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A simple method to localise pleiotropic susceptibility
loci using univariate linkage analyses of correlated
traits
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1Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Australia

Univariate linkage analysis is used routinely to localise genes for human complex traits. Often, many traits
are analysed but the significance of linkage for each trait is not corrected for multiple trait testing, which
increases the experiment-wise type-I error rate. In addition, univariate analyses do not realise the full
power provided by multivariate data sets. Multivariate linkage is the ideal solution but it is computationally
intensive, so genome-wide analysis and evaluation of empirical significance are often prohibitive. We
describe two simple methods that efficiently alleviate these caveats by combining P-values from multiple
univariate linkage analyses. The first method estimates empirical pointwise and genome-wide significance
between one trait and one marker when multiple traits have been tested. It is as robust as an appropriate
Bonferroni adjustment, with the advantage that no assumptions are required about the number of
independent tests performed. The second method estimates the significance of linkage between multiple
traits and one marker and, therefore, it can be used to localise regions that harbour pleiotropic
quantitative trait loci (QTL). We show that this method has greater power than individual univariate
analyses to detect a pleiotropic QTL across different situations. In addition, when traits are moderately
correlated and the QTL influences all traits, it can outperform formal multivariate VC analysis. This
approach is computationally feasible for any number of traits and was not affected by the residual
correlation between traits. We illustrate the utility of our approach with a genome scan of three asthma
traits measured in families with a twin proband.
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Introduction
Multiple traits are often tested in gene mapping studies

with the expectation that this can identify both quantita-

tive trait loci (QTL) that are specific for each trait and

genetic pathways that are shared between correlated traits.

The most common approach used for linkage analysis

of multivariate data is to analyse each trait individually

and then compare the evidence for linkage at a particular

position across traits. This approach has clear advantages:

univariate linkage statistics can be chosen that are most

adequate for each trait; typically, the analysis is not

computationally intensive; and, as a result, estimation of

empirical significance is feasible. However, in its simplest

form, this approach has two major drawbacks: first,

multiple trait testing increases the experiment-wise type-I

error rate, a caveat often implicitly avoided. Second, it does

not utilise the extra information provided by the crosstrait

covariance intrinsic to multivariate datasets. An alternative

approach is to combine multiple phenotypes into one or
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few composite scores that are then tested for linkage.1

Although this approach may provide an optimal score to

detect major QTL shared between traits, it may be

inefficient to localise QTL that are specific for particular

traits or only shared by some but not others.

A more theoretically desirable approach for the analysis

of multiple traits is to test for linkage between one marker

and all traits simultaneously. The two most general

methods currently available for this in human pedigrees

are multivariate variance components (VC) and a modified

Haseman–Elston (HE) method. Maximum-likelihood multi-

variate VC was long proposed.2 – 4 This approach not only

models the covariance for each trait across relatives as a

function of VC parameters, but it also models the

covariance between traits for each individual and across

relatives. Although this represents one of its major

strengths, it can in some situations render this method

computationally unfeasible, particularly when a large

number of traits have been measured. Another important

drawback of multivariate VC is that it does not always

provide increased power when compared to the individual

univariate analyses.5 – 8

A multivariate extension to the traditional HE method

was proposed by Amos et al9 and evaluated more

thoroughly by Amos et al8 and Allison et al.6 In contrast

to multivariate VC, this method is computationally

efficient even when analysing a large number of traits, is

robust to violations of normality and is applicable to

selected samples. However, at present it cannot accommo-

date arbitrary pedigrees and provides lower power when

compared to multivariate VC.8

Hence, although methods such as multivariate VC and

HE are theoretically desirable for the analysis of multiple

traits, they can often prove unfeasible and/or inefficient.

We have recently outlined an alternative robust approach

for linkage analysis of multiple traits.10 This novel

approach includes two related methods that combine

results from multiple univariate linkage analyses to

estimate the evidence for linkage between (i) one trait

and one marker while correctly accounting for multiple

trait testing and (ii) multiple traits and one marker as a test

to localise regions that may harbour a pleiotropic QTL.

Although the performance of both methods looked

promising, it was not evaluated in detail. Therefore, the

aim of this study was to describe in detail both methods

and evaluate them empirically using a series of simula-

tions.

Methods
We propose two methods to combine results from

univariate linkage analyses of multiple traits for robust

and powerful detection of human QTL. The Combined–

correction method estimates how often the observed

linkage between a trait and a marker would be expected

by chance alone conditional on the marker characteristics

(eg allele frequencies, informativeness), trait characteristics

(eg heritability, kurtosis), total number of traits tested and

correlation between traits. The Combined–sum method

estimates how often the observed linkage of two or more

traits to the same marker would be expected by chance

alone, conditional on the marker and trait characteristics,

total number of and correlation between traits.

Combined–correction

Consider that m traits were individually tested for linkage

to a trait locus Q and that the m observed linkage test

statistics Tk(Q) for k¼1,2,y,m are stored in the 1�m

vector V(Q)¼ [T1(Q), T2(Q), y, Tm(Q)]. Any test statistics

can be used and these can be different across traits. The

Combined–correction approach estimates empirically a

pointwise P-value for each test statistic Tk(Q) that is

corrected for multiple trait testing. The overall experi-

ment-wise type-I error is correctly maintained at nominal

levels. It involves five steps.

First, we test the same traits for linkage to n marker loci

simulated under the null hypothesis of no linkage and

store the m test statistics recorded with each marker i in the

vector V(Nulli)¼ [T1(Nulli), T2(Nulli), y, Tm(Nulli)], where

i¼1,2,y,n. Second, we compute the empirical pointwise

P-value of each test statistic Tk(Q) as the proportion of

Tk(Null) statistics that were ZTk(Q), and the empirical

pointwise P-value of each test statistic Tk(Nulli) as the

proportion of Tk(Null) statistics that were ZTk(Nulli). Third,

we replace the test statistics of V(Q) and of each V(Nulli)

with the �log10 of the respective empirical P-value, so

that V(Q)¼ [�log10 P1(Q), �log10 P2(Q),y,�log10 Pm(Q)]

and V(Nulli)¼ [�log10 P1(Nulli),�log10 P2(Nulli),y,�log10

Pm(Nulli)]. Fourth, we sort the �log10 P within each vector,

so that the highest �log10 P appears in position 1 and the

lowest in position m. Note, and this is crucial, that the

order of traits does not have to be the same in the ordered

vectors V(Q) and V(Nulli), a property that forms the basis

for multiple trait testing correction. In the fifth and final

step, we estimate the overall significance of each

�log10 Pk(Q) as the proportion of V(Null) vectors that have

the highest �log10 P(Null) Z�log10 Pk(Q). This global

pointwise P-value is corrected for multiple trait testing.

This approach is easily extended to estimate P-values

that are also corrected for multiple marker testing, such as

in genome scans. In this case, the requirement is that

genome-scan replicates with the same number of markers,

allele frequencies, missing data pattern and marker spacing

have been simulated under the null hypothesis of no

linkage and analysed with all m traits. A 1�m vector

V(Null) of ordered �log10 P is then created for each marker

of each genome-scan replicate as described above. The

global genome-wide P-value of each �log10 Pk(Q) corre-

sponds to the proportion of genome-scan replicates that
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have one or more V(Null) vectors with the highest

�log10 P(Null) Z�log10 Pk(Q).

Combined–sum

This method estimates the significance of linkage between

a marker and multiple traits. The first four steps are shared

with the Combined–correction approach (see above). In

step five, for V(Q) and for each of the V(Nulli) vectors,

we calculate m sum statistics defined by Sk ¼
Pk

j¼1

� log10 Pj

� �
;

these are defined here as Sk(Q) and Sk(Nulli), respectively,

where k¼1,2,y,m and i¼1,2,y,n. Similar sum statistics

have been proposed to combine P-values obtained from the

analysis of m single-nucleotide polymorphisms.11,12 In the

present case, these m sum statistics are simply the

cumulative �log10 P when considering the highest

�log10 P, the two highest �log10 P, etc. In step six, we

assess the pointwise P-value of each sum statistic Sk(Q) as

the proportion of V(Null) vectors that have an

Sk(Null)ZSk(Q), and the pointwise P-value of each sum

statistic Sk(Nulli) as the proportion of V(Null) vectors that

have an Sk(Null)ZSk(Nulli).

The significance of Sk(Q) is expected to decrease as k

approaches the number of traits influenced by Q (or by a

pleiotropic QTL linked to Q) and to stabilise thereafter or

even increase if m is large and koom.11,12 If the

significance of Sk(Q) does not improve when compared to

Sk�1(Q), this suggests that there is no evidence for linkage

between trait k and marker Q after accounting for the

linkage between the k�1 traits and Q and the correlation

between all k traits. Thus, the final two steps consist of

identifying the Sk(Q) that yields the smallest P-value and

then assessing its overall significance while considering

that multiple sum statistics were computed in the process.

For this purpose, we adopt the simple permutation

approach proposed by Hoh et al.11 First, in the seventh

step, we identify the sum statistic Sk(Q) with the minimum

pointwise P-value and define this k as kmin(Q), the sum

statistic as Skmin
ðQÞ and the P-value as Pmin(Q). If two or

more Sk(Q) statistics have the same Pmin, we take the Sk(Q)

for which k is lowest. We then apply this same procedure to

each of the V(Nulli) vectors to identify the n Skmin
ðNulliÞ

statistics and the corresponding P-values Pmin(Nulli).

Finally, in the eighth step, we estimate the overall

significance of Pmin(Q) as the proportion of V(Null) vectors

with a Pmin(Null)rPmin(Q). This significance is defined here

as Pfinal(Q) and represents the global empirical pointwise

significance for linkage between the kmin(Q) traits and the

position being analysed, where kmin(Q) provides an esti-

mate of the number of traits that are likely to be influenced

by Q or by a pleiotropic QTL linked to Q. We note that

when kmin(Q)¼1, this approach is equivalent to the

Combined–correction method, with the exception that it

provides lower power as it corrects for the number of Sk

statistics computed. The Combined–sum approach can be

also extended to estimate genome-wide significance as

described above for the Combined–correction method.

The steps that form both methods are summarised in

Table 1.

Simulations

We simulated data for 250 sib-pairs under eight linkage

models to compare the performance of the proposed

methods with univariate and multivariate VC linkage

analysis. For models 1–4, three traits were simulated with

a total heritability of 0.75, a genetic correlation between all

traits of 0.33 and an overall phenotypic correlation of 0.25.

Alleles for an additive QTL with allele frequency 0.5 and in

Hardy–Weinberg equilibrium were randomly assigned to

parents; one maternal and one paternal allele was then

randomly dropped for each of the two children. The

proportion of variance explained by the QTL for traits 1, 2

and 3 was, respectively, 0.25, 0 and 0 in model 1; 0.25, 0.25

and 0 for model 2; 0.25, 0.25, 0.25 for model 3; and 0.25,

0.12, 0.06 for model 4. Residual polygenic effects were

assigned from a normal distribution to maintain the total

heritability at 0.75 and the total genetic correlation

between traits at 0.33. Models 5–8 preserved the same

QTL and overall trait heritabilities as described for models

1–4, but the genetic correlation between traits was

increased to 0.66, resulting in an overall phenotypic

correlation of 0.50.

Two additional models were considered that retained the

same trait heritabilities but with no QTL effects on any of

the three traits. The genetic correlation between traits was

0.33 (phenotypic correlation of 0.25) in model 9 and 0.66

(phenotypic correlation of 0.50) in model 10. These two

models were used to assess the distribution of the test

statistics under the null hypothesis of no linkage for

models 1–4 and models 5–8, respectively (see below). For

all models, we assumed no environmental covariance

between traits.

One thousand replicates were generated for the linkage

models 1–8 and 5000 replicates for the null models 9 and

10. For each replicate, a fully informative marker in

complete linkage with the QTL was then simulated with

the program SIB-PAIR 0.99.9 (http://www.qimr.edu.au/

davidD/sib-pair.html) to test for linkage.

Analyses of simulated data sets

For each replicate of each model, univariate and multi-

variate VC linkage analyses of the three traits were

performed with Mx 1.54.13 The multivariate model

fitted was the same as that used to generate the three

phenotypes (Figure 1) and the appropriate Mx script

is available from http://www.psy.vu.nl/mxbib/ (script

multilink1.mx). For both the univariate and multivariate

analyses, a likelihood-ratio test statistic was computed

as 2(ln(LAEQ)– ln(LAE)), where ln(LAEQ) is the natural
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log-likelihood of the data when the variance of each trait

was modelled to be explained by residual additive genetic

effects (A), environmental effects not shared between

relatives (E) and by the QTL effects (Q), and ln(LAE) is the

natural log-likelihood of the data when the effect of Q on

the three traits was fixed at zero. The three test statistics

obtained with the univariate analyses were inserted into a

1�3 vector V(Q) and analysed as described above. All

univariate and multivariate test statistics were converted to

empirical pointwise P-values using the 5000 replicates

generated under models 9 (used for models 1–4) or 10

(for models 5–8). These replicates correspond to the

V(Null) vectors and were used for all subsequent permuta-

tion tests.

Table 1 Summary of steps that form the Combined–correction and Combined–sum approaches

Steps Combined–correction Combined–sum

0 Perform univariate linkage analysis of m traits with a measured genetic marker Q. Create 1�m vector
V(Q) with test statistics Tk(Q), for k¼ 1,2,y,m

1 Analyse the same m traits with n genetic markers simulated under the null hypothesis of no linkage. Create 1�m vectors
V(Nulli) with test statistics Tk(Nulli), where i¼1,2,y,n

2 Compute the empirical pointwise P-value of each test statistic Tk(Q) and Tk(Nulli)

3 Replace Tk(Q) of V(Q) and Tk(Nulli) of each V(Nulli) with the �log10 of the respective empirical P-value

4 Sort the �log10 P within V(Q) and within each V(Nulli), with the highest �log10 P in position 1

5 Estimate the significance of each �log10 Pk(Q) corrected for
multiple trait testing as the proportion of
V(Null) vectors that have the highest
�log10 P(Null)Z�log10 Pk(Q)

Calculate the sum statistics
Sk(Q) and Sk(Nulli), defined by Sk ¼

Pk

j¼1

� log10 Pj

� �

6 F Assess the pointwise P-value of each
Sk(Q) and Sk(Nulli)

7 F Identify the Sk(Q) and Sk(Nulli) with
the minimum P-value and define
these P-values as Pmin(Q) and Pmin(Nulli)

8 F Estimate the overall significance of
Pmin(Q) as the proportion of V(Null) vectors
that have a Pmin(Null)rPmin(Q)

Figure 1 Multivariate model used to simulate three phenotypes (T1 –T3) in 250 sib-pairs. We assumed no environmental covariance between traits.
Thus, the influence of E1 on traits 2 and 3 and of E2 on trait 3 was fixed at zero and, for simplicity, the corresponding paths are not shown in this figure.
p̂ , proportion of alleles shared identical by descent at locus Q. A1–A3, latent residual additive genetic effects, correlated 0.5 between siblings. E1–E3,
environmental effects not shared between siblings.
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Models 9 and 10 were also used to assess the experiment-

wise type-I error rate of the univariate analyses. The type-I

error rate was estimated for an a¼0.05 as the proportion of

replicates with a test statistic for at least one trait with an

empirical pointwise P-value r0.05. This was performed

under three situations: first, using the three observed

empirical pointwise P-values uncorrected for multiple trait

testing. Second, after correcting the P-values with a

Bonferroni adjustment. In this case, we tested different

adjustments (eg P-value �2.9) until a correction was

obtained that resulted in a type-I error close to the nominal

level. Finally, after correcting the P-values with the

Combined–correction approach.

Application to genome-wide linkage analyses of three
asthma traits

The data set analysed herein includes 180 parents and 408

siblings from 201 Australian families with data available for

three asthma continuous traits: forced expiratory volume

in 1 s (FEV1), baseline airway obstruction as measured by

FEV1/forced vital capacity (FVC) and total serum immu-

noglobulin E (IgE) levels. This data set is described in detail

elsewhere.10 Briefly, of 215 sib-pairs available for analysis,

12 (6%) were genotyped at 201–300 markers, 104 (48%) at

301–500 markers, 53 (25%) at 501–1000 and 46 (21%) at

1001–1544 markers. The three traits were normalised and

adjusted for significant covariates (age, gender, height

(FEV1) and ever smoking (FEV1/FVC)).

Univariate and multivariate VC analyses of the three

traits were performed with SOLAR 3.0.314 with ascertain-

ment correction. The univariate likelihood-ratio test

statistics recorded for FEV1, FEV1/FVC and IgE with the

real genome–scan at each of the 1796 positions analysed

throughout the 22 autosomes (3548 cM at 2 cM interval)

were inserted into a 1�3 V(Q) vector. Each of these V(Q)

vectors was then analysed as described above. In this case,

we used MERLIN 0.10.115 to generate 1000 genome-scan

replicates that retained the original phenotypes but with

new genotypes simulated under the null hypothesis of no

linkage for all autosomes, preserving the same allele

frequencies, missing data pattern and marker spacing.

The resulting 1 796 000 marker replicates were analysed

with the three traits and used to assess empirical pointwise

and genome-wide significance.

For the multivariate VC analysis, we used the uncon-

strained multivariate test implemented in SOLAR, which

estimates six QTL parameters, three covariances and three

variances. The test for linkage consists of fixing to zero all

six parameters and then compare the likelihood of the data

under this model with the likelihood of the data when the

six parameters are estimated. As noted by others,8 we

found that this test provides similar empirical power to

detect a pleiotropic QTL as the constrained test that fixes

the QTL correlations to 1 (equivalent to the model fitted in

Mx for the analysis of the simulated datasets). However,

the unconstrained test is more appropriate when the

pattern of QTL genotypic effects may differ between traits.

The pointwise significance of the multivariate likelihood-

ratio test statistic was estimated through the analysis of

15 000 marker replicates simulated under the null hypo-

thesis of no QTL effects on any trait.

Results
Combined–correction: robust adjustment for multiple
trait testing

We first estimated the experiment-wise type-I error

obtained with different univariate methods when multiple

traits have been tested (Table 2). As expected, when

considering the uncorrected P-values recorded with the

three univariate analyses, the type-I error was highly

inflated (B14% for a¼0.05). Correcting the P-value of

each trait with a Bonferroni adjustment resulted in a

correct type-I error only if the appropriate adjustment was

used (P-value �2.9 for a trait correlation of 0.25 and �2.8

for 0.50). The experiment-wise type-I error of the Com-

bined–correction approach was close to the nominal level

with the advantage that no assumptions were made about

the number of independent tests performed. As this

method provided identical power to detect linkage as the

appropriate Bonferroni approach (not shown), the Com-

bined–correction approach is an efficient and robust

alternative to estimate the evidence for linkage between

one trait and one marker when multiple traits have been

tested.

Combined–sum: efficient detection of pleiotropic
QTL

We then investigated the power of the Combined–sum

approach to detect a pleiotropic QTL when compared to

univariate and multivariate VC analysis (Table 3). First,

when the QTL had an effect on only one trait, univariate

VC, multivariate VC and the combined approach provided

similar power when the trait correlation was low (0.25).

However, when the trait correlation was high (0.50), there

was a slight improvement in the power of multivariate VC,

consistent with previous findings.16 Second, when the QTL

had an effect on two of the three traits, multivariate VC

provided greatest power, followed by the Combined–sum

approach, which in turn performed slightly better than

univariate VC. This held for both low and high

trait correlations. Third, when the QTL influenced all

three traits equally, multivariate VC outperformed the

Combined–sum approach only when the trait correlation

was low. When the traits had high residual correlations,

which had the same sign as the trait correlation induced by

the QTL, the power of multivariate VC was markedly

reduced. This was not entirely surprising and reflects

a known theoretical property of multivariate linkage

methods.16,17 As a result, the Combined–sum approach
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outperformed both univariate and multivariate VC in the

presence of a high trait correlation. Similar but less

pronounced results were observed when the QTL had an

uneven effect on all three traits.

Estimating the number of traits linked to a marker

Finally, we investigated the accuracy of the Combined–

sum approach to estimate the number of traits influenced

by the pleiotropic QTL. For this purpose, we compared the

number of traits identified as being linked to Q (estimated

by kmin(Q)) with the number of traits that were truly

influenced by Q (Table 4). The combined approach

correctly identified the number of traits influenced by Q

for 58% of the data sets when Q influenced one trait only,

for 62% when it influenced two traits and for 50% when it

influenced the three traits equally. Note that the propor-

tion of misclassified data sets reflected to a great extent the

finite size of the sample simulated, (250 sib-pairs) which, in

some instances, resulted in data sets having traits with QTL

heritabilities very different from the generating model.

For example, the mean QTL heritability in the 47 data sets

simulated under model 1 that had a kmin(Q)¼3 was 0.29

(range 0.10–0.43) for trait 1, 0.18 (range 0.07–0.36) for

trait 2 and 0.21 (range 0.07–0.42) for trait 3. When this

effect was taken into account, the resolution of the

Combined–sum approach to identify the number of traits

influenced by a QTL was more apparent (Figure 2). Thus, as

widely documented for the power of linkage analysis, the

accuracy of the number of traits estimated by the

combined approach to be influenced by Q will depend on

the number of families tested and on the QTL effect size.

Application to genome-wide linkage analysis of three
asthma traits

We first performed genome-wide linkage analysis of FEV1,

FEV1/FVC and IgE using a multivariate VC test. Six regions

exceeded an empirical pointwise P-value of 0.01: chromo-

somes 1p36, 5q13, 12q24, 17p13, 17q25 and 20q13

(Figure 3a). The best result was recorded near markers

D12S97 and D12S343 of 12q24; the likelihood-ratio test

statistic observed at position 164 cM of chromosome 12

(24.986) was never matched or exceeded in the 15 000

marker replicates simulated under the null hypothesis of

no linkage (pointwise Po0.00007). One or multiple QTL in

this region explained 55729% (795% CI) of the variation

of FEV1, 47719% of FEV1/FVC and 41728% of IgE, but

these estimates can have a large upward bias.18 The analysis

of one complete genome-scan replicate took B15 days to

Table 2 Experiment-wise type-I error rates at a¼0.05 of
univariate VC linkage analysis of three correlated traits
before and after correction for multiple trait testing

Methoda Trait correlation

0.25 0.50

Univariate VC 0.1406 0.1370
Bonferroni�2.0 0.0728 0.0700
Bonferroni�2.8 0.0522 0.0500
Bonferroni�2.9 0.0504 0.0484
Bonferroni�3.0 0.0488 0.0466
Combined–correction 0.0498 0.0494

aType-I error rate was calculated using the three observed P-values
uncorrected for multiple trait testing (univariate VC), after correcting
the three P-values with different Bonferroni adjustments (eg P-value
�2.9) and after correcting the three P-values with the Combined–
correction approach. See Methods for details.

Table 3 Power of univariate VC, multivariate VC and that of the Combined–sum approach to detect linkage to a QTL that
influenced one or more traits

QTL variance Method Trait correlation¼0.25 Trait correlation¼0.50

Trait 1 Trait 2 Trait 3 Power when type I error¼ Power when type I error¼
0.05 0.01 0.005 0.001 0.05 0.01 0.005 0.001

0.25 0 0 Univariate VCa 0.358 0.162 0.124 0.048 0.347 0.159 0.110 0.063
Multivariate VC 0.338 0.143 0.109 0.032 0.517 0.228 0.173 0.051
Combined–sum 0.363 0.171 0.103 0.040 0.335 0.161 0.104 0.014

0.25 0.25 0 Univariate VC 0.563 0.278 0.190 0.061 0.541 0.266 0.177 0.089
Multivariate VC 0.760 0.524 0.438 0.236 0.836 0.586 0.526 0.267
Combined–sum 0.626 0.387 0.272 0.160 0.583 0.318 0.221 0.113

0.25 0.25 0.25 Univariate VC 0.695 0.370 0.246 0.080 0.709 0.391 0.272 0.128
Multivariate VC 0.899 0.739 0.668 0.426 0.692 0.405 0.344 0.139
Combined–sum 0.814 0.611 0.492 0.291 0.816 0.540 0.459 0.215

0.25 0.12 0.06 Univariate VC 0.434 0.195 0.139 0.039 0.416 0.184 0.133 0.074
Multivariate VC 0.481 0.220 0.161 0.056 0.359 0.145 0.112 0.023
Combined–sum 0.492 0.269 0.163 0.069 0.464 0.227 0.158 0.046

aPower was estimated for univariate VC after correcting the P-values of the three traits for multiple trait testing with the Combined–correction
approach.
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Table 4 Number of data sets identified by the Combined–sum approach as having one, two or three traits linked to the
quantitative trait locus (QTL) simulated under models 1–4

Number of traits found to be linked to the QTLa Model (QTL variance for traits 1, 2 and 3)

1 (0.25, 0, 0) 2 (0.25, 0.25, 0) 3 (0.25, 0.25, 0.25) 4 (0.25, 0.12, 0.06)

1 210 (58%) 102 (16%) 40 (5%) 130 (26%)
2 106 (29%) 387 (62%) 363 (45%) 201 (41%)
3 47 (13%) 137 (22%) 411 (50%) 161 (33%)

Totalb 363 626 814 492

aAs estimated by kmin(Q). See Methods for details.
bTotal number of data sets (out of 1000 for each model) that showed evidence for linkage to the QTL with the Combined–sum approach (ie
Pfinal(Q)r0.05). Corresponds to the power reported in Table 3 for a¼0.05. Similar results were observed for the four models with increased genetic
correlation (models 5, 6, 7 and 8).
Note: In model 1, for 1/210 (0.5%) data sets that correctly identified the number of traits influenced by the QTL, the traits found to be linked to the
QTL were not trait 1. Similarly, in model 2, for 20/382 (5.2%) data sets, the traits found to be linked to the QTL were not traits 1 and 2. This reflects the
finite sampling size used for the simulations (see text).

Figure 2 Data sets identified by the Combined-sum approach as having one (a), two (b) or three (c) traits influenced by a simulated QTL (Q), as a
function of the proportion of variance of each trait explained by Q. Data sets from models 1 to 8 were considered that showed evidence for linkage to
Q with the combined approach, that is, Pfinal(Q)r0.05 (N¼4493). This total number of data sets is broken down into 363 from model 1, 626 from
model 2, 814 from model 3, 492 from model 4, 335 from model 5, 583 from model 6, 816 from model 7 and 464 from model 8 (cf. Table 3).

Figure 3 Genome-wide linkage analysis of FEV1, FEV1/FVC and IgE. For the multivariate variance components (VC) test (a), empirical pointwise
P-values were estimated from 15 000 marker replicates simulated under the null hypothesis of no linkage (for 12q24, Po1/15 000). For the
Combined–sum test (b), 1000 complete genome-scan replicates were used to assess empirical significance (see Methods for details). Genetic
distances are expressed in Kosambi centiMorgans (cM). The characteristics of the 408 siblings included for this analysis as well as univariate VC analysis
of each trait are reported elsewhere.10 Heritabilities were 7177% (795% CI) for FEV1, 5178% for FEV1/FVC and 5279% for IgE. Genetic correlations
were 0.3370.12 between FEV1 and FEV1/FVC, �0.1870.14 between FEV1 and IgE and �0.0770.15 between FEV1/FVC and IgE. The correlation
between environmental factors not shared between relatives was 0.4270.11 for FEV1 and FEV1/FVC, 0.0470.15 for FEV1 and IgE and �0.2570.11 for
FEV1/FVC and IgE. Maximum-likelihood trait correlations were 0.35 (between FEV1 and FEV1/FVC), �0.10 (FEV1 and IgE) and �0.16 (FEV1/FVC and
IgE).
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run on a single 2.80 GHz CPU, and, thus, genome-wide

significance could not be estimated.

We then examined if some of these six regions could also

be identified by the Combined–sum approach. In this case,

one genome-scan replicate took B4 h to be analysed for all

three traits (B90� faster), and thus the overall analysis of

the 1000 genome-scan replicates lasted B42 days using

four 2.80 GHz CPUs. Results from the combined approach

were comparable to the multivariate test (Figure 3b).

Chromosomes 1p36, 5q13 and 12q24 were identified at

the 0.01 significance level and chromosomes 17q25 and

20q13 at the 0.05 level (Table 5). The best result was again

recorded at 12q24 (pointwise P¼0.00006). At this position,

the Skmin
ðQÞ statistic was observed when kmin(Q)¼3 and the

significance of this sum statistic was only matched or

exceeded in one out of 1000 genome-scan replicates

(genome-wide P¼0.001). Had we used the best univariate

VC result to assess linkage to this region (pointwise

P¼0.00089, for FEV1/FVC), genome-wide significance

would not have been reached (genome-wide P¼0.284).

Similarly, results from the Combined–sum approach

suggest that chromosomes 1p36 (FEV1 and IgE, genome-

wide P¼ 0.166) and 5q13 (FEV1 and FEV1/FVC, genome-

wide P¼ 0.167) may also harbour a pleiotropic QTL

associated with asthma susceptibility.

Discussion
The two methods described here are applicable for the

empirical estimation of correct pointwise and genome-

wide significance when multiple traits are tested in the

context of linkage studies. The crucial requirement for the

application of both methods is that markers simulated

under the null hypothesis of no linkage must be tested for

linkage with all traits measured. In addition, if genome-

wide significance is to be estimated, complete genome-scan

replicates must be simulated and analysed. Some studies

already generate these analyses to estimate empirical

significance and, in this case, the two approaches simply

make additional use of that same data. On the other hand,

for some studies, this may require a prohibitive amount of

computer time, particularly if many traits are to be

analysed with computationally intensive univariate meth-

ods such as maximum-likelihood VC linkage analysis. In

this case, an alternative may be to use less-intensive

nonparametric methods such as MERLIN-regress19 for

continuous traits and allele sharing statistics for affection

traits.20

If the analysis of simulated data sets is not prohibitive,

then the Combined–correction approach can be used to

alleviate the acute problem of estimating linkage signifi-

cance between one trait and one marker while accounting

for multiple trait testing. This approach maintains the

experiment-wise type-I error rate at nominal levels without

requiring any assumptions to be made about the number of

independent tests performed. It is applicable for any

number of traits and for any trait correlation patterns.

With the Combined-sum approach, we hope to provide

an efficient alternative to current multivariate linkage

methods to detect regions that harbour pleiotropic QTL.

Our simulations suggest that formal multivariate VC

analysis is superior when compared to the Combined-

sum approach in a number of situations. Therefore, it is the

most appropriate method if it can be effectively applied.

Additional advantages of the multivariate VC approach

include the choice of fitting different nested linkage

models that can be used to increase the power of the

analysis (eg by constraining to 0 the QTL heritability of

traits that show no evidence for linkage) and to formally

test for pleiotropy.21 We did not test the power of such

nested linkage models since it is not practical for genome-

wide scans to fit different multivariate models along the

genome to account for the different linkage patterns

observed at different markers. In addition, different tests

Table 5 Summary of results from genome-wide linkage analysis of three asthma traits with univariate VC, multivariate VC
and with the Combined–sum approach

Region (cMa) Peak markers Empirical pointwise P-valueb

Univariate VC Multivariate VC Combined-sum [kmin(Q)c]

FEV1 FEV1/FVC IgE

1p36 (22–30) D1S1612, D1S2667 0.02967 0.62387 0.02745 0.00280 0.00810 [2]
5q13 (90) D5S424 0.00584 0.17365 0.51659 0.00107 0.00816 [2]
12q24 (164–166) D12S97, D12S343 0.00489 0.00089 0.06374 o0.00007 0.00006 [3]
17p13 (32–34) D17S1852, D17S1303 0.36521 0.36026 1.00000 0.00147 0.24889 [2]
17q25 (128) D17S784 0.01330 0.33888 0.66338 0.00253 0.02047 [1]
20q13 (98–102) D20S171, D20S173 0.01040 0.28199 1.00000 0.00040 0.01629 [1]

FEV1, baseline forced expiratory volume in 1 s; FEV1/FVC, ratio of FEV1 and baseline forced vital capacity; IgE, total serum immunoglobulin E levels.
aMarker locations are given in Kosambi cM and have been interpolated from published physical positions and genetic maps.29

bEmpirical pointwise P-values were estimated for univariate VC and the Combined–sum analyses from 1000 genome-scan replicates simulated under
the null hypothesis of no linkage (see Methods for details). For univariate VC, P-values were corrected for multiple trait testing with the Combined–
correction approach. For the multivariate analysis, P-values were estimated from 15 000 marker replicates simulated under the null hypothesis of no
linkage to any of the three traits.
ckmin(Q), number of traits estimated to be influenced by one or more QTL linked to the peak marker(s).
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have different distributions under the null hypothesis of

no linkage, rending the assessment of significance difficult,

and the number of tests performed would increase the

experiment-wise type-I error rate.

In situations where multivariate VC is not feasible, an

alternative may be to use the multivariate HE approach,9 a

method that we did not test here. Nonetheless, this

method is at present restricted to sib-pairs and it provides

lower power when compared to multivariate VC.8

When multivariate methods are unfeasible or expected

to be less powerful, we suggest that the Combined–sum

approach can be used as a test to localise pleiotropic QTL.

This approach may be particularly relevant when affection

traits or a mixture of affection and continuous traits have

been measured, when a large number of traits are to be

analysed or when traits are moderately correlated and the

QTL influences all traits. Unlike observed and previously

described6 – 8 for formal multivariate methods, the com-

bined approach was mostly unaffected by the residual

correlation between traits. For this reason, it may also

prove useful for the analysis of longitudinal data, when

strong environmental and genetic covariance between

traits is expected.

A caveat of the Combined–sum approach is that if a

region shows linkage to two or more traits, it is not possible

to distinguish between the presence of a single QTL that

influences multiple traits from the presence of multiple

QTL each influencing a single trait. Nonetheless, not only

this question may be beyond the scope of most linkage

studies, as both situations may only be distinguishable

with multivariate analysis of unrealistic large sample sizes,

particularly in the presence of linkage disequilibrium.21,22

We exemplified the applicability of the Combined–sum

approach to genome-wide linkage scans by combining

univariate VC analyses of three asthma traits measured in

201 families and contrasting the results with a formal

multivariate VC analysis. Results from both methods were

comparable and identified chromosome 12q24 as a

candidate region to harbour one or multiple QTL that

influence(s) the variation of the two baseline lung function

traits and of total serum IgE levels. The significance of

linkage between these three traits and 12q24 reached

genome-wide significance with the Combined–sum

method but not when the best univariate result was

considered. Genome-wide significance could not be

assessed with the multivariate test. To date, chromosome

12q24 has been reported to be linked to asthma traits in

French,23 Dutch24 and Japanese25 populations, but a major

gene is yet to be cloned in this region. A number of

association studies suggest that the nitric oxide synthase 1

gene is a likely candidate.26 – 28

In conclusion, our results confirm that the two methods

described here can be used to combine results from

multiple univariate linkage analyses for efficient, robust

and powerful detection of human QTL. Further testing is

required to assess how the Combined–sum approach

performs under more specific scenarios, particularly with

a large number of traits, with longitudinal data, with

multiple linked QTL in incomplete linkage disequilibrium,

and with a mixture of affection and continuous traits. It

will also be important to investigate more thoroughly the

behaviour of the test in the tail of its distribution and the

situations when the combined approach outperforms

multivariate VC.
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