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health as we age. A number of commonly-carried genetic variants are associated with obesity. Here we aim to
see whether variants in obesity-associated genes – NEGR1, FTO, MTCH2, MC4R, LRRN6C, MAP2K5, FAIM2,
SEC16B, ETV5, BDNF-AS,ATXN2L, ATP2A1,KCTD15, and TNN13K – are associatedwithwhitemattermicrostructural
properties, assessed by high angular resolution diffusion imaging (HARDI) in young healthy adults between 20
and 30 years of age from the Queensland Twin Imaging study (QTIM). We began with a multi-locus approach
testing how a number of common genetic risk factors for obesity at the single nucleotide polymorphism (SNP)
level may jointly influence white matter integrity throughout the brain and found a wide spread genetic effect.
Risk allele rs2815752 in NEGR1 was most associated with lower white matter integrity across a substantial
portion of the brain. Across the area of significance in the bilateral posterior corona radiata, each additional
copy of the risk allele was associated with a 2.2% lower average FA. This is the first study to find an association
between an obesity risk gene and differences in white matter integrity. As our subjects were young and healthy,
our results suggest that NEGR1 has effects on brain structure independent of its effect on obesity.

© 2014 Published by Elsevier Inc.
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Introduction

Obesity is a major public health issue facing developed countries. In
the United States over a third of adults are classified as obese, and an-
other third are considered to be overweight (Ogden et al., 2012). Obesi-
ty has well-established links to serious health issues such as diabetes,
heart disease, and premature death (Must et al., 1999). High body
mass index (BMI)1 in midlife is linked to poorer cognitive functioning
in old age (Fitzpatrick et al., 2009; Walther et al., 2009). Greater BMI is
associated with lower brain volume (Walther et al., 2009; Ward et al.,
2005; Taki et al., 2008), brain atrophy (Gustafson et al., 2004), and
lower gray matter density (Pannacciulli et al., 2006), and neuronal and
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late BMI (in SI units) is BMI =

Obesity gene NEGR1 associat
age.2014.07.041
myelin abnormalities (Gazdzinski et al., 2010). Obesity is associated
with abnormalities in white matter volume (Haltia et al., 2007; Raji
et al., 2009), diffusivity (Alkan et al., 2008) and integrity across many
brain regions (Stanek et al., 2009; Verstynen et al., 2012; Xu et al.,
2013). These brain differences in obese people may be attributable to
a less healthy diet and lifestyle, which negatively affect brain health
(Molteni et al., 2002; Northstone et al., 2012; Ars, 2012). They may be
partly due to genetic variants with joint effects on the brain and obesity
risk. A genemay directly affect the brain, and its effects on appetite and
physical activity could affect obesity. Alternatively, a gene could affect
vascular health, reducing cerebral blood flow, and therefore delivery
of oxygen and nutrients to the brain, with concomitant effects on
brain function.

Diet and lifestyle are the most readily identifiable causes of obesity,
yet it is highly heritable (Wardle et al., 2008), and genetic vulnerabilities
interact with lifestyle factors. A number of genes have been repeatedly
associated with obesity in cohorts worldwide (Frayling et al., 2007;
Loos et al., 2008; Ng et al., 2012; Okada et al., 2012; Wen et al., 2012).
We previously found that elderly carriers of the FTO risk allele had
ed with white matter integrity in healthy young adults, NeuroImage
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t1:1Table 1
t1:2Subject demographics for the QTIM Q2.

t1:3Genetic group QTIM Subjects

N F/M BMI

t1:4AA 188 125/63 23.1 (3.80)
t1:5AG 233 154/79 23.4 (3.64)
t1:6GG 78 47/31 23.6 (3.97)
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lower frontal and occipital lobe volumes (Ho et al., 2010), and a recent
paper found that a locus near the obesity risk geneMC4Rwas associated
with increased amygdalar, hippocampal, and medial orbitofrontal vol-
ume, as well as differences in eating behaviors (Horstmann et al.,
2013). The obesity risk gene Taq1A has been associated with decreased
striatal activation in response to receiving chocolate (Stice et al., 2008).
Recent genome-wide association studies (GWAS) identified a number
of loci associated with BMI (Speliotes et al., 2010; Thorleifsson et al.,
2008; Willer et al., 2008).

Axonal integrity is vital for efficient brain function; well-myelinated
tracts propagate signals quickly, but poor or impaired myelination can
decrease the speed or reliability of neuronal transmission (Purves
et al., 2001). FA is a widely accepted measure of white matter integrity,
and evaluates the degree to which water diffuses along the primary di-
rection of the axon rather than across it. Lower FA has been found in
many diseases, such as Alzheimer's disease, multiple sclerosis, epilepsy,
and many neuropsychiatric diseases (Ciccarelli et al., 2008). Genetic
variants have also been discovered that may affect white matter integ-
rity as measured by FA. Associations have been reported between FA
and a number of genetic variants, including polymorphisms in CLU,
HFE, NTRK1, and many other genes (Braskie et al., 2011; Jahanshad
et al., 2012; Braskie et al., 2012). These are genes that are already closely
tied to cognitive function or neuropsychiatric disorders.

Here we investigated whether 16 common variants in obesity-
related genes (NEGR1, FTO, MTCH2, MC4R, LRRN6C, MAP2K5, FAIM2,
SEC16B, ETV5, BDNF-AS, ATXN2L, ATP2A1, KCTD15, and TNN13K) relate
to the brain's white matter integrity. We selected our SNPs based on
three recent GWAS studies of obesity all with large sample sizes
(Speliotes et al., 2010; Thorleifsson et al., 2008; Willer et al., 2008).
Using a multi-locus approach to assess their combined effect, we tested
whether obesity-related variants might predict differences in white
matter integrity assessed using high angular resolution diffusion imag-
ing (HARDI) (Kohannim et al., 2012). As a post-hoc test, we evaluated
the most promising SNP (single nucleotide polymorphism) driving the
effects in the multi-locus model. Analyses were completed in 499
healthy young adults (aged 20–30), to test if there was any evidence
of a link between obesity-related genetic variants and white matter in-
tegrity. While the global incidence of obesity in developed countries is
typically close to 30% (Ogden et al., 2012), our population was healthy
with a lower obesity incidence, with around 6% obese and 20% over-
weight. Therefore, we did notmap the effects of this biased population's
BMI on the brain. Rather, we were interested in determining whether
common genetic variants, which play a subtle role in obesity, and are
also common in the general healthy population, continued to show ef-
fects on white matter integrity. We expected that variants associated
with increased risk of obesity would be associated with lower white
matter integrity.

Materials and methods

Participants

Participants were recruited as part of a 5-year project research
project examining healthy Australian twins with structural MRI and
diffusion-weighted imaging (de Zubicaray et al., 2008). Our analysis
included 499 right-handed subjects (326 females/173 males, mean
age= 23.8, SD= 2.5 years, range= 20–30 years). This sample includ-
ed 163 monozygotic (MZ) twins, 274 dizygotic (DZ) twins, and 62 non-
twin siblings, from 309 families. This information is summarized in
Table 1, along with BMI information for each group. A histogram of
BMI is shown in Fig. 1. All QTIM subjects were Caucasian, and ancestry
outliers, defined as individualsmore than6 SD from the PC1/PC2 centroid
after principal components analyses of the GWAS data (Medland et al.,
2009), were excluded. Gene allele frequencies can differ between
ethnicities, as can the risks associated with various alleles, so ethnically
homogenous groups are generally preferred in genetic studies.
Please cite this article as: Dennis, E.L., et al., Obesity gene NEGR1 associat
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Additionally, the three published studies (Speliotes et al., 2010;
Thorleifsson et al., 2008; Willer et al., 2008) – which we used to select
our SNPs of interest – were analyses of sampled populations that were
99.7% Caucasian (one of the studies Thorleifsson et al., 2008 included a
very small number of African American subjects as well).

Scan acquisition

Whole-brain anatomical and high angular resolution diffusion im-
ages (HARDI) were collected with a 4 T Bruker Medspec MRI scanner.
T1-weighted anatomical imageswere acquiredwith an inversion recov-
ery rapid gradient echo sequence. Acquisition parameters were: TI/TR/
TE = 700/1500/3.35 ms; flip angle = 8°; slice thickness = 0.9 mm,
with a 256 × 256 acquisition matrix. HARDI was also acquired using
single-shot echo planar imaging with a twice-refocused spin echo se-
quence to reduce eddy-current induced distortions. Imaging parame-
ters were: 23 cm FOV, TR/TE 6090/91.7 ms, with a 128 × 128
acquisition matrix. Each 3D volume consisted of 55 2-mm thick axial
slices with no gap, and 1.79 × 1.79 mm2 in-plane resolution. 105 im-
ages were acquired per subject: 11 with no diffusion sensitization
(i.e., T2-weighted b0 images) and 94 diffusion-weighted (DW) images
(b = 1159 s/mm2) with gradient directions evenly distributed on a
hemisphere in the q-space. Scan time for the 105-gradient HARDI scan
was 14.2 min.

Establishing zygosity and genotyping

Zygosity was objectively established by typing nine independent
DNA microsatellite polymorphisms (polymorphism information con-
tent N0.7), using standard PCR methods and genotyping. Results were
crosschecked with blood group (ABO, MNS, and Rh), and phenotypic
data (hair, skin, and eye color), giving an overall probability of correct
zygosity assignment N99.99%, and these were subsequently confirmed
by GWAS. Genomic DNA samples were analyzed on the Human610-
Quad BeadChip (Illumina) according to the manufacturer's protocols
(Infinium HD Assay; Super Protocol Guide; Rev. A, May 2008). We im-
puted toHapmap3. Information on the imputation protocols and quality
control steps may be found at http://enigma.ini.usc.edu/wp-content/
uploads/2010/09/ImputationProtocolsv1.2.pdf.

Diffusion tensor image (DTI) processing

Non-brain regions were automatically removed from each T1-
weighted MRI scan using ROBEX (Iglesias et al., 2011) a robust brain ex-
traction program trained on manually “skull-stripped” MRI data and
FreeSurfer (Fischl et al., 2004), and from a T2-weighted image from the
DWI set, using the FSL tool “BET” (Smith, 2002; FMRIB Software Library,
http://fsl.fmrib.ox.ac.uk/fsl/). Intracranial volume estimateswere obtain-
ed from the full brain mask, and included cerebral, cerebellar, and brain
stem regions. All T1-weighted imageswere linearly aligned using FSL flirt
(with 9 DOF) (Jenkinson et al., 2002) to a common space (Holmes et al.,
1998) with 1 mm isotropic voxels and a 220 × 220 × 220 voxel matrix.
Raw diffusion-weighted images were corrected for eddy current
distortions using the FSL tool, “eddy_correct”. For each subject, the
eddy-corrected images with no diffusion sensitization were averaged
(11 images), linearly aligned and resampled to a downsampled version
ed with white matter integrity in healthy young adults, NeuroImage
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Fig. 1. Histogram of BMIs. Green = underweight, blue = normal weight, orange = overweight, red = obese.
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of their corresponding T1-weighted image (110 × 110 × 110 matrix,
2 × 2 × 2 mm3 voxel size). Averaged b0 maps were elastically regis-
tered to the structural scan using a mutual information cost function
(Leow et al., 2005) to compensate for EPI-induced susceptibility arti-
facts. The resulting 3D deformation fields were then applied to the
remaining 94 DWI volumes. To examine subject motion, we com-
pared the acquired and theoretical DWI at each voxel based on the
reconstructed tensor with the actual gradients after eddy correction.
A high degree of motion will show significant deviations between
the theoretical and actual scans, particularly around the boundaries
of the brain.

We compared fractional anisotropy (FA) values at each voxel across
NEGR1 genotypes. Diffusion tensors were computed at each voxel using
FSL software (http://fsl.fmrib.ox.ac.uk/fsl/). From the tensor eigenvalues
(λ1, λ2, λ3), FA was calculated according to the following formula:

FA ¼
ffiffiffi
3
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1−λ
� �2 þ λ2−λ

� �2 þ λ3−λ
� �2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2
1 þ λ2

2 þ λ2
3

q

λ ¼ λ1 þ λ2 þ λ3

3
:

ð1Þ

Wealso analyzed radial diffusivity (Drad= the average ofλ2 andλ3),
mean diffusivity (Dmean = λ) and axial diffusivity (Dax = λ1) to clarify
the extent to which each might be contributing to the changes in FA.

MDT

TheMDT (minimal deformation template) is the template that devi-
ates least from the anatomy of the subjects, and, in some circumstances,
it can improve statistical power (Leporé et al., 2007). Using a custom-
ized template from subjects in the study (rather than a standard atlas
or a single optimally chosen subject) can reduce bias in the registrations.
Included in the MDT were FA images from 32 randomly selected unre-
lated subjects (16 female/16 male) (calculated after susceptibility cor-
rection) (Jahanshad et al., 2010). The N 3D vector fields that fluidly
registered a specific individual to all other N subjects were averaged
and applied to that subject, preserving the image intensities and ana-
tomical features of the template subject. Susceptibility-corrected FA
maps were registered to the final population-averaged FA-based MDT
using a 3D elastic warping technique with a mutual information cost
function (Leow et al., 2005) and smoothed with a Gaussian kernel
(7 mm full width at half-maximum). To better align white matter re-
gions of interest, the MDT and all whole-brain registered FA maps
were thresholded at 0.25 (excluding contributions from non-white
Please cite this article as: Dennis, E.L., et al., Obesity gene NEGR1 associat
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are stable and have been normalized to a very fine degree of matching
across subjects, greatly reducing the neuroanatomical variations in
these structures across subjects.

MultiSNP analysis

Linearmixed-effectmodels were used to study the joint associations
of SNPs with imaging measures, while taking into account any related-
ness among the subjects. For N subjects and p independent predictors
(SNPs or other covariates), regression coefficients (β) were obtained,
using the efficient mixed-model association (EMMA; http://mouse.cs.
ucla.edu/emma/) software with restrictedmaximum likelihood estima-
tion (Kang et al., 2008), according to the formula:

y ¼ Xβ þ Zbþε: ð2Þ

Here, y represents an n-component vector of voxel-wise FA, Dmean,
Drad, Dax measures, X is a matrix of SNP genotypes (coded additively
as 0, 1, or 2 for the number of minor alleles) and/or covariates (sex
and age), Z is the identity matrix, b is a vector of random effects with a
variance of σ2

gK, where K is the N × N kinship matrix for the twins
and siblings, and ε is a matrix of residual effects with a variance of
σ2

eI, where I is the identity matrix. A kinship matrix coefficient of 1 de-
noted the relationship of each subject to him/herself; the coefficient for
MZ twinswithin the same family was 1; the coefficient for DZ twins and
siblings within the same family was 0.5; and the coefficient for subjects
not in the same family was 0, corresponding to the expected proportion
of their shared genetic polymorphisms, respectively. Ancestry outliers
were removed, so no additional modeling was used in the kinship ma-
trix to adjust for population genetic structure between families. ε is a
matrix of residual effects with a variance of σ2

eI, and I is an identity
matrix. p-Values for the significance of individual and joint SNP associ-
ations with diffusivity were assessed using a partial F-test, according
to the formula:

F¼
RSScovariates−RSSfullð Þ.

pfull−pcovariatesð Þ
RSSfull

�
n−pfullð Þ

ð3Þ

where RSS represents the residual sum-of-squares, p is the p-value of
the model, and n is the number of subjects, a reduced model includes
only covariates, and a fullmodel contains both SNPs and covariates. Fur-
ther details can be seen inKohannim et al. (2012). For all statistical anal-
yses, the LONI pipeline (http://pipeline.loni.usc.edu/) was used for
voxel-wise parallelization on a multi-CPU grid computer. The
ed with white matter integrity in healthy young adults, NeuroImage
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t2:1Table 2
t2:2SNPs included in the multiSNP model.

t2:3SNP Nearest
gene

Context MAF Risk
allele

GWAS Study

t2:4rs10913469 SEC16B Intron 0.234 C Q3Thorleifsson et al. (2009)
t2:5rs7647305 ETV5 Intergenic 0.2248 C Q4Thorleifsson et al. (2009)
t2:6rs925946 BDNF-AS Intron 0.2285 T Q5Thorleifsson et al. (2009)
t2:7rs10501087 BDNF-AS Intron 0.2436 T Q6Thorleifsson et al. (2009)
t2:8rs8049439 ATXN2L Intron 0.359 C Q7Thorleifsson et al. (2009)
t2:9rs6499640 FTO Intron 0.4835 A Q8Thorleifsson et al. (2009)
t2:10rs3751812 FTO Intron 0.2413 T Q9Thorleifsson et al. (2009)
t2:11rs9931989 ATP2A1 Intron 0.2514 G Willer et al. (2008)
t2:12rs2815752 NEGR1 Intergenic 0.3008 A Willer et al. (2008)
t2:13rs10838738 MTCH2 Intron 0.2834 G Willer et al. (2008)
t2:14rs571312 MC4R Intergenic 0.2372 A Speliotes et al. (2010)
t2:15rs29941 KCTD15 Intergenic 0.3965 C Speliotes et al. (2010),
Q10Thorleifsson et al. (2009)
t2:16rs7138803 FAIM2 Intergenic 0.292 A Speliotes et al. (2010),
Q11Thorleifsson et al. (2009)
t2:17rs2241423 MAP2K5 Intron 0.4006 G Speliotes et al. (2010)
t2:18rs1514175 TNN13K Intron 0.3864 A Speliotes et al. (2010)
t2:19rs10968576 LRRN6C Intron 0.2422 G Speliotes et al. (2010)
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searchlight false discovery rate method (Langers et al., 2007) was used
for multiple comparisons correction across all voxels. As described in
further detail in Kohannim et al. (2012), the correction for the number
of SNPs input and for each statistical test performed is built into the
model. As is the case with all voxel-wise neuroimaging studies, the
number of tests is far greater than the number of subjects, so multiple
comparisons correction across all voxels is necessary and often involves
controlling the false discovery rate at a stringent threshold (Hibar et al.,
2011; Jahanshad et al., 2013; Medland et al., Nature Neuroscience,
2014). We also ran multi-SNP iteratively, removing the weakest SNP,
to determine what panel of SNPs was maximally predictive of WM
integrity.

Candidate gene follow-up

We followed up with individual voxel-wise FA analyses on all of the
SNPs in the panel that comprised the “maximally predictive” SNP panel
from the iterative multiSNP analysis, correcting for the number of SNPs
tested. Of these 7 SNPs, only rs2815752 had associations with FA that
passed correction voxel-wise and across all 7 SNPs tested (q b 0.0071).
The NEGR1 (rs2815752) risk allele (A) is associated with higher BMI,
with a per allele change of 0.10–0.13 kg/m2 (Speliotes et al., 2010;
Willer et al., 2008). The statistical model used is that listed in Eq. 2,
again co-varying for age and sex, and correcting for multiple compari-
sons using searchlight FDR (Langers et al., 2007). BMI was not signifi-
cantly associated with FA in our cohort.

Additional NEGR1 analyses

To examine the effects that the NEGR1 gene has on white matter in-
tegrity in more depth, we next ran a gene-based test, PCReg (principal
components regression) (Hibar et al., 2011). In PCReg, the entire list of
genotyped SNPs within a gene can be assessed for joint association
with a brain measure (here, voxel-wise FA). This is similar to the
multiSNP method (Kohannim et al., 2012), but instead of focusing on
uncorrelated SNPs that are hypothesized to be related, it includes all
the SNPs in a gene, in an attempt to see the larger picture of genetic as-
sociation with brain measures. Importantly, it can be run on SNPs that
are in LD, critical for its use as a gene-based test. PCReg works by first
running a principal component analysis on the SNPs, to reduce the di-
mensions of the analysis, and avoid the complications of collinearity.
Components with the highest eigenvalues (higher proportions of ex-
plained variance) were included until 80% of the SNP variance was ex-
plained, and the rest were discarded. This was followed by a multiple
partial-F test, similar to Eq. 3. As this is a gene-based test encompassing
the effects of possibly hundreds of SNPs, it does not suggest a direction-
ality for the association; it tests whether a model containing SNPs that
explain at least 80% of the variance in NEGR1 is a better predictor of
voxel-wise FA than a reduced model containing only age and sex. We
generated a list of SNPs within 100 kb of NEGR1 and filtered out those
with an MAF b 0.22 leaving us with 275 NEGR1 SNP input into PCReg.
In this method, the number of degrees of freedom of the F statistic ac-
counts for the number of predictors, and corrects for the number of
SNP input into the model. Further details of this method may be found
in Hibar et al. (2011).

Results

For our initial multiSNP analyses we selected our SNPs of interest
based on the following 3 reports: Speliotes et al. conducted a genome-
wide association study (GWAS) across nearly 250,000 individuals to
find loci associated with BMI. Willer et al. ran a meta-analysis of 15
genome-wide association studies searching for loci reliably associated
with BMI, giving them a total N N 32,000, with a follow-up analysis in
another dataset of around 59,000 individuals. Thorleifsson et al. also
conducted a GWAS of nearly 35,000 individuals to find loci associated
Please cite this article as: Dennis, E.L., et al., Obesity gene NEGR1 associat
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with weight and BMI. Some of the SNPs in the 3 GWAS papers
(Speliotes et al., 2010; Thorleifsson et al., 2008; Willer et al., 2008)
were not in the Hapmap3. We further narrowed the list down to
those with a minor allele frequency (MAF) N0.22 (to make sure that at
least 5% of our subject pool of 499 were homozygous carriers of the
minor allele).We additionally excluded 3 SNPs thatwere inhigh linkage
disequilibrium (LD) with any other SNP we were evaluating (LD N 0.4)
to reduce data redundancy and avoid the multicollinearity problem for
themultiSNP analysis. This resulted in a reduced list of 16 SNPs, listed in
Table 2. All genetic analyses – multiSNP and individual SNP – used an
additive geneticmodel that assessed the effect of each additional risk al-
lele. No SNPs deviated significantly from the Hardy–Weinberg
equilibrium.
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FMultiSNP analysis

Using DTI data from 499 healthy young adults (mean age =
23.8 years, SD = 2.5, Table 1), we jointly assessed the effect of 16
BMI-related SNPs (Table 2) on FA, Dmean, Drad, and Dax. We started
with the multiSNP analysis, as none of these SNPs had yet been associ-
atedwithwhitematter connectivity so therewas no reason to prioritize
any one specifically. This analysis yielded associations between our
SNPs and FA in the bilateral corona radiata, corpus callosum, fornix,
arcuate, and an area corresponding to both the uncinate and inferior
fronto-occipital fasciculus (IFOF), as shown in Fig. 2. ThemultiSNP anal-
ysis yields an R2 coefficient, which is the predictability of our model; in
Fig. 2, R2 is shown only in areas where the association was declared
significant after multiple comparisons correction across all voxels in
the image considering all the SNPs tested (see Materials and methods
section). The maximum R2 value (predictability) in these regions was
0.115. The maps for Dmean, Drad, and Dax are shown in Supplementary
Fig. 1. For Dmean, Drad, and Dax, there were associations with our SNP
panel in an area corresponding to both the right uncinate and IFOF,
and an area overlapping with the left IFOF and fornix. For Dmean and
Drad, there were associations with our SNP panel in the genu, bilateral
corona radiata, bilateral internal capsule, right arcuate fasciculus,
cingulum, and splenium. There was additionally an area of association
between the SNP panel and Dmean in the right forceps minor. The
voxel-wise multiSNP method allowed us to determine where in the
brain joint information on all 16 SNPs was significantly better able to
predict FA than just age and sex alone by establishing significance
maps from the partial F-test.We additionally explored submodels to de-
termine if any single one of the 16 SNPs was better at predicting FA
ed with white matter integrity in healthy young adults, NeuroImage
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together; this implies that the SNP is able to predict FA even when co-
varying for sex, age and all other SNPs. We found that several SNPs
showed borderline significant associations on their own even when co-
varying for the other 15 SNPs.While it is not necessary to correct across
the number of SNPs tested in the multiSNP model, it is necessary to
correct for them when examining the effect of the individual SNPs, if a
post-hoc inference ismade aboutwhether any oneof them is explaining
variance in the model. While their joint effect did survive voxel-wise
multiple comparison corrections across the whole brain, when covary-
ing for all additional 15 SNPs included, none of the individual SNPs
passed a multiple comparison correction threshold controlling the
false positive rate at q b 0.003125 (0.05/16). This underscores the utility
of the multiSNP method. As we are covarying for the effect of all other
SNPs included in the model, these results are not purely the association
between the individual SNP and voxel-wise FA, but also the association
controlling for the effect of all other SNPs.

Iterative multiSNP analysis

To determine whether a smaller group of SNPs in the multiSNP
panel explained a greater portion of variance, we ran multiSNP iter-
atively, removing theweakest SNP after each iteration. A graph of the
number of SNPs included and the percentage of voxels passing
searchlight FDR can be seen in Fig. 3. As seen in this figure, the
panel including 7 SNPs was most significant. These 7 SNPs were:
rs2815752, rs2241423, rs571312, rs925946, rs1514175, rs10913469,
and rs10968576. Rs2815752 remained the strongest signal through
each iteration. We followed up on all 7 SNPs individually in the voxel-
wise FA maps.
Please cite this article as: Dennis, E.L., et al., Obesity gene NEGR1 associat
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Candidate gene analyses

We followed up on all 7 SNPs that comprised the most significant
SNP panel, from the iterative multiSNP analysis, correcting for the
number of SNPs tested. Of these 7 SNPs, only rs2815752 (NEGR1) had
significant associations in the FA maps when we corrected for multiple
comparisons across SNPs.We then followedupon rs2815752with anal-
yses of Dmean, Drad, and Dax (q b 0.0071). For rs2815752, 188 subjects
were homozygous risk (AA), 233 were heterozygous (AG), and 78
were homozygous non-risk (GG). The minor allele (G) frequency for
rs2815752 is 0.301. NEGR1 risk allele dosage was not significantly asso-
ciated with BMI in our sample (p = 0.30), neither was voxel-wise FA.
NEGR1 risk allele dosage (A) was negatively associated with FA, as
shown in Fig. 4. In this figure, we show both the associations that sur-
vived corrections across the whole brain, and those that additionally
survived correction across all 7 SNPs tested. The posterior body of the
corpus callosum and nearby corona radiata showed strongest associa-
tions with NEGR1 risk allele dosage (in terms of lowest p-value), but
the area of association covered the entire corpus callosum, large areas
of the corona radiata, arcuate fasciculus, fornix, internal capsule, and
areas that could be the inferior fronto-occipital fasciculus, inferior longi-
tudinal fasciculus, and/or uncinate fasciculus. These last tracts overlap in
these areas sowe cannot saywith confidence that one specific fasciculus
is selectively affected. Across the areas of significance (only the voxels
that survived whole-brain correction across all 7 SNPs), each risk allele
was associated with a 2.2% decrease in average FA. Drad was also posi-
tively associated with NEGR1 risk allele dosage, across overlapping
areas, as shown in Fig. 5. Across the area of significance, each risk allele
was associated with a 1.8% increase in average Drad. Again, we covaried
for age and sex. There were no significant differences in head motion
ed with white matter integrity in healthy young adults, NeuroImage
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during scan acquisition across genetic groups (p = 0.51), or associa-
tions between BMI andmotion (p= 0.70), which could have explained
results as a recent study showed that inadequately accounting for head
motion can artificially influence results (Yendiki et al., 2014). A table of
the average FA and Drad across the area of significance for each genetic
group can be seen in Table 3.
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Fig. 4.Association between FA andNEGR1 risk allele dosage. Pink corresponds to stronger beta-v
smaller yellow-orange areas are those that additionally pass correction for the 7 SNPs tested, q b
fasciculus, SP = splenium, FX = fornix, UNC = uncinate. Left in the image is right in the brain
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 P
RAdditional NEGR1 analyses

Our gene-based test, PCReg, yielded significant associations between
NEGR1 and voxel-wise FA in the corpus callosum, anterior commissure,
corona radiata, inferior frontal gyrus, arcuate fasciculus, superior tempo-
ral gyrus, and regions corresponding to the inferior fronto-occipital
E
D

alues (morenegative); larger blue-pink areas are those that pass FDR across brain, q b 0.05,
0.0071. CR= corona radiata, CC= corpus callosum, IC= internal capsule, AF= arcuate
, coordinates are in MNI space.

ed with white matter integrity in healthy young adults, NeuroImage
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Efasciculus or uncinate (Fig. 6). Like the multiSNP analysis, PCReg does

not yield information on the direction of the association, just the p-
value. Additionally, like the multiSNP analysis, there is an implicit cor-
rection for the effective number of genetic predictors included in the
model, but we avoid the need to correct for the number of SNPs includ-
ed, as PCA performs data reduction and compaction (see Materials and
methods section and Hibar et al., 2011).
445

446

447

448

449

450

451

452

453

454

455

456
U
N
C
ODiscussion

Many genes have been linked to obesity, yet thus far only two stud-
ies have examined the effect these obesity genes may have on brain
structure (Ho et al., 2010; Horstmann et al., 2013). Here, we revealed
a joint effect of a set of obesity-associated SNPs on the brain in young
adults, using a multiSNP approach we recently developed for screening
brain images (Kohannim et al., 2012). The predictive power of these
SNPs overlapped in the bilateral posterior corona radiata, arcuate, cor-
pus callosum, fornix, and uncinate or IFOF (Fig. 2). A further analysis
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Table 3
Average diffusivity measures by genetic group.

Genetic group Measure

FA Drad

rs2815752 AA (homozygous risk) 0.432351 0.00060734
AG 0.444210 0.00059130
GG 0.451888 0.00058535
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of the SNPs to reveal any particular variant contributingmost to this ef-
fect yielded widespread negative associations between FA and NEGR1
risk allele dosage of rs2815752 in our sample. To our knowledge this
is the first paper to report an association between an obesity-related
gene and white matter (WM) integrity. A recent paper by our group
used this approach to find associations betweenWMand serum choles-
terol and cholesterol-related SNPs (Warstadt et al., 2014).

We began with the multiSNP analysis because it is a way to search
for joint effects of a set of genetic variants on brain measures
(Kohannim et al., 2012). FTO and MC4R are the only obesity-related
gene previously associated with brain structural differences, so we did
not have strong prior evidence to supported prioritizing a particular
gene (besides FTO andMC4R). Of our 16 SNPs associated with obesity,
a number of them converged in effect in the posterior corona radiata.
Once our results showed that our panel of BMI-associated SNPs indeed
was related toWM integrity, we delved further into determiningwhich
individual SNPs were most predictive of WM integrity. An iterative
multiSNP analysis showed that the most significant panel of SNPs in-
cluded 7 SNPs, indicating that our initial list of SNPs included some
that were not significantly helpful in explaining variance in FA. These
7 SNPs were: rs2815752, rs2241423, rs571312, rs925946, rs1514175,
rs10913469, and rs10968576. Of these 7 SNPs, only NEGR1 had signifi-
cant associationswith voxel-wise FA, correcting across all 7 SNPs tested.
The rs2815752 SNP is just upstream of the NEGR1 gene, and the A risk
allele tags a 45 kb deletion (Jarick et al., 2011). NEGR1 codes for the pro-
tein NEGR1 or neurotractin — a member of the neural IgLON subgroup
of the immunoglobin superfamily. Neurotractin is a cell adhesion mole-
cule that plays a key role in neural development (Marg et al., 1999). In
mice, NEGR1 is widely expressed in the brain. Mutations causing
ed with white matter integrity in healthy young adults, NeuroImage
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NEGR1 loss of function led to decreased body mass in mice in vivo, and
decreases in cell adhesion and neurite growth in vitro (Lee et al.,
2012). The NEGR1 risk allele (A) has been associated with higher BMI
(per allele change 0.10–0.13 kg/m2; Speliotes et al., 2010; Willer et al.,
2008).

No prior studies have linkedNEGR1 risk allele dosage to brain differ-
ences in humans. However, its role in mouse brain neural development
makes it a plausible candidate. Healthy adults carrying the risk allele
had lower FA across a wide swath of central whitematter (Fig. 4). Com-
bined with the results of increased Drad in risk allele carriers, our results
point to lower white matter integrity with NEGR1 risk allele dosage.
Across the area of significance, the difference in mean FA per risk allele
was a 2.2% decrease. Alzheimer's disease has been associated with de-
creases up to 33% in FA (Nir et al., 2014), so this is a modest but
perhaps eventually significant difference among young, healthy
individuals. Future studies will hopefully be able to test this association
in independent samples. For example, we recently created a worldwide
consortium dedicated to replicating genetic effects on the brain (Stein
et al., 2012; Hibar et al., 2013; Thompson et al., 2013), and a multi-site
GWAS of diffusion images is underway (Jahanshad et al., 2013;
Kochunov et al., 2014). Obese individuals have significantly decreased
volume in the corona radiata, where we detected significant associa-
tions (Alkan et al., 2008). Although there are exceptions, lower FA and
higherMDare usually signs of decreasedmyelination or fiber coherence
(Thomason and Thompson, 2011; Dennis and Thompson, 2013).
Middle-aged obese patients showwidespread increases in ADC (appar-
ent diffusion coefficient, equivalent to mean diffusivity — Dmean) in
middle-aged obese patients (Alkan et al., 2008). As NEGR1 plays a role
in neural development, we could be detecting effects of lower
myelination inNEGR1 risk allele carriers.We did not find any significant
associations between BMI and FA in our cohort, and our subjects were
aged 20–30, so it is highly unlikely that these results are chronic effects
of obesity and lifestyle factors. BMI-related SNPs could also affect the
brain in ways not mediated by obesity. In other words, they could
have a direct effect on the brain (e.g. influencing motivation/personali-
ty). We did have some overweight and obese subjects in our sample, as
noted in Fig. 1, but did not find any significant differences in overweight
or obese groups.While obesity rates in developed countries are typically
close to 30%, our sample was quite a bit healthier, with only 6% obese
and 20% overweight. We believe that this is a strength of our paper, as
it demonstrates that our results are more gene-related, rather than a
consequence of obesity. With the makeup of our sample, our results
Please cite this article as: Dennis, E.L., et al., Obesity gene NEGR1 associat
(2014), http://dx.doi.org/10.1016/j.neuroimage.2014.07.041
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indicate thatNEGR1 can have a negative effect onwhitematter integrity
independent of its effects on obesity risk. We can investigate whether
this association holds in a sample including more obese subjects.
ENIMGA-DTI is a consortium including over 2000 subjects that will
allow us to address this question (Kochunov et al., 2014). With this
data we can test whether there are interactions between SNPs and
obesity.

We also conducted a second NEGR1 analysis, running a gene-based
test (called ‘PCReg’) on 275 SNPs in NEGR1 (Hibar et al., 2011). We
found a large cluster of significant association in the bilateral posterior
corona radiata, where we found associations in our multiSNP analysis
and in our analysis of rs2815752. PCReg does not only output a beta
value summed across SNPs used in the model, but it also shows areas
where the effects on a brain measure within a gene aggregate. In
other smaller clusters, voxel-wise FA was significantly associated with
NEGR1. The fact that we found a large association in the same area as
the rs2815752 analysis suggests that there are other variations within
NEGR1 that are associated with FA in the posterior corona radiata. The
aim of PCReg is to see the bigger picture of genetic association of a single
gene with brain measures, as we know that SNPs are not isolated vari-
ants causing brain changes. PCReg shows the associations of the SNPs
in aggregate; many may have effects too small to detect individually,
and rs2815752may not be themain effect SNPwithin NEGR1. These re-
sults strengthen the idea that the proteins encoded by NEGR1may play
a role in WM integrity. PCReg allows us to see small effects summed,
and gives us greater confidence in our rs2815752 results.

Obesity (BMI N 30 kg/m2) in midlife is associated with an increased
risk of dementia later in life (Fitzpatrick et al., 2009). Our subjects did
not show any associations between BMI and FA, and NEGR1 risk allele
dosage was not associated with BMI. Our young adult subjects may
not have had a chance for the obesity genes to have an effect, and we
only had 499 subjects, which is very large for a brain imaging study,
but small for a genetics study. The original studies finding an effect of
these genes on obesity did so in sample sizes N30,000 with an average
age around 50. We are examining a younger cohort, so brain changes
may pre-date any clinical effects on BMI. The three GWAS studies
(Speliotes et al., 2010; Thorleifsson et al., 2008;Willer et al., 2008) all in-
cluded cohorts with average ages largely between 30 and 80, and were
heavily weighted towards middle-aged subjects (~50 years old). Obese
subjects may have lower white matter integrity in the corpus callosum
(Mueller et al., 2011; Xu et al., 2013; Marks et al., 2011) and fornix
(Marks et al., 2011). One reason for this may be inflammation, as one
ed with white matter integrity in healthy young adults, NeuroImage
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group has found a positive association between a marker of inflamma-
tion and apparent diffusion coefficient (same as mean diffusivity)
(Cazettes et al., 2011). Verstynen et al. (2013) similarly found that
inflammation was a significant mediating factor in the association be-
tween adiposity and FA. Obesity is now recognized as an inflammatory
disease, causing chronic, subacute inflammation (Shoelson et al., 2007).
We did not find any areas of significant association between FA and BMI,
but the areas found by others are generally those where we found our
gene associations. The regional overlapwith previous studies of BMI as-
sociations with white matter integrity suggests that NEGR1may be one
of many factors contributing to the association between BMI and white
matter integrity of the corpus callosum and fornix. Our results indicate
that the NEGR1 A-allele was associated with negative effects on white
matter integrity in healthy, young adults, independent of effects on
BMI. While in our mostly healthy-BMI sample, we found no BMI-
associations with white matter integrity, genes previously found to be
associated with BMI and lead to an increased risk of obesity maintained
an associationwith brain structure.When controlling for all other tested
variants,NEGR1 showed the strongest individual effect. This association
may suggest a genetic relation to brain structure that is independent of
obesity. Further evaluation is needed to determine if the neuroanatom-
ical pathways compromised by this obesity-risk gene themselves indi-
cate a mechanistic pathway for obesity.
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Conclusions

In this study we used an innovative multi-locus approach to exam-
ine the joint effect of obesity-associated SNPs on white matter integrity
in young, healthy adults. We found a panel of SNPs that jointly influ-
enced central white matter integrity. We found the most extensive ef-
fects with NEGR1, which was associated with a lowered FA, 2.2% per
allele across the area of significance. Our results indicate that the obesity
risk gene NEGR1 is associated with lowered white matter integrity in
young healthy individuals, mostly without obesity-related complica-
tions. Our results may help uncover mechanisms through which
NEGR1 has its effects on the brain. To what degree the link between ge-
netics and brain effects ismediated bydiet and lifestyle choices is still an
open and complex question.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.07.041.
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