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Supplementary Figure 1: Quantile-quantile plot of observed versus expected results (on the basis of 

a null hypothesis) of the whole association meta-analysis (black dots) and after removal of the 

previously described chromosome 3q26 TERC and 10q24.33 OBFC1 loci (blue dots) 
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Supplementary Figure 2.  Forest plots of the identified loci showing the association results for individual cohorts.  The plots for the two SNPs taken 

forward for replication (G, H) also include the results from the replication cohorts. All effect sizes are plotted with 95% CI intervals for the allele associating 

with shorter LTL.  The effect allele is specified in the title for each plot. Box sizes represent the weight attributed to each study.  The frequencies for the 

effect allele (EAF) are given on the right hand side of each plot and good agreement can be seen across studies. 
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Supplementary Figure 3. Estimates of cross-sectional age-related decline in telomere length based 
on z-scored LTL. Effect sizes are plotted with 95% CI intervals for each study and box sizes represent 
the weight attributed to each study.  The overall estimate of per-allele decline in LTL is from a 
random-effects meta-analysis across all studies. 
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Supplementary Table 1: Cohort demographics for studies included in the GWA meta-analysis (1A) and replication phase (1B). 
 
Supplementary Table 1A 

Cohort Nationality  Cohort 
Type 

N Age 
distribution 
Mean +/- SD 
(Range) 

Sex 
distribution 
% Male 

T/S 
distribution 
Mean +/- SD 
(Range) 

T/S 
change 
per year 

Sex 
effect 

LTL  
laboratory 

LTL CV 
(%) 

BHF-FHS UK CAD 1487 60.8±7.9  
(36-82) 

80.1 1.35±0.22 
(0.69 - 2.13) 

-0.006** 
 

0.033* 1 3.5 

EGCUT_370 Estonia Population 2309 40.1±16.2 
(17-91) 

48.2 1.85±0.33 
(0.94- 3.52) 

-0.009** 0.085** 1 3.7 

EGCUT_OMNI Estonia Population 1251 58.9±22.2 
(18 - 103) 

38.7 1.69±0.30 
(0.93 - 2.84) 

-0.006** 0.057* 1 3.7 

ERF Netherlands Population 
Family 
based 

2581 49.76±14.87 
(17-89) 

44.5 1.78 ±0.36 
(0.77-3.17) 

-0.008** 0.068** 1 3.5 

FINRISK Finland Population 520 52.2±13.8 
(25-74) 

47.4 0.150± 0.186 
(-0.37 - 0.77) 

-0.0047** 0.018 2 7.7 

FTC/NAG-FIN Finland Smokers, 
Twin 

1054 54.9±4.5 
(41- 76) 

61.9 
 

0.91±0.16  
(0.52 - 1.42) 

-0.001  0.056** 2 8.2 

HBCS Finland Population 1582 61.5±2.9  
(56 – 69) 

43.4 
 

1.39 - 0.29  
(0.61 - 2.32) 

-0.012** 0.043* 2 24.8 

KORA F3 Germany Population 1636 62.2±10.1 
(34-79) 

49.6 1.70±0.28 
(0.92 - 2.62) 

-0.008** 0.061** 1 3.6 

KORA F4 Germany Population 1801 60.9±8.9 
(31-81) 

48.6 1.80±0.31 
(1.02 - 3.01) 

-0.010** 0.112** 1 3.1 

LLS Netherlands Population 2266 59.24± 6.8 
(30 - 80) 

45.7 1.46±0.27, 
(0.74 – 2.43) 

-0.009** 0.045** 1 2.7 

NFBC1966 Finland Population 
Birth 
cohort 

5146 31±0 48.2 1.22±0.48 
(0.28-4.88) 

N/A 0.059** 3 6.2 

NTRMRG3 Netherlands Population, 
Twin 

2532 43.6±14.7 
(17 – 82) 

33.3 2.67±0.49 
(1.01 – 4.47) 

-0.015** 0.177** 1 3.7 
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NTR_DETECT Netherlands Population, 
Twin 

158 18.7±3.9 
(17 - 57) 

52.5 2.99±0.38 
(1.52 – 4.21) 

0.000 -0.003† 1 3.7 

NTR_GODOT Netherlands Population, 
Twin 

1435 35.7±10.6 
(17 - 76) 

37.8 2.83±0.47 
(0.81 – 4.61) 

-0.012** 0.063* 1 3.7 

PREVEND Netherlands Population 2926 48.0±11.1 
(28-69) 

51.0 0.004±0.28 
( -0.68 - 
1.015) 

-0.004** 0.033** 4 3.9 

QIMR Australia Population, 
Twin 

2371 24.0±14.9 
(7 -72) 

49.1 3.49±0.61 
(1.47 – 5.72) 

-0.018** 0.093** 1 3.9 

TWINGENE Sweden Population, 
Twin 

300 71.7±5.9 
(55 - 91) 

0 1.43±0.25  
(0.96 -2.26) 

-0.011** N/A 1 2.9 

TWINSUK UK Population, 
Twin 

4899 51.0±13.4 
(16 - 99) 

9.0 3.71±0.68 
(0.68 – 11.40) 

-0.016** -0.008† 
 

1 3.3 

UKBS UK Population 1430  43.4±12.4  
(17-69) 

48.4 1.80±0.50  
(0.80 - 3.01) 

-0.009** 0.035* 1 3.5 
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Supplementary Table 1B 

Cohort Nationality  Cohort 
Type 

N Age 
distribution 
Mean +/- SD 
(Range) 

Sex 
distribution 
% Male 

T/S distribution 
Mean +/- SD 
(Range) 

T/S 
change 
per year 

Sex effect LTL 
laboratory 

LTL CV 
(%) 

EGCUT_R Estonia Population 1087      47.3±17.5  
(18-93) 

57.0 1.77±0.32  
(0.88-3.24) 

-0.006** 0.045 1 3.8 

GRAPHIC UK Population, 
Family 

2020 39.3±14.5  
(18-60) 

50.5 1.60±0.26 
(0.50 - 3.01) 

-0.007** 0.051** 1 3.6 

L85PLUS  Netherlands Population 
(Elderly) 

298 85±0 28.9 2.98±0.74 
(1.66-6.52) 

NA 0.061 1 3.4 

PLIC Italy Population 1871 54.6±11.4 
(18 - 82) 

42.1 1.11±0.36 
(0.01- 2.54) 

-0.005** 0.014 5 <5 

PREVEND  Netherlands Population 2878 47.5±11.5 
(28-69) 

47.5 1.00±0.25 
(0.47-1.65) 

-0.004** 0.022* 4 3.9 

NTR Netherlands Population, 
Twin 

2585 48.28±15.66 
(12-90) 

41.5 2.53±0.46 
(0.96-4.6) 

-0.013* 
 

0.016* 
 

1 3.9 

 

T/S distributions are given from the primary data for each study prior to z-transformation for analysis. Level of statistical significance is denoted by *P<0.01, 

**P<0.0001.  Sex effect is shown as the effect of being female on T/S.  As expected, LTL was found to be longer in females in the majority of studies 

although this effect was not statistically significant for all.  †Two exceptions to this were the NTR_DETECT and TWINSUK cohorts, most likely due to the 

small sample size and relative lack of male subjects in these studies respectively.  All cohorts showed the expected age-associated decline in TL, again with 

the exception of the very small NTR_DETECT cohort. Where non-normal distribution of LTL measurements was observed logT/S is given.  For the 

measurement laboratory: 1, Leicester; 2, Helsinki; 3, Imperial College London; 4; Groningen; 5,UCL London. The mean inter-run coefficient of variation for 

each study (calculated for the T/S ratio) is also stated.  
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Supplementary Table 2: Details of genotyping platforms, imputation algorithm and analysis methods used by each study. 

Study Genotyping Platform Genotype calling 
algorithm 

Genotyped 
SNPs 

Imputation 
algorithm 

Total SNPs 
(after QC) 

Analysis 
program 

Study-specific 
covariates 

Genomic 
inflation  
control  

BHF-FHS Affymetrix 500K CHIAMO 470,454 IMPUTE 2,250,328 SNPTest - 1.014 

EGCUT_370 Illumina 
HumanCNV370 
HumanOmniExpress 

GenomeStudio 321,407 IMPUTE 2,337,450 SNPTest First three 
principle 
components 

1.031 

EGCUT_OMNI Illumina 
HumanCNV370 
HumanOmniExpress 

GenomeStudio 630,155 IMPUTE 2,434,144 SNPTest First three 
principle 
components 

1.005 

ERF Illumina6K,  
Illumina 318K, 
Illumina370K, 
Affymetrix 250K 

Beadstudio 650,197 MACH 2,357,460 ProbABEL Family 
structure 

1.070 

FINRISK Illumina 610 Quad Illuminus 554,988 MACH 2,394,977 ProbABEL - 1.025 

FTC/NAG-FIN Illumina 
HumanHap670K 

Illuminus 549,060 IMPUTE 2,505,753 SNPTest Family 
structure 

1.007 

HBCS Illumina 
HumanHap670K 

Illuminus 546,814 MACH 2,398,230 ProbABEL - 1.003 

KORA F3 Affymetrix 500K BRLMM 379,392 IMPUTE 2,326,768 SNPTest - 1.006 

KORA F4 Affymetrix 6.0 Birdseed2 909,622 IMPUTE 2,406,045 SNPTest - 1.020 

LLS Illumina 660w-quad / 
IlluminaOmniExpress 

GenomeStudio 298,538 IMPUTE 2,391,111 QT-assoc Family 
Structure 

1.062 

 
L85PLUS 

 
IlluminaOmniExpress 

 
GenomeStudio 

 
603,314 

 
IMPUTE 

 
2,470,677 

 
QT-assoc 

  
1.010 

NFBC1966 Illumina Beadstudio 339,629 IMPUTE 2,365,573 SNPTest First three 1.028 
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HumanCNV370DUO principle 
components 

NTRMRG3 Illumina 370 
Affy-PerlegenIllumina 
660Affymetrix  6.0 
Illumina Omni 
Express 

Beadstudio 
Afymterix_ 
perlegen 
proprietary, 
Birdseed 2 

1,257,594 IMPUTE 2,300,386 EMMAX Family 
structure 

1.028 

NTR_DETECT Affymetrix 6.0 Affy Birdseed 2 729,472 Beagle/Min
imach 

2,047,577 PLINK Family 
structure 

1.112 

NTR_GODOT Affymetrix 6.0 Affy Birdseed 2 666,284 Minimach 2,296,548 PLINK Family 
structure 

1.018 

PREVEND Illumina 
CytoSNP12 v2 

GenomeStudio 244,868 Beagle 
v3.1.0 

1,734,983 PLINK - 1.002 

QIMR Illumina 
HumanHap610K 

Beadstudio 529,721 MACH 2,358,027 Merlin-
offline 

Family 
structure 

0.993 

TWINGENE Illumina 317K 
platform 

Beadstudio 317,000 IMPUTE 2,324,772 PLINK Family 
structure 

1.012 

TWINSUK Illumina 
HumanHap300 
Illumina 
HumanHap610Q 
Illumina 1M-Duo 

Illuminus 303,940 
 
553,487 
 
874,733 

IMPUTE 1,839,131 GenABEL 
(v1.6-7) 

Family 
structure 

1.012 

UKBS Affymetrix 500K CHIAMO 470,398 IMPUTE 2,252,636 SNPTest - 0.998 

 

All studies were adjusted for age and sex (unless single age or single gender).  Additional study specific covariates were included where families were 

present or where evidence of population structure was observed. 
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Supplementary Table 3: Sex specific results for all loci associated with LTL 

   Females Males Sex difference 

SNP Chr Position Effect 
Allele 

Other 
Allele 

N Beta SE P-value N Beta SE P-value P-value 

rs11125529 2 54,329,370 C A 21679 -0.068 0.014 6.39E-07 15984 -0.040 0.015 7.53E-03 0.163 

rs10936599 3 170,974,795 T C 21693 -0.098 0.011 4.67E-18 15986 -0.101 0.012 1.42E-16 0.829 

rs7675998 4 164,227,270 A G 20222 -0.061 0.012 5.03E-07 14482 -0.093 0.014 1.18E-11 0.079 

rs2736100 5 1,339,516 A C 15478 -0.077 0.011 9.04E-12 10374 -0.082 0.014 1.99E-09 0.782 

rs9420907 10 105,666,455 A C 21683 -0.069 0.014 8.41E-07 15980 -0.070 0.016 6.89E-06 0.968 

rs8105767 19 22,007,281 A G 21564 -0.058 0.011 5.23E-08 15967 -0.032 0.011 5.92E-03 0.092 

rs755017 20 61,892,066 A G 21208 -0.050 0.014 4.50E-04 15864 -0.073 0.016 2.83E-06 0.288 

 

Per allele effect sizes, standard errors and significance levels on a fixed-effects model are reported separately for each sex and analysed for a potential 

difference between them.  All effect sizes are stated for the allele associating with shorter LTL. 
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Supplementary Table 4: Conditional analysis to test three loci showing potential independent signals. 

 

    

Single SNP model Multiple SNP model  

n beta se p n Beta se p ΔBeta 
chr5 rs2736100 21698 -0.079 0.009 6.51E-17 21312 -0.059 0.010 3.56E-09 24.95% 

rs1801075 21322 -0.069 0.012 3.01E-08 21312 -0.032 0.013 1.42E-02 52.87% 

rs2853676 21709 -0.084 0.011 9.42E-14 21312 -0.029 0.013 2.44E-02 64.87% 

chr10 rs9420907 35087 -0.071 0.011 4.39E-11 34767 -0.046 0.008 5.91E-09 34.47% 

rs11191849 34767 -0.041 0.007 1.56E-08 34767 -0.036 0.008 6.57E-06 13.09% 

chr20 rs755017 29989 -0.066 0.011 8.64E-09 29986 -0.036 0.012 2.27E-03 45.71% 
rs6011040 29994 -0.046 0.008 5.35E-08 29986 -0.020 0.009 2.87E-02 55.89% 

 

Effect estimates of potential independent SNPs were compared between a joint multiple SNP model and their single SNP model results within available 
studies.R² and D’ between two SNPs is given from HapMap II release 22. Single and multiple SNP model analyses were performed in the same sub-set of 
studies. The sample sizes are similar but not identical due to some missing data points in one or other analyses. Studies that were not included in these 
analyses were: Chr5 (BHF-FHS, KORA F3, KORA F4, LLS, NBS, NTRMRG3, NTR_DETECT, NTR_GODOT, PREVEND, TWINGENE), Chr10 (LLS, TWINGENE), Chr20 
(LLS, NTR_DETECT, TWINGENE, TWINSUK).   
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Supplementary Table 5: Details of key genes within each LTL-associated locus. 

Chr Lead SNP Gene name Distance from lead SNP 
(KB) 

Gene function 

2 rs11125529 Acylphosphatase 2, muscle type (ACYP2) 
 
 
Testis-specific Y-encoded-like protein 6 
(TSPYL6) 
 
Proteasome activator subunit 4 
(PSME4,also known as PA200) 

Within gene 
 
 
4.5 
 
 
282 

This gene has roles in muscle differentiation and stress induced 
apoptosis in muscle1. 
 
TSPYL6 shows homology to nucleosome assembly proteins.  
 
 
PSME4 is a proteasome activator involved in DNA repair.  It is 
required for normal spermatogenesis in mice2.  
 

3 rs10936599 Myoneurin (MYNN) 
 
Actin related protein M1 (ACTRT3, also 
known as ARPM1) 
 
 
Telomerase RNA component (TERC) 
 
 
 
 
 
 
 
Leucine rich repeat containing 34 
(LRRC34) 
Leucine-rich repeats and IQ motif 
containing 4 (LRRIQ4) 
Leucine rich repeat containing 31 
(LRRC31) 

Within gene 
 
4.4 
 
 
9.3 
 
 
 
 
 
 
 
19.1 
 
47.6 
 
64.9 
 
 

BTB/POZ and zinc finger domain-containing transcription factor. 
 
Testis-specific protein thought to play a role in nuclear 
organisation during spermiogenesis3 
 
The RNA encoded by this gene provides the template of the 
telomere repeat sequence within the telomerase enzyme 
complex.  Other components of telomerase are TERT, Dyskerin, 
NOP10 and NHP24.  It is a member of the H/ACA snoRNA family4.  
Mutations within TERC cause the autosomal dominant form of 
Dyskeratosis congenita5, a disease linked with telomere biology 
and premature aging. 
 
The three members of the leucine rich repeat containing family 
(LRRC34, LRRIQ4 and LRRC31) are of unknown function.  Other 
members of this family function in DNA repair, cell cycle 
regulation, apoptosis and chromosomal stability. 
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SEC62 homolog (SEC62) 
 
 
 
Polyhomeotic homolog 3 (PHC3) 
 
 
Protein Kinase C, iota (PRKCI) 
 
MDS1 and EVI1 complex locus (MECOM) 
 

192 
 
 
 
313 
 
 
448 
 
691 
 

Forms part of the protein translocation apparatus of the ER.  
Increase levels of SEC62 have been associated with both lung and 
prostate cancer. 
 
Part of the human polcomb complex thought to act as a tumour 
suppressor. 
 
Shown to protect leukaemia cells against drug induced apoptosis 
 
Transcriptional factor and oncoprotein that may have roles in 
hematopoiesis, apoptosis, cell differentiation, proliferation and 
development 
 

4 rs7675998 Nuclear assembly factor 1 homolog  
(NAF1) 
 
 
Neuropeptide Y receptor Y1 (NPY1R) 
Neuropeptide Y receptor Y5 (NPY5R) 
 
 

40.0 
 
 
 
237 
257 

NAF1is required for H/ACA box snoRNA assembly.  It is involved in 
the formation of the telomerase enzyme and is replaced by 
GAR1after initial RNP assembly to form the mature complex4. 
 
Both NPY1R and NPY5R are receptors for neuropeptide Y, one on 
the most abundant neutorpeptides in the mammalian nervous 
system.  Roles of neuropeptide Y include regulation of energy 
homeostasis and vasoactive effects on the cardiovascular system. 
 

5 rs2736100 Telomerase reverse transcriptase 
(TERT) 
 
 
 
Cleft Lip and Palate Transmembrane 
Protein 1-like (CLPTM1L) 
 
Naked cuticle homolog 2 (NKD2) 

Within gene 
 
 
 
 
31.4 
 
 
248 

TERT encodes the reverse transcriptase subunit of the telomerase 
enzyme.  Both deregulation of TERT expression and mutations 
within this gene are linked to several forms of cancer.  Mutations 
within TERT also cause dysteratosis congenita5. 
 
This protein is of unknown function but mutations within this 
gene cause cleft lip and palate. 
 
Negative regulator of WNT signalling 

10 rs9420907 Oligonucleotide/oligosaccharide-
binding fold containing 1 (OBFC1) 

Within gene 
 

Component of the telomere associated complex CST, along with 
CTC1 and TEN1 which bind and protect telomeres via association 
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STE20-like kinase (SLK) 
 
SH3 and PX domains 2A (SH3PXD2A) 
 
 
SW15-dependent recombination repair 
1 (SFR1, c10orf78)  
 
WD repeat domain containing 96 
(WDR96, c10orf79) 

 
 
 
 
51.0 
 
61.3 
 
 
205 
 
 
213 

with the shelterin complex6,7.  OBFC1 is also is a subunit of alpha 
accessory factor (AAF) that is involved in the initiation of DNA 
replication8. 
 
SLK is involved in the regulation of cancer cell motility 
 
This protein is a podosome/invadopodia scaffold protein involved 
in tumour growth and invasion.   
 
SFR1 is involved in homologous DNA recombination and repair  
 
 
WDR96 is a neuralised homolog.  It acts to increase apoptosis and 
is a consequently a candidate tumour suppressor. 
 

19 rs8105767 Zinc finger protein 208 (ZNF208) 
Zinc finger protein 43 (ZNF43) 

21.7 
181 

This region contains a cluster of zinc finger proteins though to be 
transcriptional regulators.  It is a beta-satellite repeat region that 
has arisen later in evolution and is found only in primates.  Of 
these ZNF208 is considered to be a novel member of the family 
although nothing is known of its function9.  ZNF43 is predicted a 
member of the C2H2-type zinc finger proteins, a family involved 
in gene regulation and development.    
 

20 rs755017 Zinc finger and BTB domain containing 
46 (ZBTB46) 
 
 
 
Lck interacting transmembrane adaptor 
1 (LIME1) 
 
 
 

15.2 
 
 
 
 
51.2 
 
 
 
 

Recent studies show ZBTB46 to be a novel transcription factor 
that is expressed specifically in classical dentritic cells amongst 
the mature hematopoietic cells.  It is also expressed in erythroid 
progenitors and endothelium10.   
 
This gene is expressed mainly in T- and B-cells and is responsible 
for their activation11,12.  Activation of these cells results in their 
proliferation.  
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Regulator of telomere elongation 
helicase 1 (RTEL1) 
 
 
tumor necrosis factor receptor 
superfamily, member 6b, decoy 

(TNFRSF6B) 
 
 
tumor protein D52-like 2 (TPD52L2) 
 
SRY(sex determination region Y)-box 18 
(SOX18) 
 
Regulator of G-protein signalling 19 
(RGS19) 

94.0 
 
 
 
91.6 
 
 
 
 
75.0 
 
257 
 
 
283 
 

RTEL1 is an essential helicase that is involved in setting telomere 
length and functions telomere maintenance and DNA repair in 
mice13,14. 
 
This protein is a member of the tumour necrosis factor receptor 
family and acts to regulate cell death.  A read though transcript 
(RTEL1- TNFRSF6B) from the neighbouring RTEL1 gene produces a 
non-coding RNA. 
 
Member of the tumour protein D52-like family.   
 
SOX18 is a transcriptional regulator involved in development and 
determination of cell fate. 
 
Over-expression of this gene results in cell proliferation via 
deregulation of cell cycle control factors15. 
 

 

Genes were selected on proximity to the lead SNP and potential function with relation to LTL.  Those with a known function in telomere biology are given in 

bold type.  
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Supplementary Table 6: Association of telomere-length SNPs with telomerase activity. 

 

SNP Chr 
Effect 
Allele 

EAF 
Raw telomerase activity Log transformed telomerase activity 

Beta P-value 
0 1 2 0 1 2 

rs11125529 2 C 0.797 0.872±0.528 1.187±0.660 1.164±0.524 0.456±0.278 0.608±0.338 0.597±0.277 0.085 0.196 

rs10936599 3 T 0.131 1.143±0.581 1.221±0.558 1.066±0.551 0.584±0.302 0.634±0.291 0.549±0.284 0.091 0.240 

rs7675998 4 G 0.800 1.089±0.457 1.092±0.632 1.199±0.570 0.560±0.236 0.560±0.323 0.615±0.300 0.107 0.100 

rs2736100 5 T 0.547 1.157±0.565 1.159±0.626 1.155±0.495 0.595±0.290 0.596±0.322 0.589±0.269 -0.015 0.783 

rs9420907 10 C 0.398 1.068±0.525 1.225±0.534 1.209±0.715 0.542±0.276 0.635±0.277 0.620±0.368 0.058 0.312 

rs8105767 19 G 0.370 1.194±0.624 1.128±0.552 1.203±0.549 0.607±0.329 0.582±0.285 0.618±0.281 0.000 0.996 

rs755017 20 G 0.216 1.128±0.537 1.201±0.651 1.086±0.541 0.581±0.277 0.612±0.346 0.554±0.268 -0.008 0.895 

 

All SNPs were tested for association with leukocyte telomerase activity in 208 subjects.  Telomerase activity (raw and log-transformed) values are shown by 

genotype group: 0: wild type, 1: heterozygotes, 2: effect allele homozygote .The effect allele tested, the effect allele frequency (EAF) and the effect size 

(beta) based on log transformed telomerase activity are given for each SNP. The value of positive control HK293 (1000cells) is 1.900±0.063 and ranges from 

1.810-1.991.  Three thousand PBMC cells per sample were used for the TRAP reaction. Telomerase activity was expressed as the ratio of telomerase activity 

divided by HK293 telomerase activity (positive control).  
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Supplementary Table 7: Identification of non-synonymous SNPs within telomere-length associated loci. 

 

Lead SNP Chr Non-synonymous 
SNPs 

r2 with 
lead SNP 

Protein AA 
substitution 

PolyPhen functional 
prediction 

SIFT prediction 

rs10936599 3 rs10936600 1.0 LRRC34 L241I Probably damaging Tolerated 
  rs6793295 0.92 LRRC34 S249G Benign Tolerated 
rs2736100 5 None      
rs7675998 4 rs4691895 

rs4691896 
0.91 
0.93 

NAF1 
NAF1 

L368V 
I162V 

Benign 
Benign 

Tolerated 
Tolerated 

rs9420907 10 rs2487999 0.72 OBFC1 T151A Benign Tolerated 
 10 rs10786775 0.70 OBFC1 S248C Benign Tolerated 
rs8105767 19 None      
rs755017 20 rs2281929 1.0 ZBTB46 T11P Benign Tolerated 
rs11125529 2 None      

 

Coding variants within each loci were identified where r2>0.7 to lead SNP.  Functional predictions were carried out using PolyPhen 216and SIFT17.   
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Supplementary Table 8: Association of telomere length variants with diseases/traits. 

Lead SNP Chromosome 
and position 

Relative SNP 
position  

Genes in region 
with known 
function in 
telomere 
biology 

Other genes in region Association of lead SNP or 
proxy (r2>0.7) with disease or 
associated phenotype 
(P<1x10-5) 

Disease allele 
associated with 
longer or 
shorter 
telomere length 

rs10936599 
 

3: 170,974,795 Synonymous change 
in MYNN 

TERC MYNN, ARPM1, LRRC34, 
LRRIQ4, LRRC31 

Colorectal cancer18 
Multiple sclerosis19 
Celiac disease20 

Longer 
Longer 
Shorter 

rs2736100 
 

5: 1,339,516 Within intron of 
TERT 

TERT SLC6A18, SLC6A19, 
CLPTM1L 

Lung cancer / 
adenocarcinoma21-24 
Glioma25-27 
Testicular germ cell cancer28 
Idiopathic pulmonary fibrosis29 
Higher red blood cell count30 

Longer  
 
Shorter 
Shorter 
Shorter 
Longer 

rs7675998 
 

4: 164,227,270 Downstream of 
NAF1 

NAF1 NPY1R, NPY5R   

rs9420907 
 

10: 105,666,455 Within intron of 
OBFC1 

OBFC1 SLK, COL17A1, 
SH3PDX2A 

  

rs8105767 
 

19:22,007,281 
 

Upstream of both 
ZNF257 and ZNF208 

 ZNF257 ,ZNF208 
ZNF676, ZNF43 
ZNF98 

  

rs755017 
 

20:61,892,066 
 

Synonymous change 
in ZBTB46 

RTEL1 ZBTB46, LIME1, ZGPAT, 
TNFRSF6B, ARFRP1, 
STMN3, C20orf135 
TPD52L2, DNAJC5 

  

rs11125529 2: 54,329,370 Within intron of 
ACYP2 

 TSPYL6, C2ORF73, 
PSME4, 
SPTBN1RPL23AP32 

  

Details of the position of each lead SNP, RefSeq genes within each region and the presence of a gene with known function in telomere biology are stated.  
Searches of the NHGRI (http://www.genome.gov/gwastudies/) and GWAS Central (https://www.gwascentral.org/) catalogues (containing only the results of 
GWAS studies) were performed for lead SNPs and proxies (r2>0.7) alongside literature searches to identify disease/phenotype associations with each locus.
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Supplementary Note 

Study Cohorts 

The demographic characteristics of all study cohorts, for both discovery and replication phases are 

shown in Supplementary Table 1.  All individuals included in the analysis are of European descent. 

British Heart Foundation Family Heart Study (BHF-FHS) The BHF-FHS subjects are comprised of 

unrelated individuals who had a validated personal history of premature coronary artery disease 

(CAD) before the age of 66 years and a family history of CAD in a first degree relative.  Recruitment 

took place in the UK between 1998 and 2003.  Further details of this cohort are provided 

elsewhere31,32. 

Estonian Genome Center, University of Tartu (EGCUT) EGCUT is a population-based biobank of the 

Estonian Genome Project of University of Tartu (www.biobank.ee)33.  The current cohort size is over 

51,515, from 18 years of age and up, which reflects closely the age distribution in the adult Estonian 

population. The samples included in this study form a random subset of the cohort, with the 

exception of 500 female individuals aged 83+ which were specifically selected according to age and 

sex. Subjects are recruited by the general practitioners (GP) and physicians in the hospitals. Each 

participant filled out a Computer Assisted Personal interview, including personal data (place of birth, 

place(s) of living, nationality etc.), genealogical data (family history, three generations), educational 

and occupational history and lifestyle data (physical activity, dietary habits, smoking, alcohol 

consumption, women’s health, quality of life). Anthropometric and physiological measurements 

were also taken.  

Erasmus Rucphen Family (ERF) The ERF study is a cross-sectional cohort including 3,000 living 

descendants of 22 couples who had at least 6 children baptized in the community church around 

1850-1900. The participants are not selected on any disease or other outcome. Details about the 

genealogy of the population have been described elsewhere34,35.  

FINRISK The National FINRISK Study 2007 Survey was carried out in five areas in Finland and 2000 

inhabitants aged 25-74 years were invited to participate in each area36,37. The sample was a random 

sample from the Finnish Population Information System, stratified according to sex, 10-year age 

groups, and the six geographical areas.  Only participants of the DILGOM sub-study from Helsinki 

were included in the analysis. 

Nicotine Addiction Genetics – Finland  study (FTC/NAG-FIN) The FTC/NAG-FIN sample was 

ascertained from the Finnish Twin Cohort study consisting of adult twins born between 1938 and 

1957 (www.twinstudy.helsinki.fi). Based on earlier health questionnaires, the twin pairs concordant 

for ever smoking were identified and recruited along with their family members (mainly siblings) for 

the Nicotine Addiction Genetics Finland study (N = 2,265), as part of the consortium including 

Finland, Australia, and United States38,39. Data collection took place between 2001 and 2005.  

GRAPHIC The GRAPHIC study comprises individuals from 520 white nuclear families of European 

descent recruited from the general population in Leicestershire UK, for the purpose of investigating 

the genetic determinants of blood pressure and related cardiovascular traits. Families were included 

if both parents aged 40-60 years and two offspring 18 years wished to participate. Families were 
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recruited through participating family practitioners in Leicestershire, UK, between 2003 and 2005. 

Further details are provided elsewhere40. 

Helsinki Birth Cohort Study (HBCS)  HBCS is a birth cohort based study cohort and includes 8,760 

subjects born in Helsinki between 1934 and 194441,42. Between 2000 and 2003, a representative 

subset of 928 males and 1,075 females participated in a clinical study focusing upon cardiovascular 

and metabolic outcomes and cognitive function. 

Cooperative Health Research in the Region of Augsburg (KORA) The KORA study is a series of 

independent population-based epidemiological surveys and follow-up studies of participants living in 

the region of Augsburg, Southern Germany43. All survey participants are of German nationality, 

identified through the registration office. Informed consent has been given by all participants. The 

present study includes data of the KORA F3 (2004/2005) survey which is a follow-up study of the 

KORA S3 survey (1994/1995), as well as data of the KORA F4 (2006-2008) study which is a follow-up 

study of the KORA S4 survey (1999-2001). 

Leiden Longevity Study (LLS) LLS (http://www.molepi.nl) consists of offspring of nonagenarian sibling 

pairs of which the members are aged over 90 years. The partners of these offspring were recruited 

as population controls. The study has been designed to investigate biomarkers of healthy ageing and 

longevity44. 

Leiden 85-plus study (L85PLUS) L85P is a prospective study consisting of inhabitants of Leiden 
enrolled between 1997 and 1999in the month of their 85th birthday. Details about the study have 
been described elsewhere45,46. 
 
Northern Finland Birth Cohort 1966 (NFBC1966) NFBC1966 (http://kelo.oulu.fi/NFBC/) is a 

prospective follow-up population study of children from the two northernmost provinces of 

Finland47. Women with expected delivery dates in 1966 were recruited through maternity health 

centres48. Cohort members living in northern Finland or in the capital area were invited to a clinical 

examination at age 31 years.  

Netherlands Twin Register (NTR) NTR (http://www.tweelingenregister.org/) recruits twins and their 

family members to study the causes of individual differences in health, behavior and lifestyle. 

Participants are followed longitudinally.  Further details about the cohort can be found elsewhere49-

51.  Three subgroups from this population (NTRMRG3, NTR_DETECT and NTR_GODOT) were included 

in the discovery analysis and a further 2585 individuals from these subgroups had telomere length 

measurements performed for the replication phase. 

PLIC The PLIC study is a prospective population based study designed to investigate the presence 
and progression of atherosclerotic lesions and intima media thickness in the common carotid artery 
in a local cohort of European descent origin (2141 subjects both men and women)52-54. The 
recruitment resulted from the collaboration with general practitioners, who enrolled the subjects 
referring to their ambulatory. 1871 subjects with available telomere length measurements were 
genotyped for the replication study.  
 
Prevention of REnal and Vascular ENdstage Disease (PREVEND) Study PREVEND (www.prevend.org), 

is an ongoing prospective study investigating the natural course of increased levels of urinary 

albumin excretion and its relation to renal and cardiovascular disease. Inhabitants 28 to 75 years of 
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age in the city of Groningen, Netherlands were asked to complete a short questionnaire and 

individuals were then selected with a urinary albumin concentration of at least 10 mg/L and a 

randomly selected control group with a urinary albumin concentration less than 10 mg/L. Further 

details of the recruitment protocol and subjects are given elsewhere55,56. 2926 subjects from the 

PREVEND study were included in the discovery stage of this analysis, having both telomere length 

measurements and genotype data available.  A further 2878 subjects with available telomere length 

measurements were genotyped for the replication study. 

Queensland Institute of Medical Research (QIMR) Brisbane Adolescent Twin Study Subjects were 

recruited from the general population, in the context of ongoing studies of melanoma risk factors 

and studies of cognition57.Twins and their singleton siblings were enlisted by contacting the 

principals of primary schools in the greater Brisbane area, by media appeals, and by word of mouth. 

It is estimated that approximately 50% of the eligible birth cohort were recruited into the study, 

which began in 199258.Most (98% by self-report) are of mixed European ancestry, mainly from 

British Isles. The participants are not selected on any disease or other outcome. Twins and siblings 

are evaluated for melanoma risk factors at ages twelve and fourteen, and for cognitive variables at 

age sixteen. Blood samples were collected at the end of testing sessions from participant twins and 

siblings and if possible from their parents. Pedigree relationships and zygosity were confirmed by 

genotype data. 

TwinGene The TwinGene project is part of the Swedish Twin Registry (STR).  Twins born before 1958 

were contacted to participate in a simple health check-up, with measurement of height, weight, 

waist and hip circumference and blood pressure.  Health and medication data were collected from 

self-reported questionnaires, and blood sampling materials were mailed to the subjects who then 

went to a local health care center for blood sampling for subsequent DNA extraction, serum 

collection and clinical chemistry tests. For the purpose of this study a subset of 300 female MZ twin 

pairs (600 individuals) were used for telomere length assessments. One member of each pair had 

been genotyped using the Illumina 317K SNP platform.  

TwinsUK The TwinsUK  cohort (www.twinsuk.ac.uk) is an adult twin British registry shown to be 

representative of singleton populations and the United Kingdom population59. A total of 4,899 

subjects with telomere length measurement were included in the analysis. The age range of the 

cohort was 16-99. The design and methodology of the GWA study for TwinsUK is described in detail 

elsewhere60. 

United Kingdom Blood Service (UKBS) Subjects were recruited from healthy blood donors of 

European descent as part of the Wellcome Trust Case Control Consortium (WTCCC) study between 

2005 and 200661. The UKBS controls had a wide age range (between 17-69 years) with the majority 

of subjects between 40-59 years. Apart from sex and age, other phenotypic information was not 

available on the UKBS controls. 

Telomerase activity cohort  Two hundred and eight subjects (39.4% of European descent, 44.2% males, 

aged 19-57 years) were selected from two on-going studies62,63. Ethnicity was determined by self-reports 

of each subject. Subjects were overtly healthy, free of any acute or chronic illness on the basis of parental 

reports and were taking no medication that could influence the results.  
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Ethical approval for all studies was obtained from local ethics committees and all participants 

provided informed consent.  

 

Additional details on methods for telomere length measurements 

Leukocyte telomere length (LTL) measurements were made in five laboratories (Leicester, Helsinki, 

Imperial College London, Groningen and UCL London) each using a quantitative PCR assay comparing 

a TL PCR product (T) against a PCR product of a reference (S) gene to produce a T/S ratio, but with 

some modifications in relation to the reference gene and/or the calibrator samples or method used 

to enable inter-plate comparisons. Laboratory-specific details are given below and the laboratory is 

listed for each cohort in Supplementary Table 1. 32,446 samples (67% of total) were measured in 

Leicester, 3156 (6%) in Helsinki, 5146 (11%) in Imperial College, 5804 (12%) in Groningen and 1871 

(4%) in UCL, London. 

1. Leicester: LTL measurements were performed using a protocol described in detail elsewhere64,65.  

In brief, DNA samples were run in duplicate in 25µL reactions using a CAS-1200 liquid handling 

system (Qiagen, UK) and run on a Rotorgene-Q Real Time Thermal Cycler (Qiagen, UK).  The single 

copy gene used was 36B4.  Alongside the samples, each run also contained a Calibrator sample (DNA 

from the K562 cell line) in duplicate and a no template control.  Analysis of the PCR output was 

performed using Comparative Quantification (Qiagen Rotorgene analysis software, Qiagen, UK) and 

quantification is relative to the calibrator DNA.  Samples were checked for concordance between 

duplicate measurements and to ensure that they ran within the established linear range of the 

assay.  In addition, to ensure reproducibility of the assay, samples were re-run at random on 

different days.  Inter-run coefficients of variation were between 2.7% and 3.9% for the cohorts 

measured using this method.   

2.Helsinki: LTL measurements were performed using a protocol described in detail elsewhere64,66. 

Human beta-globin (Hgb) was used as the single copy reference gene. Samples were run in triplicate 

and quantification of both telomere and single copy gene amounts was made by absolute 

quantification against a 7-point standard curve included on each plate. In the case of Finrisk and 

FTC/NAG-FIN cohorts, genomic DNA was used for the standard curve while a synthetic oligomer 

(Sigma) dilution series67 was used in HBCS. Samples and standard dilutions were transferred into the 

plates using a DNA Hydra 96 robot. Reactions were performed with CFX384 Real-Time PCR Detection 

System (Bio-Rad).  Quality control was performed using the Bio-Rad CFX Manager software and 

samples with standard deviation of >0.5 between triplicates were omitted from the analysis. Plate 

effect was taken into account by analyzing four (HBCS) or five (Finrisk, FTC/NAG-FIN) genomic DNA 

control samples on every plate. The telomere and HgB signal values were normalized separately to 

the mean of these control samples before taking the T/S ratio. The control samples were used for 

calculating the inter-run coefficient of variation (CV) values and they were 24.8%, 7.7%, and 8.2% in 

the HBCS (n=1,582), Finrisk (n=520), and FTC/NAG-FIN (n=1,054) samples, respectively. 

3. Imperial College London: LTL measurements were performed using a multiplex quantitative real-

time PCR method68, with minor modifications as described previously69. Human beta-globin 

(Hgb)was used as the single copy reference gene.Five serial dilutions of a single common reference 

sample (leukocyte DNA from a 42 year-old female) spanning 5-50ng were run in triplicate on each 
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plate. Any samples found to have an input DNA amount outside of this range were diluted and run 

again. The overall mean coefficient of variation for duplicate test samples on the same plate was 5%, 

and the mean inter-run CV for selected samples was 6.2% for the 5,146 samples measured. 

 

4.Groningen:LTL was measured using a multiplex quantitative real-time PCR method described in 

detail elsewhere65,68,70. All experimental DNA samples were assayed in triplicate on different plates 

but in the same well position.  Alongside the samples, all assay plates contained a no template 

control (NTC) and two standard DNA samples.  The standard DNA samples consisted of a human 

control sample and genomic DNA of a human leukemia cell line (1301) with extreme long telomeres 

(kindly provided by Dr. Cesaro, IST, Genova).  Albumin was used as the single-copy gene for these 

assays.  Samples were run in 10ul reactions using a Bio-Rad CFX384 real-time system on a C1000 

thermal cycler.  For quantification, each plate also contained a standard curve, consisting of seven 

serial dilutions of a reference DNA sample (standard) spanning a ~12-fold range (5.2 to 60 ng).  

Analysis was performed using the Bio-Rad CFX manager software.For the reference DNA sample, 

each DNA concentration the Ct for albumin occurred ~ 7.2 cycles later in cycling than the Ct for the 

telomere. For quality control all samples were checked for concordance between triplicate values. 

Samples with a coefficient of variation (CV) of ≥ 10% within the triplicate were re-run. If the CV 

remained ≥ 10% the sample was omitted from the statistical analyses. Samples were run in triplicate 

and the intra-assay coefficient of variation was 2.0% (T), 1.85% (S) and 4.5% (T/S ratio). 

Reproducibility data was obtained for 216 subjects from PREVEND and good agreement between T/S 

ratios, measured on different days, was observed (r2=0.99, P<0.0001, inter-run CV 3.9%).  A total of 

5,804 samples were measured in Groningen. 

 

5.UCL London: LTL measurements of PLIC samples were performed using a multiplex quantitative 

real-time PCR method68. LTL measurements were run on a Rotor-Gene 6000(Corbett Research Ltd, 

Cambridge, UK) with two common reference sample on each run. All samples, including the 

reference sample were run in triplicate. Concordance between triplicate measures was assessed.  

Replication was also carried out on subsequent days of random samples to ensure reproducibility.   

Inter-run coefficients of variation were <5.0% for the 1,871 samples measured. 

 

Locus by locus results of bioinformatics analyses 

 
In order to gain better functional insight into the associated loci we undertook bioinformatics 

analyses to search for evidence that an associated SNP could alter protein function or gene 

expression. For all analyses we tested the lead SNP at a locus and all SNPs with an r2>0.7 to the lead 

SNP identified through the 1000 Genomes study (http://www.1000genomes.org/).  

Functional predictions of any identified coding variants were carried out using PolyPhen216 and 

SIFT17 (Supplementary Table 7).  In order to assess whether any variants influenced gene expression 

we searched two available genome-wide gene expression databases, the monocyte genome-wide 

gene expression data from the Gutenburg Heart Study71 and the Genotype-Tissue Expression Project 

(GTEx) data base (http://www.genome.gov/gtex/), which includes liver, brain and lymphoblastoid 

cell types. Potential regulatory variants were identified by searching ENCODE data in the UCSC 

Genome Browser database (http://genome.ucsc.edu/)72 to examine SNP locations in relation to 
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promoter, enhancer or insulator regions (Chromatin State Segmentation), methylation sites 

(predicted CpG islands, Methyl 450K Bead array data and Bisufite sequencing), conserved elements, 

conserved transcription factor binding sites and regions of known transcription factor binding 

(transcription factor ChIP-seq). The results seen at each locus are summarised below.  Details of the 

key genes in each locus are given in more detail in Supplementary Table 5. 

Chr 2p16.2 (ACYP2) 

The lead SNP, rs11125529, along with all identified high LD SNPs, is located within the large intron 3 

of ACYP2.  A single exon gene, TSPYL6, is also located within intron 3 and the variants with most 

evidence of potential function are located TSPYL6.  The most notable of these are rs6740641 and 

rs10165485 which are located within a region annotated as an active promoter in K562 cells.  

rs6740641 (r2=1.0 to the lead SNP) results in a synonymous change in TYPYL6.  It is also located 

within a CpG island, falling between two methylated CpG sites. rs10165485 (r2=1.0) is located within 

the 3’ UTR and also within an insulator region in two further cell lines. CTCF has been found to bind 

this insulator (transcription factor ChIP-seq).  As insulators and enhancers work to regulate correct 

expression of neighbouring genes, it is possible that this region is important in controlling 

transcription of TSPYL6/ACYP2. 

Chr 3q26 (TERC) 

The lead SNP on 3q26, rs10936599, results in a synonymous change in MYNN (Myoneurin) a 

transcription factor which is a member of both the BTB/POZ and zinc finger domain-containing 

family (also referred to as ZBTB31 and ZNF902).Chromatin state in this region shows this SNP to lie 

within an enhancer/promoter and it is also within a vertebrate conserved element.  rs3821383 

(r2=0.92 to the lead SNP) is located within the promoter of MYNN with many transcription factors 

binding across the site. 

Another SNP in the region with perfect LD to the lead SNP (rs2293607, r2=1.0) is positioned 63bp 3’ 

to the TERC RNA template sequence and lies within an active promoter, with evidence of many 

factors binding across the site.  Although not located within a CpG island this SNP lies only a few 

base pairs outside of one that shows differential methylation across cell types. A previous study also 

reported this SNP to have a potential role in TERC RNA stability73.  

Two further SNPs in this locus, rs10936600 (r2=1.0 to the lead SNP) and rs6793295 (r2=0.92) lead to 

L241I and S249G changes within LRRC34 respectively.  These were investigated using functional 

prediction in both PolyPhen2 and SIFT.  Although PolyPhen2 suggests a damaging effect of L241I, 

SIFT suggests that this mutation would be tolerated (Supplementary Table 7).  Both functional 

prediction tools suggest S249G to be of no consequence.  In addition to rs10936600 being a non-

synonymous SNP, it also lies within a conserved transcription factor binding site for HLF and CEBP.  

However, chromatin state within six cell lines does not suggest either promoter or enhancer activity 

and there is no evidence of transcription factor binding activity. Another SNP (rs67795055, r2=0.79) 

within intron 1 of LRRC34 is located in a region of weak promoter activity and within a CpG island. 

Little is known about the function of LRRC34, although expression of this gene is down-regulated in 

mouse cells carrying a knockout of the tumour suppressor E-cadherin74. 
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Three SNPs in high LD with the lead SNP lie within the 5’ UTR and active promoter of ACTRT3 

(ARPM1 rs12637184, r2=1.0; rs9811216, r2=0.92 and rs9866776, r2=0.92) with several transcription 

factors binding across all of these SNP sites. All three SNPs are within an annotated CpG island and 

lie within (rs9811216) or close to (rs12637184 and rs9866776) differentially methylated CpG sites. 

 

Chr 4q32.2 (NAF1) 

The lead SNP within this locus, rs7675998, is located 40.3 kb upstream of NAF1 (Nuclear assembly 

factor 1).  There is little evidence to suggest a putative function for this SNP.  Two SNPs within high 

LD of rs7675998 (r2=0.91) and in perfect LD to each other (rs4691895 and rs4691896, r2=1.0) cause 

non-synonymous changes within NAF1 (Supplementary Table 7). Although neither, individually, are 

predicted to have a functional effect it is not known what the effect of these changes would be in 

combination, although it should be noted that rs4691895 is only present within the protein 

produced from transcript variant 2. 

Other SNPs in potential regulatory regions include rs2320333 (r2=0.77) which falls within a predicted 

insulator and rs936562 (r2=0.82) which is located within the 5’ UTR and promoter of NAF1, within a 

CpG island and in a region binding many transcription factors.  The CpG island is unmethylated in the 

cell types studied, consistent with all cell types showing this region to be an active promoter. 

 
Chr 5p15.33 (TERT) 

rs2736100 is located within intron 2 of the telomerase reverse transcriptase gene, TERT.  There are 

no high LD SNPs (r2>0.7) to rs2736100.  Two further SNPs on low LD with the lead SNP also associate 

with telomere length and were investigated in the conditional analyses (Supplementary Table 4). 

rs2853676 (r2=0.17 to rs2736100 and association with LTL P=1.11x10-13) is also located within intron 

2 of TERT.  This intron contains multiple CpG sites and both rs2736100 and rs2853676 lie in close 

proximity to such sites (<100bp) but not within them.  The third SNP, rs1801075 (r2=0.00 to 

rs2736100 and association to LTL P=3.70x10-8) falls within the 5’ UTR of the adjacent gene, CLPTM1L.   

Chr 10q24.33 (OBFC1) 

The lead SNP (rs9420907) is located within intron 1 of OBFC1 and within a promoter/enhancer 

region.  ChIP-seq data shows many factors binding across the region but not across the SNP location.  

Two further SNPs (rs1265164, r2=0.90 and rs9419958, r2=0.75 to rs9420907) are located within 

predicted enhancers in this region, but again there is no evidence of protein binding across the SNP 

sites.  Another SNP in LD the lead SNP (rs4387287, r2=0.79) falls within the 5’ UTR, a CpG island and 

the promoter region of OBFC1.  This region is shown to bind multiple transcription factors. 

Chr 19p12 (ZNF208) 

The lead SNP in this locus (rs8105767) lies intergenic between two genes, ZNF208 and ZNF257, 

which are transcribed in opposite directions.  It is not located within the promoter region of either.  

All associated SNPs at this locus fall within regions annotated as heterochomatic in the cell lines 

studied in ENCODE and there is little evidence for functional activity.  One cluster of SNPs with 
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r2=0.71 to the lead SNP and in perfect LD with each other fall within vertebrate conserved elements, 

but show no other evidence of function. 

Chr 20q13.3 (RTEL1) 

Both the lead SNP (rs755017) and a SNP in perfect LD (rs2881929, r2=1.0) are located within exon 1 

of ZBTB46.  Whereas rs755017 results in a synonymous change, rs2881929 causes a T11P 

substitution.  T11P is not predicted to have a damaging effect on ZBTB46 (Supplementary Table 7).  

Both SNPs also lie in a CpG island and within vertebrate conserved elements.  Although chromatin 

state in this area does not predict promoter or enhancer function, there is some evidence of DNAseI 

hypersensitivity.  Relaxation of stringency within the conserved transcription factor binding element 

search suggests both STAT4 and OCT_C binding sites.  However, due to the relaxed stringency this 

could be considered speculative and would require experimental validation. 

A group of five further SNPs in high LD to the lead SNP (r2=0.89) and in high LD with each other 

(r2=1.0) in this region all fall in potential regulatory regions.  Three (rs67416152, rs6011138 and 

rs6011139) lie within an insulator region whilst two others (rs6011173 and rs4809367) lie within a 

poised promoter. rs4809367 is also within a CpG island that shows differential methylation patterns 

across the cell lines studied. 

Conditional analysis was performed within this region as several SNPs in low LD to the lead SNP also 

showed association with telomere length (Online Methods, Supplementary Table 4).  The SNP used 

for the conditional analysis rs6011040 (r2=0.19 to the lead SNP, association with LTL P=1.58x10-7) 

showed an eQTL with LIME1 expression in monocytes.  This SNP is located within intron 3 of ARFRP1 

(29.6KB from LIME1) in an enhancer region. LIME1 is a transmembrane adaptor protein involved in 

T- and B-cell activation that lies within the locus75,76.  As activation of T- and B-cells results in 

proliferation, it is possible that altered LIME1 expression could affect cellular turnover, which could 

in turn be reflected by LTL. 
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