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Association studies using DNA pools are in principle powerful and efficient to detect association between a marker allele
and disease status, e.g., in a case-control design. A common observation with the use of DNA pools is that the two alleles at
a polymorphic SNP locus are not amplified in equal amounts in heterozygous individuals. In addition, there are pool-
specific experimental errors so that there is variation in the estimates of allele frequencies from different pools that are from
the same individuals. As a result of these additional sources of variation, the outcome of an experiment is an estimated count
of alleles rather than the usual outcome in terms of observed counts. In this study, we show analytically and by computer
simulation that unequal amplification should be taken into account when testing for differences in allele frequencies
between pools, and suggest a simple modification of the standard w2 test to control the type I error rate in the presence of
experimental error variation. The impact of experimental errors on the power of association studies is shown.
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INTRODUCTION

Association studies using DNA pools are a
powerful and efficient approach to detect associa-
tion between a marker allele and disease status,
because it reduces the number of genotyping
reactions required by a factor of 100–1,000 [Pacek
et al., 1993; Shaw et al., 1998; Bader et al., 2001;
Sham et al., 2002]. A common observation with
the use of DNA pools is that the two alleles at a
polymorphic SNP locus are not amplified in equal
amounts in heterozygous individuals. In addition,
there is experimental error in that there is
variation in the estimates of allele frequencies
from different pools that are from the same
individuals.
The aim of this study was to investigate the

impact of additional sources of variation in the
estimation of allele frequency on the type I and
type II errors in case-control designs, and to
propose a new and simple statistical test to
analyze association data from DNA pools in the
presence of experimental errors.

METHODS

ASSOCIATION STUDY USING OBSERVED
ALLELE COUNTS

If N diploid individuals are randomly sampled
from a population in Hardy-Weinberg equilibrium,
then the sampling variance of the estimate, p̂p, of the
allele frequency is varðp̂pÞ¼p(1�p)/(2N). To test the
null hypothesis of p¼p0, we can use the test
statistic Tp0¼(p̂p�p0)

2/var(p̂p). For a large value of N
(say, N4100), this test statistic is approximately
distributed as a w2 with 1 degree of freedom under
the null hypothesis. In practice, the estimate of the
sampling variance is substituted for the true
sampling variance, by using p̂p instead of p. For a
case-control design, the observed allele counts can
be summarised in a 2� 2 contingency table (see
Table I for notation). The standard w2 test statistic
of independence based upon observed counts
(Tobs1) can be written as

Tobs1 ¼ðad� bcÞ2ðaþ bþ cþ dÞ=
½ðaþ bÞðcþ dÞðaþ cÞðbþ dÞ�

ð1Þ
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[e.g., Sokal and Rohlf, 1995]. Under the null
hypothesis of equal allele frequencies in cases
and controls, and for large Ncase and Ncontrol and
not too extreme population frequencies, this test
statistic is distributed as a w2 with 1 degree of
freedom. An alternative test statistic is to consider
the difference between the allele frequencies from
the two groups and the estimated variance of that
difference. First, let

p̂pcase ¼ a=ð2NcaseÞ; p̂pcontrol ¼ b=ð2NcontrolÞ;

v̂arvarðp̂pcaseÞ ¼ p̂pcaseð1� p̂pcaseÞ=ð2NcaseÞ; and

v̂arvarðp̂pcontrolÞ ¼ p̂pcontrolð1� p̂pcontrolÞ=ð2NcontrolÞ:
Then, the variance of the difference in estimated
allele frequencies is simply,

varðp̂pcase � p̂pcontrolÞ ¼ varðp̂pcaseÞ þ varðp̂pcontrolÞ:
Analogous to the test statistic for a sample from a
single population, we can test the null hypothesis
that the frequencies in the two populations are
equal by

Tobs2 ¼ ðp̂pcase � p̂pcontrolÞ2= ^varvarðp̂pcase � p̂pcontrolÞ:
Asympotically, this test statistic is also distributed
as w2 with 1 degree of freedom under the null
hypothesis of equal allele frequencies. For N4100
and for 0.1o Po0.9, the statistics Tobs1 and Tobs2
give virtually identical results, because for these
parameters the binomial distribution is well-
approximated by a normal distribution. Note that
Hardy-Weinberg equilibrium generally does not
hold at marker loci that are associated with a
disease locus.

ASSOCIATION STUDY USING ESTIMATED
ALLELE COUNTS FROM DNA POOLS

There are a number of complications that arise
when the allele frequency is estimated from a pool

of DNA. Firstly, the estimate of the allele
frequency can be biased due to a preferential
amplification of one of the alleles, and secondly
the estimate of the sample frequency can be
imprecise due to unequal amounts of DNA per
individual in the pool and due to experimental
errors. In this study, we concentrate on the bias
and imprecision due to experimental pooling
errors, and assume that the errors due to unequal
contributions from individuals is negligible. The
impact of errors from unequal contributions was
examined empirically [Le Hellard et al., 2002] and
was found to be negligible.
The output from the PCR analysis is the height

of two peaks (A and B) corresponding to two
polymorphic alleles at the SNP locus. For hetero-
zygotes, the heights of A and B are not necessarily
the same. The frequency in the population of the
first allele, corresponding to peak A, is p.
Inference about the allele frequency is made from
the ratio of the peak heights. Following Hoogen-
doorn et al. [1999, 2000] and Norton et al. [2002],
the ratio of A to B (k¼A/B) is estimated for each
SNP from a number of independent heterozy-
gotes. For a particular SNP locus, the resulting
estimate of k is assumed to be normally distrib-
uted, k̂kBN(k, sk

2), with sk¼SE(k̂k). The error in
estimating k arises from variation in the quality of
the DNA from each heterozygote, and from a pure
experimental error attached to each individual
analysis. For the purpose of this note, these two
sources of error are combined. They could be
separated by performing repeated analyses from
different heterozygotes. At the population level,
p¼E(A/B)/(E(A/B) + k). The estimate of the
sample allele frequency in the pool is ~pp¼ A/(A +
k̂kB)¼(A/B)/(A/B + k̂k), and the estimated count of
alleles is ð2~ppNÞ.
We assume a simple linear model for the sample

frequency estimated from the pool,

~pp ¼ p̂pþ ek þ ep

¼ pþ en þ ek þ ep

with en the binomial sampling error, ek the error
due to estimating the correction factor k, and ep
the pool-specific experimental error. The variance
of the estimated allele frequency as a function of
the variance of k̂k; var(ek), was derived using a
first-order Taylor series (Appendix A), and is,
approximately,

varðekÞ � p2ð1� pÞ2 CV2ðk̂kÞ
with CVðk̂kÞ¼sk/k¼SEðk̂kÞ/k, i.e., the coefficient of
variation of k̂k: Note that we define CV here as the

TABLE I. 2� 2 Contingency table for SNP-based case-
control association study, showing number of observed
alleles in each populationa

Population

Cases Controls
SNP allele

Allele 1 a b a+b
Allele 2 c d c+d

a+c b+d
a2Ncase¼a+c; 2Ncontrol¼b+d; Nall1 ¼a+b; Nall2¼c+d.
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standard error relative to the mean, rather than
the usual definition as the ratio of the standard
deviation and the mean. We further assume that
the pool-specific errors (ep) are normally distrib-
uted. Note that the error variation is assumed to
be independent of the frequency p, i.e., the
experimental noise is assumed to be the same
for rare and common alleles. Following these
assumptions, the variance of the estimated allele
frequency from the pool is

varð~ppÞ ¼varðp̂pÞ þ varðekÞ þ varðepÞ
�pð1� pÞ=ð2NÞ þ p2ð1� pÞ2CV2ðk̂kÞ
þ varðepÞ:

In summary, we have assumed that there are
three potential sources of bias or imprecision: 1)
due to sampling a finite number of individuals
from a population (the standard sampling error),
2) due to estimating the adjustment factor k, and
3) due to a pool-specific measurement error. Error
1 is reduced by increasing the sample size, error 2
is reduced by using more heterozygotes to
estimate k and var(ek) and/or more replicates
from a single heterozygote, and error 3 is reduced
by using replicate samples of the pools.
When comparing the frequencies in two pools

(e.g., in cases and controls), the variance of the
difference in estimated frequency is a function of
the difference in population frequency, sample
size, the error in estimating k, and the experi-
mental pool error. The source of error due to
estimating k will induce a covariance between the
estimates from the two pools because the error is
the same for both pools. Because the same error in
estimating k is made for both pools, the dif ference
between the estimates of the frequency in both
pools is, to a first-order approximation, negligibly
affected (see Appendix A). This was also found
empirically by Norton et al. [2002]. The sampling
variance of the difference in estimated sample
frequencies between the pools is

varð~ppcase � ~ppcontrolÞ � pcase ð12pcaseÞ=ð2Ncase Þ

þ pcontrol ð12pcontrolÞ=ð2NcontrolÞ

þ CV2ðk̂kÞ½pcaseð12pcaseÞ2pcontrolð12pcontrolÞ�
2

þ 2varðepÞ:
Under the null hypothesis that pcase¼pcontrol¼p,
and equal numbers of individuals in each pool
(N), the variance of the difference simplifies to
varð~ppcase � ~ppcontrolÞ¼p(1�p)/N + 2var(ep).
One (naive) test statistic is to substitute the

estimated allele counts from the pools for the

observed counts in Equation (1), and use

Test1 ¼ðâad̂d� b̂bĉcÞ2ðâaþ b̂bþ ĉcþ d̂dÞ=
½ðâaþ b̂bÞðĉcþ d̂dÞðâaþ ĉcÞðb̂bþ d̂dÞ�:

The analogous test statistic based on estimated
counts and the ratio of the squared differences
and a naive estimate of its variance is

Test2 ¼ ð~ppcase � ~ppcontrolÞ2=varðp̂pcase � p̂pcontrolÞ:
Both of these tests are anticonservative, because
the variation due to experimental error is not
accounted for properly. Under the null hypothesis
of equal allele frequencies in both pools,

ð~ppcase � ~ppcontrolÞ2=varð~ppcase � ~ppcontrolÞ � w2ð1Þ

[e.g., Bader et al., 2001; Jawaid et al., 2002]. The
expectation of this ratio is 1.0, while the expected
value of both test statistics that ignore the extra
sources of variation is approximately

EðTestÞ �Eð~ppcase � ~ppcontrolÞ2=varðp̂pcase � p̂pcontrolÞ
¼varð~ppcase�~ppcontrolÞ=½varðp̂pcaseÞþvarðp̂pcontrolÞ�
¼½pcase ð1� pcaseÞ=ð2NcaseÞ
þ pcontrol ð12pcontrolÞ=ð2NcontrolÞ
þ 2varðepÞ�=½pcase ð1� pcaseÞ=ð2NcaseÞ
þ pcontrol ð1� pcontrolÞ=ð2NcontrolÞ�

¼1þ ðvarðepÞ=½2varðp̂p0Þ�;
with p̂p0 the estimate of the allele frequency across
the two pools under the null hypothesis, i.e.,
p̂p0¼(a+b)/(2Ncase+2Ncontrol), and its variance ob-
tained from the binomial distribution,
var(p̂p0)¼p̂p0(1�p̂p0)/(2Ncase+2Ncontrol). Under the
null hypothesis of equal allele frequencies, the
expected value of the test statistic based upon
observed counts is E(Tobs)¼1. Hence, the test
statistic is inflated by the extra source of errors
in estimating the allele frequencies. This suggests
a simple adjusted test,

T�
est ¼ Test ½2varð~pp0Þ�=½2varð~pp0Þ þ varðepÞ�;

i.e., a shrunk version of the w2 test statistic based
on estimated counts, with the estimate of the
sampling variance of the allele frequency under
the null hypothesis obtained from the estimated
counts (i.e., ~pp0 replacing p̂p0).

SIMULATION

The effect of a larger variance in allele frequen-
cies when dealing with estimated rather than
observed counts was investigated using computer
simulation, using the above models. A case-
control design was simulated by sampling the
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number of alleles in each group from a binomial
distribution. If the adjustment factor k was
estimated, the pool frequency before any experi-
mental error was calculated from the sample
frequency p̂p is

ppool¼p̂pk=½p̂pkþ k̂kð12pÞ�

with k̂k � Nðk;varðekÞÞ: Finally, the estimate of the
pool frequency was calculated as ~pp¼ppool + ep,
with epBN(0, var(ep)). Data were simulated either
for the null distribution of equal allele frequencies
in the pools or for the alternative case when
frequencies differed among pools. For each set of
parameters, 100,000 simulations were performed.

RESULTS

SIMULATION

The impact of estimating k on type I and type II
errors was negligible for CVðk̂kÞo0:3 (results not
shown), as predicted, and further results are from
simulations in which k̂k ¼ k: Results from the
simulation under the null hypothesis are shown
in Fig. 1. Generally, unless the sources of errors
are large, the inflation in type I error is small. If the
pool-specific error is large ðsay;sep40:025Þ; then
the type I error can be inflated substantially. For
example, for sep ¼ 0:025; the type I error is at least
doubled relative to the type I error rate on the
observed counts. The new test appears to control

type I error well, and the behavior of the test
statistic is as expected.
Regarding type II error, power is reduced when

using the adjusted statistical test relative to the
power based on observed counts (Table II). For
sep40:025; the reduction in power can be sub-
stantial.

DISCUSSION

A new test was proposed to adjust the w2 value
for the knowledge that counts were estimated and
not observed. If the individual pool-specific error

Fig. 1. Empirical type I error rates for unadjusted and adjusted v2 tests, for N¼100 cases and N¼100 controls and P¼0.5, from 100,000
replicated Simulations. y-axis, type I error rate; x-axis, experimental error sep.

TABLE II. Power for a¼0.05 and 100 cases and 100
controlsa

se p(cases) p(controls) Tobs1 Tn
est1

0.01 0.50 0.45 0.17 0.16
0.40 0.52 0.48
0.35 0.86 0.83

0.025 0.50 0.45 0.17 0.13
0.40 0.52 0.38
0.35 0.86 0.71

0.05 0.50 0.45 0.17 0.09
0.40 0.52 0.22
0.35 0.86 0.42

aBased on 100,000 replications.
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is small ðsepo0:01Þ; then using either the standard
test or the adjusted test makes little difference in
inference. However, for large pool-specific errors,
the type I error would be inflated substantially if
no account was taken of the inflated differences
between allele frequencies in the pools. The new
test appears to control the type I error well. To
achieve an experimental error of 0.01 or less,
replicate pools need to be used. If the estimate of
between-pool variation in the estimate of the allele
frequency is in the range of 0.02–0.05 (SD), then to
achieve SE of o0.01, approximately 4–25 replicate
pools would give the same power as tests based
on observations on individual genotypes. Alter-
natively, to achieve the same power for direct
genotyping as with pooling, the pool sample size
must be increased by a factor of 1/[1�2var(ep)/
var(D)], with var(D) the variance of the difference
in allele frequencies in the two groups obtained
from observed counts. For example, for sep¼0.01
and sD¼ 0.03 (which corresponds to, for example,
200 cases and 200 controls with frequencies of 0.3
and 0.2, respectively), the sample size of the
pool would have to be increased by a factor of
1/(1�0.0002/0.0009)¼1.3, or 30%.
Le Hellard et al. [2002] reported empirical

results for pools for five SNPs using three
different genotyping technologies. The estimated
value of k varied from 0.27–0.95. Using replicate
samples of pools with DNA from 96 individuals,
the empirical pool-specific experimental error,
expressed as the standard deviation of estimates
of the sample allele frequency across replicate
pools, varied from 0.009–0.135. There was no
relationship detected between the size of the pool,
in terms of the number of individuals represented
in the pool, and the mean or variation in pool-
specific errors [Le Hellard et al., 2002]. These
results justify the assumptions regarding the
range of k-values and sep that were chosen in this
study.
An alternative approach to the analysis of pool

data would be to fit an overdispersion model in
which the pool-specific error is proportional to the
binomial sampling error, i.e., var(~pp)¼cp(1�p)/
(2N), with c being a constant (cZ1). The over-
dispersion parameter c could be estimated from a
nested design of population samples and repli-
cated pools within samples.
If the amplification of both alleles is approxi-

mately equal in heterozygotes, then a test based
on the relative ratios of peaks A and B is
equivalent to a test based on observed counts. It
might therefore be suggested that adjusting the

peak ratio using the factor k is not necessary, and
that a statistical test can be performed using the
unadjusted peak ratios. However, as shown in
Appendix B, even in the absence of any pooling
errors this approach should not be used because
the behavior of the test statistic depends on the
true value of both k and p. In practice, k should be
estimated. The simulation results indicated that
the precision of estimation does not need to be
high. For example, for a CVðk̂kÞo0.3, i.e., a scenario
where the standard error of the estimate of k is
less than 30% of the mean value, the impact on
type I error was negligible. However, failing to
estimate k, by implicitly assuming that the peak
ratio is unity, gives a systematic bias in the test
unless the true value is close to unity (Appendix B).
The pool-specific error variance is estimated

from replicated pools and needs to be estimated
with reasonable accuracy to ensure the correct
properties of the proposed test. In practice, this
has implications for resource allocation, because a
balance needs to be struck between the number of
SNPs to be tested and the number of replicate
pools per SNP. We used 10 replicates per pool
previously, and this appeared to be adequate
[Le Hellard et al. 2002].
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APPENDIX A

POOL SAMPLE FREQUENCY AS A FUNCTION
OF ESTIMATING ADJUSTMENT FACTOR K

A first-order Taylor expansion around k̂k ¼ k of
the pool sample frequency p estimated from k
(denoted p̂pk) is

p̂pkjðk̂k ¼ k;A=B ¼ EðA=BÞÞ

� ðA=BÞ=ðA=Bþ kÞ2ðA=BÞ=ðA=Bþ kÞ2 ðk̂k2kÞ
The mean and variance of p as a function of k̂k are

Eðp̂pkÞ � ðA=BÞ=ðA=Bþ kÞ ¼ p; and

varðp̂pkÞ � p2ð1� pÞ2 varðk̂kÞ=k2 ¼ p2ð12pÞ2 CV2ðk̂kÞ:
A second-order approximation of the mean is

Eðp̂pkÞ � p½1þ ð1� pÞ2 CV2ðk̂kÞ�:
This expression gives very similar answers to the
first-order approximation, unless p is very small
(o0.1) and the CV is large (40.5).
Similarly, the covariance between frequencies in

two pools which are estimated with the same
estimate of k is, to a first-order approximation

covðp̂pcaseðkÞ; p̂pcontrolðkÞÞ
� pcaseð1� pcaseÞpcontrol ð1� pcontrolÞCV

2ðk̂kÞ:

The variance of the difference between p̂pcaseðkÞ
and p̂pcontrolðkÞ is, approximately,

varðp̂pcaseðkÞ � p̂pcontrolðkÞÞ ¼ varðp̂pcaseðkÞÞ þ varðp̂pcontrolðkÞÞ
� 2covðp̂pcaseðkÞ; p̂pcontrolðkÞÞ
� ½pcaseð1� pcaseÞ
� pcontrolð1� pcontrolÞ�

2 CV2ðk̂kÞ:

APPENDIX B

STATISTICAL TEST BASED ON UNADJUSTED
RATIOS OF PEAK HEIGHTS

Let R¼E(A/B), the ratio of peak heights in a
large sample from the population, and p and k the
population allele frequency and ratio of peak
heights in heterozygotes, respectively. Then
R¼kp/[1 + (k�1)p], and its estimate is

R̂R ¼ kp̂p=½1þ ðk� 1Þp̂p�. Using a first-order Taylor
series gives

E(R̂R)¼R and var(R̂R)¼{k/[1 + (k�1)p]2}2 var(p̂p).

A test statistic to test Rt¼R based on the
unadjusted peak ratio, for sample size N, is
TR¼ðR̂R� RÞ2=varðR̂RÞ; which has expectation

EðTRÞ �varðR̂RÞ=EðvarðR̂RÞÞ
¼fðk=½1þ ðk� 1Þp�2Þ2 pð1� pÞ=Ng=
fRð1� RÞ=Ng

¼k=½1þ ðk� 1Þp�2:

Hence, the expectation of a naive w2 test based
on the unadjusted peak ratio depends both on the
population allele frequency and on the peak
ratio for heterozygotes. Similarly, for testing
the difference between peak ratios observed in
two pools, the expectation of a test statistic
½ðR̂R1 � R̂R2Þ2�=½ðR̂R1ð1� R̂R1Þ=N1 þ R̂R2 ð1� R̂R2Þ=N2Þ� is
approximately k, and so also depends on an
unknown parameter. These tests thus have
unpredictable properties, and should not be
used.

Visscher and Le Hellard296


