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Deterioration in stratum corneum reticular patterning (skin pattern or skin wrinkling) has been associated with
increased rates of solar keratoses and skin cancer. A previous analysis of data from the twin sample used in this
investigation has shown that 86% of the variation in skin pattern is genetic at age 12 and 62% in an adult sample
(mean age¼ 47.5). Variation due to genetic influences is likely to be influenced by more than one locus. Here,
we present results of a genome-wide linkage scan of skin pattern in adolescent twins and siblings from 428
nuclear twin families. Sib-pair linkage analysis was performed on skin pattern data collected from twins at age
12 (378 informative families) and 14 (316 families). Suggestive linkage was found at marker D12S397 (12p13.31,
logarithm of the odds (lod) 1.94), when the effect of the trait locus was modelled to influence the skin pattern
equally at both ages 12 and 14. In the same analysis, a peak was seen at 4q23 with a lod score of 1.55. A possible
candidate for the peak at 12p13.31 is the protease inhibitor, a-2-macroglobulin.
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INTRODUCTION
Three studies have shown a moderate but significant
association between rates of skin cancer and loss of evenness
and clarity in epidermal reticular patterning (Beagley and
Gibson, 1980; Holman et al., 1984; Green, 1991). Deterio-
ration of the fine reticular patterning of the stratum corneum
layer of the epidermis occurs over time (Lavker et al., 1980).
To quantify this deterioration, Beagley and Gibson (1980)
created a system for scoring silicone impressions of the
stratum corneum layer of the epidermis. Using this scoring
system, several studies have sought to determine the factors
that influence skin pattern deterioration. Seddon et al. (1992)
and Fritschi et al. (1995) found skin pattern deterioration to
correlate approximately 0.2 with dermal elastosis, a form of
cutaneous damage caused by ultraviolet radiation (Kligman,
1989). From this correlation, Seddon et al. (1992) concluded
that skin pattern deteriorates as part of the natural ageing
process. Conversely, Fritschi et al. (1995) believed that this
correlation confirmed the Beagley–Gibson score’s validity as
a measure of photoageing. Seddon et al. (1992) showed that
silicone mould scores correlate with age, but not sun

exposure. Subsequently, Leung and Harvey (2002) confirmed
that although sun exposure and age both explained deterio-
ration in skin pattern over time, age was the better predictor
of the two.

To estimate the extent to which changes to skin pattern are
due to genetic or environmental influences, we studied 714
twin pairs between the ages of 12 and 14. Of the variation in
skin patterning at age 12, 86% was found to be due to
additive genetic influences, of which 12% was due to skin
color. Reported sun exposure explained 0.9% of the variation
in epidermal skin pattern at age 12, but increased to 3.4% by
age 14. The percentage of variation in epidermal skin pattern
at age 14 explained by additive genetic influences was 75%,
with skin color explaining 6.9% of the total variation at this
age (Shekar et al., 2005). These results suggest that sun
exposure may still influence skin pattern, but that its effect is
modified by genetic factors. The sources of the majority of
additive genetic influences are yet to be identified. Here we
perform linkage analysis to determine the genomic regions
that cause variation in skin pattern. In addition to analyzing
the scores of silicone moulds gathered at ages 12 and 14
independently, an analysis combining the data collected at
the two ages was performed.

RESULTS
In all, 50 silicone impressions were rescored by the same
technician 9 months after the initial scoring. The interocca-
sion correlation of silicone mould scores was 0.87 (95%
confidence interval: 0.67, 0.97), so the point estimate for
intrarater measurement error is 0.13. The polychoric correla-
tion between skin patterns at ages 12 and 14 for 768 twin
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individuals was 0.70 (95% confidence interval: 0.64, 0.74),
and disattenuated for measurement error was 0.80 (95%
confidence interval: 0.73, 0.85).

Multipoint variance components linkage analysis

The logarithm of the odds (lod) scores for each of the 761
autosomal markers under the three analyses are shown in
Figure 1. The lod score indicates how well allelic similarity at
any given marker location between related individuals
explains their phenotypic similarity. Markers that produced
lod scores greater than 1.2 are listed in Table 1. Under the
univariate analysis of skin pattern at age 12, there are three
locations with a lod score above 1.2. The highest of these was
at 12p13.31 with a lod score of 1.34, followed by 6q24.3 (lod
1.27) and 4q21.21 (lod 1.23) (Table 1). In the age 14 analysis,
there were only two peaks with a lod score above 1.2. In both
these cases, the equivalent lod score for the age 12 univariate
analysis was less than 0.05. It is expected that the addition of
siblings in the analysis of skin pattern at age 12 should
increase power to detect a quantitative trait locus (QTL) effect
from the greater number of quasi-independent sib pairs.
Linkage analysis with the QTL effect loading equally on skin
pattern at age 12 and 14 (bivariate) resulted in three linkage
peaks with a lod score greater than 1.3. The highest peak,
which was suggestive of linkage, was for marker D12S397
(12p13.31), with a lod score of 1.94 (Figure 2). The
empirically derived, pointwise probability value for this
peak, as obtained from the distribution of log-likelihoods
from fitting the simulated data, was 0.00167. This is
consistent with the asymptotic P-value of 0.0014 associated
with a lod score of 1.94. At this location, information from
the marker is estimated to explain 38% of the variation in
skin patterns at ages 12 and 14. However, this may be

overestimated as a result of the association between the
estimated effect size and statistical significance (Goring et al.,
2001). Comparing lod scores across analyses for the peak at
12p13.31, power appears to be gained from performing a
bivariate analysis, which is important for future collection
strategies for ordinal traits (see also Neale et al., 1994).
Marker D4S1647 (4q23) had a lod score of 1.55 under the
bivariate model, below the threshold of suggestive linkage.

Table 1. Cytogenetic locations with lod scores above
1.2 (in bold) for univariate analyses at ages 12 and 14
and the bivariate analysis of epidermal skin pattern

Cytogenetic
location Marker

Age 12
lod

Age 14
lod

Bivariate
lod

1p21.1 ½ D1S1631 0.01 1.37 1.09

D1S2726 0.02 1.25 0.95

4q21.21 ½ D4S2964 1.21 0.03 0.68

D4S3243 1.23 0.03 0.68

4q23 ½ D4S1647 0.89 0.01 1.55

4q24 D4S1572 0.48 0.00 1.31

6p22.3 D6S289 1.24 0.08 0.97

6q24.3 GATA184A08 1.27 0.00 0.32

8p23.1 D8S550 0.00 1.20 0.48

9q34.3 D9S1838 0.31 0.81 1.50

12p13.31

½
D12S99 1.23 0.61 1.47

D12S397 1.34 0.87 1.94

D12S336 0.77 0.87 1.60

Adjacent markers within the same linkage peak are bracketed.
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Figure 1. Linkage analysis of skin pattern data collected at ages 12 and 14, and for a bivariate analysis of twins at ages 12 and 14. The x-axis is the

chromosomal position (m marks centromere). The y-axis is the lod score with the suggestive threshold score, 1.77, indicated.
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DISCUSSION
This is the first linkage study of epidermal reticular patterning.
Although no linkage peak exceeds the level indicating
significance, the result for marker D12S397 at 12p13.31
(lod 1.94) shows suggestive linkage when a QTL is modelled
to influence the skin patterns at both ages 12 and 14 equally.
The suggestive lod score, according to simulations conducted
by Wiltshire et al. (2002), is 1.77. The next highest peak
under the bivariate model, at marker D4S1647 at 4q23 (lod
1.55), did not reach this suggestive threshold. These
results are consistent with variation being due to more than
one locus.

We expect the genes causing variation in epidermal
reticular patterning to be those related to the structure, or
regulation, of the epidermis, particularly those that also relate
to sun exposure. We kept this in mind when performing
bioinformatic searches under the peaks on chromosomes 4
and 12. The transcription factor activator protein (Ap-1),
NF-kB, and macrophage inhibitory factor are all induced
by sunlight and increase the transcription of matrix metallo-
proteinases in both keratinocytes and fibroblasts (Fisher et al.,
2001; Kang et al., 2001; Watanabe et al., 2004). Matrix
metalloproteinases, which are often overexpressed in malig-
nant tumours (Hidalgo and Eckhardt, 2001), break down
collagen, which is the major structural component of the
dermis. Genes for matrix metalloproteinases are found
throughout the genome.

NF-kB is involved in regulating keratinocyte differentia-
tion and proliferation as well as epidermal carcinogenesis
(Takao et al., 2003; Ridky and Khavari, 2004). The gene for
NF-kB subunit 1 resides at 4q23. Both NF-kB and the
Beagley–Gibson scale of skin pattern deterioration have been
associated with nonmelanotic skin cancers (Holman et al.,
1984; Green, 1991; Ridky and Khavari, 2004). Further along
the q arm of chromosome 4, at 4q25, is the gene for
epidermal growth factor, a mitogenic factor that also
promotes epithelial cell proliferation. A polymorphism in
the epidermal growth factor gene that increases epidermal
growth factor production has been associated with an
increased risk of malignant melanoma (Shahbazi et al., 2002).
Also at 4q25 is the gene for lymphoid enhancer factor 1,

which is present in the ectoderm during skin development
(Zhou et al., 1995). lymphoid enhancer factor 1, which
has been linked to the Wnt pathway, forms complexes with
b-catenin, a protein that accumulates in melanoma (Rubinfeld
et al., 1997; de Lau and Clevers, 2001).

Alpha-2-macroglobulin, a major matrix metalloproteinase
(Woessner, 1999) and protease inhibitor (Bergqvist and
Nilsson, 1979), has been mapped to 12p13.31 (Fukushima
et al., 1988). It has the ability to mediate the degradation of
A-b, a component of amyloid b deposits that are deposited
just below the dermal, epidermal junction (Joachim et al.,
1989; Blacker et al., 1998). Both a-2-macroglobulin and its
receptor are localized to dermal fibroblasts and dendritic
cells (Feldman and Sangha, 1992). Further research is
required to determine the genetic variations at 12p13.31
and 4q23 that influence the rate of skin pattern deterioration.
We are currently genotyping a further 170 families with a
100k single-nucleotide polymorphism chip which will enable
simultaneous, genomewide, linkage and association analysis.

MATERIALS AND METHODS
Samples

The data for the adolescent cohort used in this study were collected

as part of a longitudinal study investigating the development of

melanocytic naevi (mol). Twins were enlisted through contacting

principals of primary schools in the greater Brisbane area, through

word of mouth and a range of media. The twins who registered their

interest were contacted and participation was conditional upon the

informed consent of the twins and their parents. Details of the

clinical protocol are described in McGregor et al. (1999) and Zhu

et al. (1999). Approval to undertake this study was granted by the

Human Research Ethics Committee of the Queensland Institute of

Medical Research. The study was conducted according to the

Declaration of Helsinki Principles. Of the twin pairs used for

the genetic analysis in Shekar et al. (2005), a subsample of twins

and their siblings was genotyped for linkage analysis (Table 2). The

non-twin siblings were, on average, older than the twins by

approximately 2 years.

Silicone mold impression grades

Silicone mold impressions of the back of the hand were collected as

close to the twins’ 12th and 14th birthdays as possible. Silicone

mould impressions for the non-twin siblings were collected at the

same time as the twins’ age 12 visit. Affinis light-body silicone

elastomer (manufactured by Coltène AG, Altstätten, Switzerland)

was used to take an impression of the dorsum of the left hand, which

was held in a relaxed position by loosely gripping a cardboard

cylinder (for more details, see Sarkany, 1962; Sarkany and Caron,

1965; Barnes, 1973; Battistutta, 1998). The silicone impressions of

the skin were scored according to the Beagley–Gibson rating using a

low-power dissecting microscope. The Beagley–Gibson method

classifies skin pattern impressions into six categories, depending

upon the evenness, clarity and depth of primary and secondary lines,

with higher scores indicating greater epidermal skin pattern

deterioration (Holman et al., 1984).

Families of monozygotic twins with one or more siblings (Evans

and Medland, 2003) and additional siblings in families of dizygotic

twins (Dolan et al., 1999) add significant power to detect QTL.
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Figure 2. Linkage analysis of skin pattern for the p arm of chromosome 12.
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Although monozygotic twins and families with one individual do not

contribute linkage information, they increase the information used to

estimate threshold parameters, and so enhance the stability of the

model. Inclusion of monozygotic twins also enables residual familial

variance to be dichotomized into additive genetic and common

environmental sources, and provides an upper bound to the estimate

of the linked QTL variance (Q) (Evans and Medland, 2003). While

there were three families with three nontwin siblings, the univariate

linkage analysis at age 12 only included up to two siblings per family

to avoid numerical problems. The univariate analysis of skin pattern

data collected at age 12 included 961 individuals, both twins and

siblings, with phenotype and genotype information. These 417

families yielded 558 informative, sibling–sibling relationships, or

quasi-independent sibling pairs (Table 2).

Zygosity testing

Venous blood samples were collected from twins, siblings and

parents into ethylene diamine tetraacetic acid tubes. Deoxyribonu-

cleic acid was extracted from buffy coats subsequent to salting out

cellular proteins (Miller et al., 1988). Zygosity of the twin pairs was

established by typing them using the ABI Profiler PlusTM marker set

consisting of nine highly polymorphic deoxyribonucleic acid

microsatellite markers and the amelogenin sex marker. The

probability of dizygosity given concordance at all markers was less

than 10�4. Zygosity was further confirmed in the genome scans, as

below.

Genotyping
Two major genome scans of parents, twins, and siblings were carried

out, at the Australian Genome Research Facility, Melbourne (Ewen

et al., 2000), and the Center for Inherited Disease Research,

Baltimore (Weeks et al., 2002). The intercalated genome scans

resulted in a 796 marker map with an average intermarker spacing of

4.8 cM in Kosambi units (Zhu et al., 2004). The data were cleaned

for incorrect relationships between individuals, Mendelian incon-

sistencies, and improbable double recombinants as detailed else-

where (Zhu et al., 2004). Approximately 36% of individuals were

genotyped in both the Center for Inherited Disease Research and

Australian Genome Research Facility scans, these being mainly from

families without genotyped parents; between 211 and 791 markers

were genotyped per individual (Zhu et al., 2004).

As very few of our subjects were scored in the lowest or highest

categories, the data for skin pattern were recoded from six to four

categories for twins and siblings (the first two categories were

collapsed and the last two categories were collapsed). The data were

analyzed using the multifactorial threshold model, which assumes

that skin patterning is a continuous, normally distributed variable

that has been divided into ordered categories by the rater. We

estimate thresholds that cut into the underlying normal distribution

according to the proportion of individuals in each category.

Correlations under the threshold model take this into consideration

such that the joint distribution of the liabilities for a pair of relatives is

bivariate normal (Reich et al., 1979; Martin et al., 1988).

The correct specification of the threshold model is important in

linkage analyses, where phenotypes between related individuals are

compared to their genetic similarity. The threshold parameters for

males were displaced by a constant from their female counterparts to

account for the greater deterioration in epidermal reticular pattern-

ing in males (Shekar et al., 2005). Although there was no influence of

age when performing genetic analysis within age 12 twins, the

increased age range with the addition of siblings necessitated the

inclusion of regression on age in the threshold model. A quadratic

regression on age did not significantly contribute to the threshold

model (w2
1¼ 0.03).

Identity by descent estimation

When two offspring in a family receive the same allele from one

parent, then those siblings share the parent’s allele at that location

identical by descent (IBD). Sibling pairs receive haplotypes from

both parents and so can share 0, 1 or 2 alleles IBD at each locus. If

variation at a genomic location is causing variation in skin pattern,

then IBD similarity between siblings for that locus, and hence the

nearby marker(s), will be related to skin pattern similarity between

those siblings. Multipoint IBD was estimated at each of the 761

autosomal markers for all genotyped siblings using Merlin 0.10.1

(Abecasis et al., 2002), which estimates marker allele frequencies

from the observed sample. To more accurately estimate IBD

between siblings, 81% of parents were genotyped (but not

phenotyped). The genetic map was based on that of Kong et al.

(2004).

We used variance components and maximum likelihood estima-

tion to decompose variation in silicone mould scores into environ-

mental and genetic sources, with the latter including variance due to

a hypothetical QTL located at each of the autosomal markers in turn.

Covariance between siblings for a linked QTL, Q, is conditioned by p̂,

Table 2. Categorization of families in the analysis
of skin pattern at age 12 according to the number
of siblings and parental genotype information

Number of parents genotyped

0 1 2 Total families

Monozygotic

twins, no

siblings1

13 5 21 39

Monozygotic

twins with one

sibling

1 4 24 29

Monozygotic

twins with two

siblings

0 1 5 6

Dizygotic

twins2
24 52 204 280

Dizygotic
twins with one

sibling

1 8 40 49

Dizygotic

twins with two

siblings

1 5 8 14

40 75 302 417

At age 14, there were 399 families (including families of MZ twins) with
316 quasi-independent sib pairs.
1These twins are not informative for linkage, but are included in the
analysis to assist in the resolution of additive genetic (A) and common
environmental (C) influences.
2Four of these families contain one twin individual with a sibling.
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which is the proportion of alleles shared IBD at the trait locus

between siblings (Sham, 1998): p̂¼1
2Pr½IBD1� þ Pr½IBD2�. The path

coefficient for the additive genetic QTL effect (q) is a function of the

recombination fraction between the marker and the trait locus, as

well as the magnitude of the genetic influence at that trait locus.

Although monozygotic twins were included to partition familial

aggregation into additive genetic and common environmental

influences, the latter could be removed as a source of variation in

skin pattern at ages 12 and 14, without a significant drop in the fit of

the model. Residual additive genetic influence (a) is modelled such

that the expected phenotypic covariance between siblings and

dizygotic twins is p̂q2 þ 1
2a

2, where p̂ for each pair is calculated from

the IBD values estimated in Merlin. The expected covariance

between monozygotic twins is q2þ a2. The expected phenotypic

covariance matrix,
P

, is partitioned into: P̂s2
q þ 2Fs2

a þ Is2
e , such

that P̂ is a matrix of estimated p̂ between individuals i and j, F is a

matrix of kinship coefficients between individuals i and j, I is the

identity matrix, and the three s2’s indicate the additive genetic

variance caused by the linked QTL (q), the residual additive genetic

variance (a), and the unique environmental variance (e), respectively

(Posthuma et al., 2003). In the bivariate model, a single common

QTL factor was modelled such that its influence on skin pattern at

age 12 was the same as its influence on skin pattern at age 14. The

additive genetic influence on skin pattern at age 14 was decomposed

into that influencing skin pattern at age 12 and that unique to itself.

The computer program Mx (version 1.54; Neale et al., 1994) was

used to estimate the parameters for thresholds and variance

components. The test for linkage at a particular marker is the

statistical significance of sq
2. The difference in log likelihoods

between the model where sq
2 is free and the model where sq

2 is

zero is distributed as a 1
2 :

1
2 mixture of w1

2 and a point mass at zero

and designated w0,1
2 (Self and Liang, 1987). Dividing this difference in

log likelihoods by 2 ln 10 (E4.6) produces a lod score equivalent to

that for parametric linkage analysis (Williams and Blangero, 1999).

Since the effect of the QTL factor on skin pattern was constrained

equal at ages 12 and 14 in the bivariate analysis, all analyses had the

same test for linkage, dropping a single estimated parameter.

Although marker information was available for the X chromosome,

linkage analyses were performed on the autosomal markers due to

current limitations of the computer program Mx.

To determine whether the link between genetic information at a

particular marker and skin pattern is significant, the threshold

P-value of 0.05 needs to be adjusted for the 761 tests performed in

the linkage analysis, that is, a level above which a linkage peak is

expected once in every 20 genome scans. Wiltshire et al. (2002),

using locus-counting methods on simulated data, have suggested

that for a 5 cM scan, a lod score of 1.77 is expected once every scan

and a lod score of 3.17 would be expected once every 20 genome

scans. For the highest linkage peak, 3000 simulations of the

chromosome under a hypothesis of no linkage using the marker

informativeness, spacing, and missing data patterns observed in the

data sample were used to obtain an empiric, pointwise P-value. The

simulations were generated using the –simulate option in Merlin

0.10.1.
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