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Abstract Definition of disease phenotype is a necessary

preliminary to research into genetic causes of a complex

disease. Clinical diagnosis of migraine is currently based

on diagnostic criteria developed by the International

Headache Society. Previously, we examined the natural

clustering of these diagnostic symptoms using latent class

analysis (LCA) and found that a four-class model was

preferred. However, the classes can be ordered such that all

symptoms progressively intensify, suggesting that a single

continuous variable representing disease severity may

provide a better model. Here, we compare two models:

item response theory and LCA, each constructed within a

Bayesian context. A deviance information criterion is used

to assess model fit. We phenotyped our population sample

using these models, estimated heritability and conducted

genome-wide linkage analysis using Merlin-qtl. LCA with

four classes was again preferred. After transformation,

phenotypic trait values derived from both models are

highly correlated (correlation = 0.99) and consequently

results from subsequent genetic analyses were similar.

Heritability was estimated at 0.37, while multipoint linkage

analysis produced genome-wide significant linkage to

chromosome 7q31-q33 and suggestive linkage to chromo-

somes 1 and 2. We argue that such continuous measures are

a powerful tool for identifying genes contributing to

migraine susceptibility.

Introduction

Research into the genetics of complex diseases often

involves the identification of genes associated with groups

of patients who exhibit different combinations of disease

symptoms or phenotypes. This analysis depends crucially

on the careful classification of patients. Commonly, the

clustering of patients depends on the criteria established by

medical societies, such as the International Headache

Society (Headache Classification Committee of the Inter-

national Headache Society 1988; Olesen and Steiner 2004;

Silberstein et al. 2005) for migraine. Without doubt, these

criteria are valuable for the diagnosis of diseases, but their

effectiveness for genetic research is debatable (Hallmayer

et al. 2003; Wessman et al. 2007) as discussed below.

Migraine is a hereditary disorder with estimated heri-

tability between 34 and 57% (Ziegler et al. 1998; Mulder

et al. 2003; Svensson et al. 2003, 2004; Nyholt et al. 2004,

2005). The two most common forms of migraine are
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migraine without aura (MO) and migraine with aura (MA),

where aura typically concerns a visual disturbance. The

genetic research of migraine is mainly focused on these

two subgroups. To date, except for CACNA1A, ATP1A2

and SCN1A—genes that contribute to a rare mendelian

form of MA, familial hemiplegic migraine (FHM), no gene

has been convincingly implicated in migraine (Table 1).

This may be due to clinical and genetic heterogeneity of

the disease. The phenotype defined by IHS criteria may

oversimplify the complex variability among sufferers of

this complex disease (Anttila et al. 2006; Wessman et al.

2007). Furthermore, there is overlap in the symptoms of

MO and MA. Clinically, the symptoms of MA are a super-

set of the symptoms of MO. The work of Nyholt et al.

2004 and Ligthart et al. (2006) provides further support for

the argument that MA and MO are not separate entities.

Therefore, the development of an endophenotype or an

alternative phenotype may give better insight into the

genetics of common migraine.

There are currently two main types of method for

investigating the phenotypic structure of symptom survey

results, one based on the use of statistical methodologies to

convert the symptoms to a unidimensional value and the

other based on trait component analysis (TCA), which

treats each individual symptom as a response variable for

the purpose of linkage analyses. Nyholt et al. (2004) pio-

neered the use of latent class analysis (LCA) of the pheno-

type for migraine. The authors applied LCA to migraine

symptomatic data in an Australian twin population sample

and found that the best fit to the data was obtained using a

model with three symptomatic latent classes; these corre-

spond to a mild form of recurrent non-migrainous head-

aches, a moderately severe form of migraine and a severe

form. Moreover, the estimated heritability using LCA was

found to be slightly higher than the heritability estimated

using IHS criteria. Nyholt et al. (2005) then applied this

method for genome-wide linkage analysis and identified

linkage to chromosome 5q21. They also replicated previ-

ously reported susceptibility loci on chromosomes 6p12.2-

p21.1 and 1q21-q23.

Since migraine is a suite of symptoms and the sub-

phenotype analysis in Nyholt et al. (2005) found that

individual symptoms are associated with specific linkage

peaks in their data, there have been several attempts to

identify gene loci linked to individual symptoms (Anttila

et al. 2006, 2008). This method is referred to as trait

component analysis. Anttila et al. (2006) applied TCA to

dissect the genetic susceptibility of migraine in a Finnish

cohort. They found strong evidence that various migraine

symptoms are linked to chromosome 4q24, including

photophobia, phonophobia, intensity, unilaterality, nausea,

vomiting and attack length. They also found that pulsation

is linked to chromosome 17p3 and reported some sugges-

tive linkage of the phonophobia trait to chromosome 10q22

and the ‘‘aggravation by physical exercise’’ trait to chro-

mosomes 12q21, 15q14 and Xp21.

Besides LCA, other clustering methods have been applied

to genetic research of diseases with complex aetiology.

These include grade of membership (GoM), used to analyze

schizophrenia (Hallmayer et al. 2003), mania (Cassidy et al.

2001) and Alzheimer’s (Fillenbaum 1998; Corder and

Woodbury 1993); model-based clustering, used to analyze

anorexia nervosa (Devlin et al. 2002); and fuzzy clustering,

used to analyze anxiety disorder (Kaabi et al. 2006). All

these algorithms aim to identify homogenous classes/com-

ponents in the data, based on specified traits of interest, and

estimate the parameters associated with each class.

For some diseases composed of many individual

symptoms, the data may be better modeled using a con-

tinuous representation. Indeed, in earlier analyses of multi-

symptom migraine data using LCA and GoM (Chen et al.

2009; Nyholt et al. 2004, 2005; Ligthart et al. 2006, 2008),

the classes could be ordered in such a way that there was a

gradual reduction in all symptoms, suggesting that there is

a single latent continuous trait underlying the observed

pattern of symptoms. It is therefore reasonable to hypo-

thesize that the data may be modeled using a single conti-

nuous variable representing severity of the disease instead

of classes.

Item response theory (IRT), which is also known as

latent trait analysis, is a popular statistical method for

modeling psychological and educational survey responses.

It assumes an underlying continuous latent value which has

direct influence on the responses to items. Indeed, items are

Table 1 The chromosome

regions associated with the

common forms of migraine

Phenotype Cohort Chromosome References

MO Icelandic 4q21 Björnsson et al. (2003)

MO Italian 14q21.2-q22.3 Soragna et al. (2003)

MA Canadian 11q24 Cader et al. (2003)

MA Finnish 4q24 Wessman et al.(2002)

MA North American Caucasians 19q13 Jones et al.(2001)

TCA and LCA Finnish and Australian 10q22-10q23 Anttila et al.(2008)
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designed to capture this latent value. In this paper, the item

variables are equivalent to the symptom variables. IRT has

been found to be useful in behavioral genetics and genetic

epidemiology, where the phenotype is often determined by

the questionnaire or interview data. This method has been

used for exploring the genetic and environmental influence

on the timing of pubertal change (Eaves et al. 2004) and

the analysis of multi-symptom genetic data (Eaves et al.

2005; Wray et al. 2008).

In this paper, we test the hypothesis proposed above by

first introducing IRT for analyzing multi-symptom

migraine data, then comparing this non-clustering method

to LCA. Both the models are introduced in a Bayesian

framework and compared using statistical measures that

take into account goodness of fit and model complexity.

The models are then compared further by assessing the

utility of their resulting trait measures in genetic herita-

bility and linkage analysis.

Methods

Data

Phenotype data

Data were collected by the Queensland Institute of Medical

Research (QIMR) during the course of extensive and semi-

structured telephone interview studies from 1993 to 2000.

The surveys were primarily designed to assess physical,

psychological, and social manifestations of alcoholism and

related disorders. The sample was unselected with regard to

personal or family history of alcoholism or other psychi-

atric or medical disorders. The data were collected over

two periods, 1993–1995 and 1996–2000. The earlier

interview was administered to Australian twins listed with

the volunteer-based Australian Twin Registry who were

born between 1902 and 1964 while the second interview

was focused on twins born between 1964 and 1971. Par-

ticipants of both cohorts were first asked the screening

question:‘‘Do you have recurrent attacks of headaches?’’ If

the participant screened positive, then he/she was asked a

number of questions which were developed by an experi-

enced migraine researcher based on the IHS diagnosis

criteria (Table 2). Although the wording of the questions is

identical for both periods, the older cohort was not asked

questions related to having at least five episodes of head-

aches, the duration of headaches (4–72 h) and the severity

of the pain associated with headache (‘‘moderate to

severe’’).

There are 13,062 individuals from 6,764 families par-

ticipating in this analysis, with 2,716 MZ twin pairs (63.6%

females and 36.4% males), 3,399 DZ twin pairs (34.5%

female twin pairs, 22.4% male twin pairs and 43.1%

opposite sex twin pairs), 12 twins with unknown zygosity

and 817 non-twin siblings. The mean age of participants

was 37.5 years and ages ranged from 23 to 90 years at the

time of survey. Details of the collection of the migraine

data are provided by Nyholt et al. (2004, 2005).

Although it may be argued post-survey that it would

have been more complete for all members of the cohort to

be asked all symptom questions, this was considered to be

an unacceptable impost by the survey designers. Possible

ascertainment bias was considered and discounted since

analysis showed little difference in prediction of LCA and

IRT by including and excluding the ‘‘no’’ cohort. .

Genotype data

The genotypic data are composed of four smaller genome-

wide linkage scans performed for other studies at the

Queensland Institute of Medical Research (QIMR). Geno-

typing for the four studies was conducted at Gemini

Genomics with 426 satellite markers, Sequana Therapeutics

Table 2 The survey questions

based on IHS criteria
Notation Abbreviation Descriptions

a C5 episodes Have at least five episodes of headache in your life time

b 4–72 h Average headache last between 4 and 72 h

c1 Unilateral Headache often occurs at one side of head

c2 Pulsating Headache pain can be described as throbbing, pulsating or

pounding

c3a Moderate/severe Headache pain can be described between moderate and

severe

c3b Prohibitive Headache pain prohibits daily activities

d1 Nausea/vomiting Headache associated with vomiting or feeling nausea

d2a Photophobia Enhance sensitivity to light

d2b Phonophobia Enhance sensitivity to sounds

Aura Aura Have visual problems such as light shower, blurring, blind

spot or double vision
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with 519 markers, the Center for Mammalian Genetics at

Marshfield Clinic Research Foundation with 776 markers

and the University of Leiden with 435 markers. The details

of DNA collection, genotyping methods and data cleaning

are discussed elsewhere (Zhu et al. 2004; Cornes et al.

2005).

Graphic Representation of Relationships (GRR) (Abec-

asis et al. 2001) and RELPAIR (Epstein et al. 2000; Duren

et al. 2003) were applied for the examination of the pedi-

gree structure and identification of inconsistencies between

the genotypic data and self-reported pedigree relationships.

The potential misspecification, incorrect zygosity labeling

of twins and sample mix-ups were identified and corrected.

A small number of cases with errors could not be corrected,

so were excluded in further analysis. The SIB-PAIR ver-

sion 0.99.9 program by Duffy (2002) was then imple-

mented for identifying and cleaning the Mendelian

inconsistencies in the genotype data.

Markers from four sources were included separately on

the genetic map for the combined scan, separated by a

small distance of 0.001 cM. Markers with genotypic data

inconsistent between different genome scans were exclu-

ded and unlikely genotypes were identified by MERLIN

(Abecasis et al. 2002) and omitted from further analysis.

Potential map errors were identified by GENEHUNTER

(Kruglyak et al. 1996) and MENDEL (Lange et al. 1988).

Map positions were in Kosambi cM, which is estimated

using locally weighted linear regression from the National

Center for Biotechnology Information (NCBI) Build 34.3

physical map positions, as well as published deCODE and

Marshfield genetic map positions (Kong et al. 2004).

Where the results suggested inconsistencies between

genetic map distance and recombination fraction, the pri-

mer sequences for all markers in the region were BLASTed

against the entire human genome sequence (http://www.

ensembl.org, NCBI build 34.3). The genetic map was then

revised to include the updated physical positions of all

markers in the problematic regions. The revised map and

the original genotype data were cleaned of unlikely geno-

types using MERLIN and map errors were resolved using

GENEHUNTER. More details on the collapsing of markers

is in Cornes et al (2005).

There are a total of 1,770 unique markers and the

combined genome scan included 4,148 individuals from

919 families (143 MZ and 776 DZ twin pairs and some

parent genotype).

Model

Latent class analysis

Suppose that there are n individuals and J observed

(manifest) item response variables ði ¼ 1; . . .; n; j ¼

1; 2. . .; JÞ: Let yij denote the binary response of the ith

individual to symptom question j such that yij = 1 when

the symptom j is present in person i, else yij = 0. Yi is then

the vector of the ith subject’s responses to all symptoms.

Assume that there are K latent classes embedded in

the data. Let kkj be the probability of a positive response on

variable j for a person in latent class kðk ¼ 1; . . .;KÞ: Then

PðYijk; pÞ ¼
XK
k¼1

pk
YJ
j

ðkkjÞyijð1� kkjÞ1�yij

where pk denotes the probability that a randomly chosen

individual belongs to latent class k. We used the following

non-informative priors:

pk �Dirichletð1; . . .; 1Þk
kkj �Betað1; 1Þ
representing equal probability of membership to any of the

k classes and equal probabilities of a 0 or 1 response for the

jth variable in the kth class. The posterior probability that

subject i belongs to class k is given by:

pik ¼
pk

Q
j f ðYijkkÞP

k pk
Q

j f ðYijkkÞ
where kk is the expected probability of membership of the

kth class and f ðYijkkÞ represents the probability distribution

for Yi given this probability, that is,

f ðYijkkÞ ¼
Y
j

ðkkjÞyijð1� kkjÞ1�yij :

The parameter vectors p and k are estimated by Markov

Chain Monte Carlo (MCMC) simulations using

WinBUGS1.4 (Spiegelhalter et al. 2006). Then the latent

trait value for the ith subject is given by

Phenotypic traiti ¼
Xk¼K

k¼1

Pj¼J
j¼1 kkj
J

� pik: ð1Þ

Item response theory

As before, let yij denote the binary response of person i to

variable j, yij ¼ f0; 1g; i ¼ 1; 2; . . .; n and j ¼ 1; 2; . . .; J:
Let hi denote the latent trait value of subject i; hi 2 R and

Pj(hi) be the probability of observing a response score of 1

(symptom present) given the latent trait value PjðhiÞ ¼
Pjðyij ¼ 1jhiÞ; which is called the item response function

(IRF). Different types of IRF constitute the subtypes of

IRT. Variations of the IRT model include the Rasch model,

2-parameter logistic model (2-PL), 3-PL model and the

Birnbaum model.

In this paper, we adopt the 2-PL model, which is com-

monly implemented for phenotyping. The IRF for the 2-PL

model is
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Pjðhijaj; bjÞ ¼ eajðhi�bjÞ

1þ eajðhi�bjÞ ð2Þ

where variables aj and bj are described in the education/

psychology literature as the item discriminant parameter

and item difficulty parameter. Higher values of aj indicate

that item j has higher correlation with the latent trait value.

The item difficulty parameter represents the point on the

latent trait scale at which the probability of having the

symptom is 0.5.

The likelihood is thus

PðY jhÞ ¼
Yn
i

YJ
j¼1

ðpjðhiÞÞyijð1� pjðhiÞÞ1�yij :

As in the LCA model, noninformative priors are used

for parameters hi, aj and bj:

hi �Nð0; 1Þ; hi 2 R

aj �Nð0; 10000Þ
bj �Nð0; 10000Þ:

:

As for Bayesian LCA, estimation was carried out by

Markov Chain Monte Carlo (MCMC) using WinBUGS1.4

(Spiegelhalter et al. 2006).

For both LCA and IRT models, MCMC chains were

generated with 10,000 iterations. The initial 5,000 itera-

tions were considered as burn-in and every fifth case of the

remaining 5,000 (total of 1,000 cases) was extracted to

build the marginal posterior distribution of the parameters.

For the LCA model, a chain was generated for each value

of K; K ¼ 2; . . .; 7:

Model comparison

The deviance information criterion (DIC) is a popular and

useful method for assessing model fit and complexity for

the purpose of comparing Bayesian models. The early DIC

proposed by Spiegelhalter et al. (2002) is only suitable

when the competing likelihood models have a closed form.

It is not ideal for comparing models with missing values or

mixture models (Celeux et al. 2006). Celeux et al (2006)

suggested various alternative forms of DIC for these

models and compared the performance of these criteria.

Here we employ the DIC3 of their work to determine the

optimum number of classes for the Bayesian LCA and

compare Bayesian LCA and IRT models. DIC3 is defined

as

DIC ¼ �4Eh½log f ðyjgÞjy� þ 2 log f̂ ðyÞ ð3Þ
where y is observed data, g is a vector of model parameters

and f̂ ðyÞ is the posterior expectation of model parameters.

Further details on the calculation of DIC for Bayesian LCA

and IRT can be found in Appendix.

Genetic analysis

Heritability of the quantitative phenotype values was esti-

mated with the ACE model, which is well suited for twin

studies.The ACE model assumes that phenotypic variation

is due to additive genetic effect (A), shared environmental

effect (C) and random (non-shared) environmental effect

(E). The heritability is then the proportion of the total

variance which is due to the additive genetic effect. The

analysis was carried out using Mx (Neale et al. 1997). Mx

applies a maximum likelihood method to estimate the

variances and the corresponding heritability. The goodness

of fit criterion used in Mx for assessing the ACE model is

the Bayesian Information Criteria (BIC) (Schwarz 1978).

Non-parametric quantitative trait linkage analysis was

carried out using Merlin-qtl. Merlin-qtl was developed

under the general framework of Kong and Cox (1997) and

Whittemore and Halpern (1994). The pik of LCA and the

latent trait hi of IRT are treated as phenotypic traits for the

genetic analysis.

Results

Bayesian LCA

Table 3 contains the DIC values for different values of

K; ðK ¼ 2; . . .; 7Þ: The DIC changes most dramatically

when K changes from 2 to 3 but there is little improvement

after K = 4. Therefore, the four-class model is preferred.

With K equal to 4, the deviance stabilized after 5,000

iterations with an approximately normal distribution, a

mean of 49,062.91 and standard deviation of 126.315.

The posterior marginal distributions for the majority of

parameters were also approximately normal, with the

exceptions of the conditional probabilities of classes 1 and

4, which are bounded by the values 0 and 1, respectively.

Table 4 lists the posterior mean values and the credible

intervals (analogous to frequentist confidence intervals) of

all parameters of Bayesian LCA for K = 4.

Table 3 DIC and deviance values for K = 2, …,7 and Bayesian IRT

model

Model K DIC value Deviance

LCA 2 60,801.19 60,721.39

3 51,390.08 51,097.95

4 49,442.02 49,062.91

5 48,531.12 47,577.47

6 47,236.32 45,910.07

7 46,687.76 45,120.79

IRT – 51,718.36 51,370.00
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We observed a gradual increase in the probability of

each symptom across the four classes. Class 1 is composed

of participants with limited symptoms (Fig. 1). In contrast,

class 4 is a collection of participants with all symptoms.

Except for symptoms related to the location of the pain

(unilateral, C3 of Table 2, 74%), more than 84% of indi-

viduals in this class have all other symptoms. Nearly all

members in this class described their headache pain as

moderate to severe, experienced sensitivity to light as the

headache occurred and described the headache attacks as

inhibiting their daily activities (c1: moderate/severe,

k4,5 = 0.997; d2a: photophobia, k4,8 = 0.996; c3b: prohibi-

tive, k4,6 = 0.983, Table 4).

The main difference between the two intermediate

classes 2 and 3 lies in five symptoms: duration of headache,

severity of pain associated with headache, ability to carry

out daily activities and the physical reactions associated

with headache such as nausea/vomiting, sensitivity to light

and sound and visual problems (b, c3a, c3b, d1, d2a, d2b,

aura of Table 2). Members in class 3 showed higher

probability of these symptoms than members in class 2.

The only item experienced by more individuals in class 2 is

‘[5 headaches occurring in your lifetime’. Individuals in

class 2 exhibited a higher frequency of headache episodes.

Class 1 is the largest class with more than 55% of the total

13,062 participants. The second largest class is class 3

which contained 20% of participants followed by class 4

(14%) and class 3 (10%) (Table 4).

Bayesian IRT

Because of the very large number of parameters in this

model, the MCMC analysis required a large amount of

computational memory and a long computational time. The

marginal distributions of the item discriminant parameters

and item response parameters (parameters a and b of Eq. 2)

were approximately normal, with posterior mean values

and credible intervals as listed in Table 5. Figure 2 dis-

plays results for each symptom, using the 2-PL model. The

x-axis is the latent trait value; the y-axis is the probability

of having the symptom and each line represents one

symptom. Given a trait value, symptoms on the right side

of Fig. 2 are less likely to be described by subjects than the

symptoms on the left. For instance, nearly all subjects with

latent value of 1 described the headache as moderate to

severe but only 60% described the headache as unilateral

(Fig. 2). Overall, the results indicate that the symptom

‘‘unilateral’’ is the least prevalent, followed by aura and

nausea/vomiting. The other symptoms have similar values

of item response probability (6, Table 5) ranging from 0.43

to 0.65.

A lower value of the item discrimination parameter a

indicates a weaker correlation between the symptom and

underlying latent trait. Of all ten symptoms, the estimated

>5 epi 4−72hr unilat puls mod prohib naus photo phono aura
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Fig. 1 Barplot showing the symptomatic characteristics of each class

under the four-class model

Table 4 The posterior statistics of LCA model parameters and its credible interval

K 1 (CI) 2 (CI) 3 (CI) 4 (CI)

Pk 0.55 (0.55–0.56) 0.10 (0.09–0.12) 0.20 (0.19–0.22) 0.14 (0.12–0.2)

kk,1 0.00 (0.00–0.01) 0.76 (0.73–0.81) 0.72 (0.69–0.75) 0.94 (0.92–1.0)

kk,2 0.00 (0.00–0.00) 0.43 (0.39–0.48) 0.70 (0.67–0.74) 0.90 (0.88–0.9)

kk,3 0.00 (0.00–0.00) 0.34 (0.30–0.37) 0.43 (0.41–0.46) 0.71 (0.68–0.7)

kk,4 0.00 (0.00–0.00) 0.65 (0.62–0.69) 0.78 (0.76–0.80) 0.92 (0.90–0.9)

kk,5 0.00 (0.00–0.00) 0.56 (0.50–0.62) 0.93 (0.90–0.95) 1.00 (0.99–1.0)

kk,6 0.00 (0.00–0.00) 0.20 (0.15–0.26) 0.76 (0.72–0.80) 0.98 (0.97–1.0)

kk,7 0.00 (0.00–0.00) 0.18 (0.14–0.22) 0.51 (0.47–0.54) 0.93 (0.90–1.0)

kk,8 0.00 (0.00–0.00) 0.16 (0.12–0.20) 0.70 (0.66–0.75) 1.00 (0.99–1.0)

kk,9 0.00 (0.00–0.00) 0.30 (0.26–0.34) 0.70 (0.66–0.74) 0.96 (0.94–1.0)

kk,10 0.00 (0.00–0.00) 0.19 (0.16–0.23) 0.48 (0.45–0.52) 0.84 (0.81–0.9)
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latent value correlates most strongly with the severity of

pain during the headache, followed by the symptoms

‘prohibitive of daily activities’, photophobia and phono-

phobia (indicated by the posterior mean discrimination

parameters of 8.368, 6.608, 6.562 and 5.263 respectively;

Table 5). Location of pain (‘unilateral’) and aura correlated

least strongly with the latent value.

Model comparison

The DIC estimated for the Bayesian IRT model of the

migraine symptomatic data is 51718.36 (Table 3). This

value is slightly higher than the equivalent value of

49,442.02 for the best LCA model (K = 4). This suggests

that, by this criterion, Bayesian LCA with K = 4 classes

provides a slightly better model for these data than the

Bayesian IRT model.

The models were also compared using deviance, which

is -29log-likelihood and measures the fit of a model but

not its complexity. Although the difference in the deviance

values between LCA with K = 4 and IRT is less than for

DIC, lower deviance is still observed for LCA with K = 4

(Table 3). This supports the observation that LCA with

K = 4 is a slightly better model for these data.

Figure 3 is a scatter plot showing the relationship

between the phenotype trait values estimated using

Bayesian LCA and Bayesian IRT. There is a strong cor-

relation between phenotype values estimated with the two

models (correlation = 0.99).

Genetic analysis

The ACE model was fitted to the latent trait value h of the

Bayesian IRT model and the converted continuous estimate

derived from Bayesian LCA (Eq. 1), to estimate the heri-

tability of common migrainous headache. Although the

trait values derived from the Bayesian LCA model are
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Fig. 2 Plot showing the relationship between the latent trait and each

symptom for IRT model

Table 5 The posterior statistics of item response probability and item

discrimination parameters

Item Mean SD 2.5% 25% Median 75% 97.5%

a-a 4.074 0.12 3.844 3.992 4.073 4.154 4.311

a-b 4.245 0.135 3.983 4.152 4.244 4.336 4.518

a-c1 2.874 0.073 2.73 2.824 2.874 2.922 3.021

a-c2 4.454 0.109 4.24 4.38 4.453 4.525 4.672

a-c3a 8.368 0.361 7.688 8.117 8.36 8.598 9.095

a-c3b 6.562 0.217 6.164 6.415 6.553 6.702 7.003

a-d1 4.646 0.136 4.392 4.551 4.644 4.739 4.919

a-d2a 6.608 0.219 6.194 6.46 6.601 6.755 7.047

a-d2b 5.263 0.148 4.981 5.164 5.258 5.359 5.567

a-Aura 3.732 0.104 3.54 3.659 3.728 3.799 3.943

b-a 0.493 0.015 0.464 0.482 0.492 0.502 0.524

b-b 0.618 0.015 0.59 0.608 0.618 0.627 0.647

b-c1 0.936 0.016 0.907 0.925 0.936 0.947 0.969

b-c2 0.49 0.013 0.466 0.48 0.489 0.499 0.516

b-c3a 0.427 0.014 0.401 0.418 0.427 0.436 0.454

b-c3b 0.61 0.013 0.585 0.601 0.609 0.618 0.635

b-d1 0.781 0.014 0.756 0.771 0.781 0.79 0.807

b-d2a 0.648 0.012 0.625 0.64 0.648 0.656 0.673

b-d2b 0.623 0.013 0.6 0.615 0.623 0.632 0.648

b-Aura 0.845 0.014 0.818 0.835 0.845 0.854 0.872
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Fig. 3 Scatter plot showing the relationship between predicted

continuous phenotypic values by Bayesian LCA and Bayesian IRT

model. The continuous phenotypic trait is bounded between 0 and 1,

where 1 represented a severe type of common migraine and 0

indicated no evidence of common migraine. The straight line is the

predicted linear relationship between these two phenotypes. The

correlation between the phenotypic traits is 0.99
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preferable (as indicated by the smaller BIC value in

Table 6), there is little difference in the heritability

between the traits (component A of Table 6) due to the

high correlation in the phenotypic trait values of the two

models. The estimated heritability for both models is 0.37

(CI 0.34–0.40). The non-shared environmental factor is the

main contributor to the variation in the twin migraine status

(62%, component E of Table 6). Interestingly, the common

shared environment in twins has negligible effect on the

variation of migraine ‘‘severity’’ (as measures by our latent

trait measures) between twin pairs.

Figure 4 summarizes the results of linkage analysis

using the phenotypic measures derived from Bayesian LCA

with four classes using MERLIN-qtl. The black solid line

of Fig. 4 shows the LOD score of the trait derived from the

posterior mean of the model parameters using Eq. 1.

Strong evidence for linkage was observed at 7q31-q33

where LOD scores are between 2.37 and 3.54. The highest

LOD score (3.54) was observed for marker D7S640 on

chromosome 7, followed by a nearby marker, GATA43C11

(LOD = 3.33). Besides chromosome 7, there is some

suggestive evidence of linkage on chromosomes 1 and 2.

The LOD scores for the area around marker ATA73A08

(153–157 cM) on chromosome 1 are between 2.14 and

2.23. Marker GATA194A05 on chromosome 2 also has a

LOD score above 2.0 (LOD = 2.04). The next highest

peak is on chromosome 8 at 86.314cM, with a LOD score

of 1.85. Figure 5 presents similar results for trait values

derived from Bayesian IRT; the black solid line shows the

LOD score for the posterior mean trait. Linkage to the

posterior mean values of Bayesian IRT indicates a maxi-

mum LOD score on chromosome 7 at 136 cM. This

coincides with the maximum LOD score linking to the

trait estimated using the Bayesian LCA model. Similarly,

the loci with the second and third highest LOD scores in

the Bayesian LCA are also identified under the Bayesian

IRT analysis [marker ATA73A08 (LOD = 2.2) and

GATA194A05 (LOD = 1.99)].

Discussion

This paper aimed to compare two latent variable models in

describing the phenotype of migraine and investigate the

impact of model choice on the subsequent genetic analysis.

Whereas the LCA model assumes that the subject popu-

lation comprises multiple distinct subgroups or subtypes of

migraine, the IRT model assumes a single continuous latent

value for each subject. Both models were fitted within the

Bayesian framework. Based on DIC, the LCA model with

four classes provides a better fit to the data than the IRT

model, but the classes could be ordered in such a way that

there was a clear progression from minimum symptoms

(‘non-affected’) in the first class through to nearly all

symptoms (the most severe type of migrainous headache)

in the last class. Members of the non-affected class in the

Bayesian LCA model also had the lowest latent trait values

under the Bayesian IRT model, compared with other

classes. The two intermediate classes differ in the last five

symptoms, which may be related to individual reaction

during the headache episodes. An exception to the

increasing progression of symptoms was the frequency of

headache, which was larger in class 2 than class 3. The

importance of this symptom as an indicator of the severity

of migraine has been questioned by Ligthart et al. (2006) in

a Dutch cohort.

The characteristics of the classes identified using

Bayesian LCA in this analysis are very similar to those

reported by Nyholt et al. (2004), but quite different from

those found by Ligthart et al. (2006) . The latter authors

observed that except for the items related to the severity of

pain and sensitivity to light and sound, the prevalence of

other symptoms was much lower in their least severe class

compared with the finding here. Moreover, the differences

we observed here for classes 2 and 3 were not present in

their cohort, with their classes 1 and 2 (corresponding to

our classes 2 and 3) both composed of individuals with low

physical reaction during the headaches.

A potential problem with the LCA model is that the

classes identified via this method may be influenced by the

composition of the population or the method of sampling-

factors which have nothing to do with the etiology of the

disease. For instance, when the data are dominated by

individuals with moderate migrainous headache and only a

small proportion of subjects have the severe type of

headache, classes derived from LCA may not represent

‘‘affected’’ and ‘‘non-affected’’ disease status. Therefore, as

for all clustering approaches, the results of LCA need to be

interpreted with a degree of caution and ideally with ref-

erence to clinical criteria.

Although the IRT model fit less well with respect to the

DIC and is less parsimonious than its LCA counterpart in

terms of the number of parameters, it provides a valuable

Table 6 The parameters of ACE model estimated using Mx, where

A is the variation due to genetic variation and C is the variability due

to environmental effect

Model BIC Component Mean Lower

CI

Upper

CI

Bayesian LCA -48,290.53 A 0.3719 0.3413 0.4017

C 0.0000 0.0000 0.0000

E 0.6281 0.5983 0.6587

Bayesian IRT -39,159.34 A 0.3760 0.3475 0.4037

C 0.0000 0.0000 0.0000

E 0.6240 0.5963 0.6525

In this analysis, sex is included as a covariate

284 Hum Genet (2009) 126:277–288

123



insight into the relationship between individual symptoms

and the underlying latent value which is not directly

available in the LCA model. The analysis of the Bayesian

IRT revealed that the symptom ‘unilateral’ is less impor-

tant in prediction of migraine status. This finding is sup-

ported by the Bayesian LCA with low prevalence of this

symptom in all classes. This may be due to the participants’

understanding of this item, or difficulty in remembering the

location of the pain during the time of the survey. Sur-

prisingly, the symptom ‘aura’ was reported to be the sec-

ond least correlated variable to the latent trait of the

Bayesian IRT model, yet this is the major symptom used in

the IHS criteria in separating subjects into two subtypes,

MA and MO. As much as LCA and IRT are different

methods, these two models complement each other and

together provide a better investigation, interpretation and

explanation of these data than either can provide by itself.

In our previous work (Chen et al. 2009), we found that

the results of genetic analysis using traits derived from

grade of membership (GoM; Woodbury et al. 1978) are

very different from those obtained using traits derived from

LCA and fuzzy clustering (Fanny, Fanny; Kaufman and

Rousseeuw 1990). Based on information criteria, LCA out-

performed the GoM model for these migraine symptom

data. The current study demonstrates that a fourth model,

IRT, produces similar results to LCA and therefore Fanny,

leaving GoM as the odd method out. Further research is

suggested to confirm whether the GoM model is suitable

for data analyses such as those reported here.

Currently, linkage analysis is designed for either

dichotomous or continuous traits and multinomial traits can

only be analyzed by introducing a threshold value or by

conversion. As an example of the former, Nyholt et al.

(2005) fitted migraine symptom data using LCA with four

classes, then separated the subjects into ‘‘affected’’ and

‘‘non-affected’’ based on the predicted allocation to the first

two and last two classes, respectively.

Here, we employed a simple conversion function to

convert the multinomial trait to a continuous measure. This

simple conversion included the clustering feature of LCA,

as well as the uncertainty of belonging to multiple classes.

Without any other manipulation, this continuous measure

has a high correlation with the latent trait of the IRT model;

therefore, with some confidence, this converted value is

representative of migraine ‘‘severity’’.

Indeed, more advanced methods could be considered for

the conversion of the clustering output of LCA to a conti-

nuous phenotypic trait. Factor mixture analyses (McLachlan

et al. 2005) which provides a general framework for com-

bining LCA and factor analysis, is one such method.

0

1

2

3

4

5

Chromosome 1 to 22 pter−qter (cM)

LO
D

 s
co

re

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202122

Lod Scores of Bayesian LCA phenotypeFig. 4 Linkage plot of

phenotype derived using

Bayesian LCA

Hum Genet (2009) 126:277–288 285

123



As expected, the high correlation in the trait values of

the two models resulted in minimal differences in the

results from genetic analyses. Interestingly, the heritability

of both traits is 0.37, which is comparable to the heritability

estimated in an Australian cohort when the status is

determined by the IHS criteria (h2 = 0.34, Mulder et al.

2003; h2 = 0.36, Nyholt et al. 2004], despite these values

being derived from substantially different data.

Analogous to the heritability results, linkage to the latent

trait values from the IRT model is also nearly identical to

that of the LCA continuous trait. There is strong evidence

for linkage to chromosome 7q31-q33, which has not been

previously identified by other studies. In addition, markers

ATA73A08 and GATA194A on chromosomes 1 and 2,

respectively are reported in other studies. Marker

ATA73A08 is close to the familial hemiplegic migraine

(FHM)-implicated ATP1A2 gene (De Fusco et al. 2003;

Vanmolkot et al. 2003) and GATA194A on chromosome 2

is close to the SCN1A FHM3 gene (Dichgans et al. 2005).

The other interesting locus identified here is on chromo-

some 10q22.3. Recent work by Anttila et al. (2008) applied

both LCA and TCA to Australian and Finnish cohorts and

successfully identified this locus linked to migraine.

Building upon our earlier work on the empirical

clustering of migraine symptomatology, the results from

our Bayesian latent trait modeling indicate that migraine

symptom data may be modeled using a single continuous

variable representing severity of the disease. The purpose

of such quantitative measures is not to diagnose migraine

but to provide new research tools for geneticists.

For example, as in other complex diseases, the use of

quantitative traits such as lipid values in hyperlipidaemia

or allergy-related phenotypes in asthma provides an

option for refined analysis. We therefore propose that

the use of such continuous measures, which directly

reflect migraine severity, provides a powerful and useful

approach to identify genes contributing to migraine

susceptibility.
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Appendix 1

DIC3 is the difference between twice the posterior mean

deviance and the deviance of estimated g
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DIC ¼ 2DðgÞ � Dð~gÞ ð4Þ
In the DIC3 proposed by Celeux et al. (2006), when the

likelihood has a closed form, the first term can be

approximated using M simulated values, gð1Þ; . . .; gðMÞ;
where gðmÞ ¼ ðpm; kmÞ from an MCMC chain.

DðgÞ ¼ Eg½�2 log f ðyjgÞjy�

� � 2

M

XM
m¼1

log f ðyjgðmÞÞ ð5Þ

The second term of Eq. 3 we used here is the posterior

expectation, E½f ðyjgÞjy� which is also approximated using

the parameters of an MCMC chain.

Dð~gÞ ¼ �2 log f̂ ðyÞ ¼ �2 logEh½f ðyjgÞjy�

� �2 log
1

M

XM
m¼1

f ðyjgðmÞÞ ð6Þ

From Eqs. 5 and 6, Eq. 3 is the expanded form of Eq. 4. In

the Bayesian LCA model, f ðyjgðmÞÞ is

f ðyjkðmÞ; pðmÞÞ ¼
XK
k¼1

p
ðmÞ
k

Yn
i

YJ
j

kðmÞkj

� �yij
1� kðmÞkj

� �1�yij

and the posterior mean deviance is

Dðp;kÞ¼� 2

M

XM
m¼1

log
XK
k¼1

p
ðmÞ
k

Yn
i

YJ
j

kðmÞkj

� �yij
1�kðmÞkj

� �1�yij

and DðĝÞ is

Dðp̂; k̂Þ ¼ �2 log

(
1

M

XM
m¼1

XK
k¼1

p
ðmÞ
k

Yn
i

YJ
j

kðmÞkj

� �yij

� 1� kðmÞkj

� �1�yij

)
:

For the Bayesian IRT model, the likelihood is

f ðyjh; a; bÞ ¼
Yn
i

YJ
j¼1

eajðhi�bjÞ

1þ eajðhi�bjÞ

� �yij
1� eajðhi�bjÞ

1þ eajðhi�bjÞ

� �1�yij

therefore DðgÞ is

Dðh; a; bÞ ¼ � 2

M

XM
m¼1

log
Yn
i

YJ
j¼1

ea
ðmÞ
j ðhðmÞi �b

ðmÞ
j Þ

1þ ea
ðmÞ
j ðhðmÞi �b

ðmÞ
j Þ

" #yij

� 1� ea
ðmÞ
j ðhðmÞi �b

ðmÞ
j Þ

1þ ea
ðmÞ
j ðhðmÞi �b

ðmÞ
j Þ

" #1�yij

and DðĝÞ is

Dðĥ; â; b̂Þ ¼ �2 log

(
1

M

XM
m¼1

Yn
i

YJ
j¼1

ea
ðmÞ
j ðhðmÞi �b

ðmÞ
j Þ

1þ ea
ðmÞ
j ðhðmÞi �b

ðmÞ
j Þ

" #yij

� 1� ea
ðmÞ
j ðhðmÞi �b

ðmÞ
j Þ

1þ ea
ðmÞ
j ðhðmÞi �b

ðmÞ
j Þ

" #1�yij)
:

References

Abecasis GR, Cherny SS, Cookson WOC, Cardon LR (2001) Grr:

graphical representation of relationship errors

Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin-

rapid analysis of dense genetic maps using sparse gene flow

trees. Nat Genet 30:97–101

Anttila V, Kallela M, Oswell G, Kaunisto MA, Nyholt DR,

Hamalainen E, Havanka H, Ilmavirta M, Terwilliger J, Sobel

E (2006) Trait components provide tools to dissect the genetic

susceptibility of migraine. Am J Hum Genet 79(1):85–99

Anttila V, Nyholt DR, Kallela M, Artto V, Vepsäläinen S, Jakkula E,
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