHDL-C 0.36 0.074 3 × 10−6

βLDL-C, βHDL-C 0.36 0.057 1 × 10−9

Residuals for βCAD were calculated after adjustment of a SNP’s effect on the denoted 
lipid trait. A total of 185 SNPs identified from GWAS for LDL-C, HDL-C and triglycer-
ides were included in regression analysis. βLDL-C, βHDL-C and βtriglycerides represent the 
effect sizes for a SNP on LDL-C, HDL-C and triglycerides, respectively, in the GWAS 
meta-analysis for lipids. Regression was performed with the predictor variable of the 
effect size on lipid traits (β estimate from predictor column) and the outcome variable 
of residual CAD effect size after adjusting for covariates.
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Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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oNLINe MeTHoDS
For the association of a given SNP with a plasma lipid trait, we obtained 
estimates of the effect size (βtriglycerides, βLDL-C and βHDL-C) and strength of 
association (P value) from a meta-analysis of association results from genome-
wide and custom-array genotyping—the Global Lipids Genetics Consortium 
(GLGC) Metabochip study (described in a companion manuscript published 
in this issue; ref. 20). All effect sizes are in s.d. from inverse normal trans-
formed residuals of lipids after adjusting for covariates. This analysis included 
up to 188,577 individuals from 60 studies. For the association of a given SNP 
with CAD, we obtained estimates of the effect size (βCAD) and strength of 
association (P value) from a published GWAS for CAD—the CARDIoGRAM 
study21. This study included 22,233 cases and 64,762 controls.

We selected independent SNPs associated with plasma lipid levels using the 
following criteria. First, we restricted to SNPs with association with at least one 
of the three lipid traits (triglyceride, LDL-C or HDL-C levels) at a genome-
wide significance level of P < 5 × 10−8. For each lipid-associated locus, defined 
as a region of the genome that has a cluster of associated SNPs within 1 Mb of 
each other, we selected the strongest associated SNP (lead SNP). For loci with 
multiple associated SNPs, we calculated pairwise linkage disequilibrium (LD) 
estimates (r2) for these SNPs using whole-genome sequencing data from 85 
Utah residents of Northern and Western European ancestry (CEU) samples 
from the 1000 Genomes Project33 and selected a second SNP if there was very 
low LD (r2 < 0.05) with the lead SNP. In total, we selected 185 SNPs that met 
these criteria. These criteria yield a conservative estimate of the number of 
independent lipid-associated SNPs. A list of effect sizes and P values for the 
levels of triglycerides, LDL-C and HDL-C and for CAD for the 185 selected 
SNPs is shown in Supplementary Table 1.

To formally investigate whether the strength of a SNP’s association with 
triglyceride levels predicts CAD risk, we performed linear regression on the 
effect sizes of each SNP for triglycerides (βtriglycerides), LDL-C (βLDL-C) and 

HDL-C (βHDL-C) as predictor variables and the effect sizes of CAD (βCAD) as 
the outcome variable. To control for pleiotropic effects, we first calculated the 
residuals of βCAD after adjusting for covariates of βtriglycerides, βLDL-C and/or 
βHDL-C. We then performed linear regression analysis in a second model on 
the effect size of the primary lipid trait (βtriglycerides, βLDL-C or βHDL-C) with 
the residuals of βCAD. For example, to test for the role of LDL-C levels in CAD, 
we first calculated residuals of βCAD after including as covariates βtriglycerides 
and βHDL-C in our regression model. In a second regression model, we then 
performed association of residual βCAD with βLDL-C. All possible combinations 
of linear regression analysis were performed for βtriglycerides, βLDL-C or βHDL-C 
and βCAD (Table 3).

As an alternative to this residuals approach, we also tested a single model in 
which the outcome variable of βCAD was tested with the predictor variables of 
βtriglycerides, βLDL-C and βHDL-C jointly considered (Supplementary Table 5). 
We also performed several sensitivity analyses to test for the effect of using 
different thresholds of βtriglycerides and βLDL-C when highlighting loci with asso-
ciations with both triglyceride and LDL-C levels (Supplementary Tables 6–8). 
We used thresholds that yielded the highest number of SNPs for each statisti-
cal analysis (factor threshold of five in Tables 1 and 2; β cutoff value of 0.01 
in Supplementary Tables 2 and 3). Furthermore, we assessed the effect of 
extreme influential outliers using Cook’s D statistic34 (Supplementary Fig. 4 
and Supplementary Table 9) on our conditional regression models (Table 3). 
A list of the number of SNPs included in each of the different analyses is shown 
in Supplementary Table 10.

33. 1000 Genomes Project Consortium. A map of human genome variation from 
population-scale sequencing. Nature 467, 1061–1073 (2010).

34. Cook, R.D. Detection of influential observations in linear regression. Technometrics 
19, 15–18 (1977).
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