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ABSTRACT

Multiple displacement amplification (MDA) has
emerged as a promising new method of whole
genome amplification (WGA) with the potential to
generate virtually unlimited genome-equivalent DNA
from only a small amount of seed DNA. To date,
genome-wide high marker density assessments of
MDA–DNA have focussed mainly upon suitability
for single nucleotide polymorphism (SNP) genotyp-
ing applications. Suitability for short tandem repeat
(STR) genotyping has not been investigated in great
detail, despite their inherent instability during DNA
replication, and the obvious challenge that this pre-
sents to WGA techniques. Here, we aimed to assess
the applicability of MDA in STR genotyping by con-
ducting a genome-wide scan of 768 STR markers for
MDAs of 15 high quality genomic DNAs. We found that
MDA genotyping call and accuracy rates were only
marginally lower than for genomic DNA. Pooling of
three replicate MDAs resulted in a small increase in
both call rate and genotyping accuracy. We identified
34 STRs (4.4% of total markers) of which five essen-
tially failed with MDA samples, and 29 of which
showed elevated genotyping failures/discrepancies
in the MDAs. We emphasise the importance of DNA
and MDA quality checks, and the use of appropriate
controls to identify problematic STR markers.

INTRODUCTION

Genome-wide short tandem repeat (STR) linkage scans
provide a powerful means by which to interrogate the
human genome for genetic disease loci. However, such studies
require substantial amounts of genomic DNA, and as a con-
sequence rapidly deplete existing DNA stocks. This can impose
constraints on the scale of future fine mapping and single

nucleotide polymorphism (SNP)-based association studies.
In addition, study samples must be excluded if they fall
short of the required DNA quantity, reducing study size and
statistical power. Increasingly, whole genome amplification
(WGA) techniques are being considered a potential solution
to these limitations. The recently introduced WGA method,
multiple displacement amplification (MDA), has shown accur-
ate >10 000-fold amplification of DNA from a wide range of
clinical samples, including buffy and buccal derived DNA,
buccal swabs and even Guthrie card (1,2). The MDA process
uses isothermal, strand displacement synthesis by bacterio-
phage F29 DNA polymerase, known for its remarkable rate
of strand displacement (3) and proof-reading activity (1).
Compared to earlier PCR-based methods such as primer-
extension-preamplification PCR (PEP-PCR) and degenerate
oligonucleotide primer PCR (DOP-PCR), MDA has extremely
low amplification bias and error rates, and long lengths
of amplification products (4). Importantly, MDA is a simple
procedure, well suited for high-throughput DNA laboratories.

MDA–DNA has now been thoroughly investigated for
a number of different SNP genotyping platforms (1,5–7).
However, only small scale validation experiments have been
conducted for STR and microsatellite applications (1,8,9). The
distinction between SNP and STR genotyping is an important
one, as DNA polymerase replication slippage is a known force
for dynamic deletion and expansion of STR sequences (10).
This instability of STR sequence could pose a significant
challenge for the accuracy of WGA techniques. We set out
to evaluate the suitability of MDA material for STR genotyp-
ing by conducting a 5 cM, 768 STR marker genome-wide scan
of 20 MDA samples from 15 different gDNAs. In addition, we
also assessed the effect of pooling by genotyping pools of three
replicate MDA reactions from individual samples.

MATERIALS AND METHODS

Subjects

Study participants were recruited from the Australian popu-
lation as a part of twin studies on the genetics of complex
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disease. Consent for genetic testing was obtained from all
participants prior to the study and approval for study proced-
ures was granted by the QIMR Human Research Ethics
Committee. Our STR genome scan linkage study consisted
of 1391 individuals, 15 (4 males, 11 females) of which were
selected for MDA treatment on the criteria of high DNA
quality (see below). As controls we used 16 DNAs from eight
monozygotic (MZ) twin pairs (genomic DNA only) from this
genotyping batch.

Genomic DNA isolation

Peripheral venous blood was drawn from study participants
into 10 ml EDTA tubes by laboratory staff. Alternatively,
blood was drawn by a doctor/pathologist and received via
overnight courier delivery. Buffy coat was isolated from
10 ml EDTA blood tubes for same day DNA extraction, or
stored at �70�C prior to DNA extraction. Genomic DNA
extraction from buffy coat samples was by a modified salting
out method (11). DNA yield was determined by PicoGreen
dsDNA quantitation kit (Molecular Probes Inc., CA). DNA
purity was estimated by UV fluorimeter absorbance readings.
Genomic DNA was diluted in sterile TE buffer to 50 ng/ml
concentration for storage at 4�C. From our study of 1391
individuals, we selected 15 samples for MDA treatment
according to a criteria of high DNA yield and purity, where
A280 ¼ 1.78–1.82.

Multiple displacement amplification

MDA was conducted using the GenomiPhi DNA amplification
kit (Amersham Biosciences). All MDA reactions were of 20 ml
in volume, with reactions conducted in plates of 96-well
format. On ice, 1.0 ml of DNA at 10 ng/ml concentration
was aliquotted into a well, to which 9 ml of sample buffer
was added. The denaturation step (10 min, 95�C) recommen-
ded by the manufacturer was omitted as it has been shown to
be detrimental to locus representation (2) (results not shown).
Ten microlitres of a mixture of one part F29 DNA polymerase
and nine parts reaction buffer were added to each sample.
Plates were sealed and incubated at 30�C for 16 h. Reactions
were heat terminated at 65�C for 10 min. Fifteen genomic
DNA samples of this study were amplified in 20 ml MDA
reactions. In addition, five of these samples were also ampli-
fied in three independent 20 ml reactions and then pooled. No
further DNA purification or quantification of the MDA mater-
ial was performed as previous experience has shown MDA–
DNA yield is highly consistent.

STR genotyping

STR genotyping was performed by the National Heart, Lung
and Blood Institute (NHLBI) Mammalian Genotyping Service
at Marshfield Clinic. Markers were those of Weber screening
sets 13 and 52 (12), consisting of a combined total of 777 STR
markers distributed across all autosomal and sex chromo-
somes. The nine Y chromosome markers were omitted from
our analyses. Distance between markers ranged from 0.1 to
17.4 cM, averaging 4.8 cM. Average marker heterozygosity
was 0.72. Genomic DNA and paired MDA–DNA, in addition
to eight MZ twin pair controls (16 DNAs) were included for
genotyping with the wider study of 1391 Australian twin study
participants. A single MDA reaction product, or the pooled

triplicate reaction products were diluted to 2 ml in water for
the genotyping reactions.

RESULTS

Genotype data for 768 STR markers were obtained for
15 MDA–DNAs and paired un-amplified genomic DNA
(hereafter ‘gDNA’). Average genotyping call rate for the
MDAs was 95.0% (91.4–98.2%), lower than the 96.5%
(93.2–100%) achieved for the gDNA (Table 1). To further
investigate genotyping failures, we categorised each no-call
by the genotype of the gDNA. The MDA samples were found
to have comparable failure rates for both heterozygous (5.4%
of all heterozygote calls) and homozygous genotypes (4.1%
of all homozygote calls). The MZ genomic controls showed
heterozygote and homozygote failures of 3.5% and 2.6%,
respectively. Thus, although there was a net increase of geno-
typing failure in the MDAs, we did not observe heterozygous
genotypes to be more prone to failure than homozygotes.

For called genotypes in the MDA–DNA and paired
gDNA, a genotype concordance rate of 97.8% (97.2–
98.4%) was observed (Table 2). A genotype concordance of
99.2% (98.0–99.9%) was achieved for the 16 MZ gDNAs
(Table 2). As MZ co-twins should have identical genotypes,
we considered the discordance rate, 0.8% (1–0.992), to be
an approximation of the error of the genotyping process,
and indeed it was in good agreement with the 0.7% error
rate reported by Marshfield Clinic Mammalian Genotyping
Service (13). If we assume a 0.8% base-line error rate, the
overall increase in genotype discrepancies in the MDA sam-
ples was �1.4%. We categorised discrepancies according to
the observed change in assigned STR allele number, compar-
ing the MZ2 to MZ1 samples, and the MDA to gDNA.
Discrepancies were on average 2.9 times more common in

Table 1. STR call success rates

Genotypes 15 gDNAs 15 MDA–DNAs 8 MZ pairs

Total analysed 11520 11520 12288
Called 11116 (96.49%) 10941 (94.97%) 11841 (96.36%)
Non-called 404 (3.51%) 579 (5.03%) 446 (3.63%)

Heterozygous
call ! No-calla

na 433 (5.36%) 296 (3.48%)

Homozygous
call ! No-calla

na 124 (4.08%) 87 (2.61%)

No-call ! No-callb na 22 (5.45%) 32 (14.32%)

aPercent of het or hom calls, MDA versus gDNA, or MZ1 versus MZ2.
bNo-calls in both gDNA and MDA, or MZ1 and MZ2; na, not applicable.

Table 2. STR genotyping accuracy

Genotypes 15 MDAsa 8 MZ pairsb

Concordant calls 10352 (97.77%) 5741 (99.24%)
Discordant Calls 236 (2.23%) 44 (0.76%)

Heterozygous ! Homozygous (LOH) 118 (1.11%) 17 (0.29%)
One or both alleles increased size 54 (0.51%) 13 (0.22%)
One or both alleles smaller size 62 (0.59%) 14 (0.24%)
One allele larger, one smaller 2 (<0.1%) 0 (0%)

aMDA versus gDNA.
bMZ1 versus MZ2.
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the MDAs than in the MZ controls. Heterozygote to homo-
zygote genotype transitions (loss of heterozygosity, LOH)
were more common in the MDAs at 3.8 times the level
observed in MZ pairs. Discrepancies involving one or both
of the assigned allele values were found to occur at compar-
able rates for an allele size increase (2.2 times) versus a
decrease (2.4 times). In summary, we observe a small increase
in LOH in the MDA samples relative to other forms of dis-
crepancy. Our data also indicates no marked tendency in the
MDAs towards larger or smaller alleles.

To evaluate whether pooling of replicate MDA reactions
prior to genotyping may even out stochastic variations in
WGA efficacy as suggested by others (9,14), we amplified
five DNAs (a subset of the 15 DNAs above) in three inde-
pendent replicate MDA reactions, which were then pooled
for genotyping. Mean call rate for the pooled samples was
96.2% (94.9–97.5%) slightly improved over 95.8% (92.3–
98.2%) for the five single-reaction MDAs from the same
seed DNAs, and comparable to 96.1% (93.2–98.8%) for
gDNA. MDA concordance with gDNA genotype showed a
small but significant improvement in the pooled samples
(98.3%) compared to single MDA (97.8%).

Next we assessed the individual genotyping failure rate and
gDNA genotype concordance for each STR marker. We iden-
tified five STRs (ATA4E02, MFD427-AAAT028, ATT077P,
GATA63C02, TAA005) that appear to be strongly prone to
either failure and/or higher genotyping discrepancies. For
these five markers, mean combined failure/discordance rate
was 90.7% for the MDA–DNAs, and 88.0% for the triplicate-
pooled MDAs. In contrast, we typically observe zero or no
more than one genotyping failure (>10% failure/discordance
rate) in the paired gDNA or MZ twins. Another 29 STRs were
found to have a combined failure/discordance rate of >40% in
both or either the 15 single MDAs and five pooled MDAs.
These 34 STRs, 4.4% of all STRs in the genome-wide
scan, account for 30.5% of all failures/discordance in the
15 single MDAs, and 38.0% in the five triplicate-pooled
MDAs. In contrast, the 34 STRs account for only 4.8% of
total anomalies/failures in our MZ controls. Repetitive
genomic sequence, such as the centromere and telomere are
known to be poorly represented in MDA–DNA (1), so we
considered the chromosomal position for each of the
34 STRs. They were found to be widely distributed across
17 chromosomes, with only two being the most-telomeric
marker, and one was close to the centromere. Three of the
five worst markers were close to a chromosome end but in no
case were they the most-telomeric marker for that chromo-
some, suggesting other factors are important. Four of these five
STRs had AAT or AAAT repeat motifs and the fifth was
GATA. Of the 34 poor markers 14 (41.2%) had AAT or
AAAT repeats which was higher than the average fraction
(25.3%) of the genome set, just reaching significance
(P ¼ 0.046, Fisher’s Exact Test), whereas, there was no obvi-
ous enrichment for the GATA type (52.9% versus 61.8%).
Thus, this type of repeat (exclusively AT) may be a factor
in poor MDA replication but nevertheless is not usefully
predictive of which STRs will be problematic. These same
markers did not have failure rates or error rates on gDNA
detectably different from the rest of the marker set as analysed
from the full data set of the 1391 DNAs in the same experi-
ment. When we removed the 34 problematic STRs from

analysis, overall call rate for the MDA samples was very
similar to that of gDNA, and genotype concordance was
found to improve by 0.6% in the 15 single-reaction MDAs,
and 0.4% in the five triplicate-pooled MDAs.

DISCUSSION

We investigated the suitability of MDA material for STR
analysis by conducting a genome-wide scan of 768 STR mark-
ers in 20 MDA samples derived from 15 individual’s DNA.
We found mean success rates and genotype accuracy to be
high, within 1.5% of that achieved overall in gDNA. Our data
did not show any indication of biased allele amplification for
heterozygous loci, with heterozygotes and homozygotes
showing similar failure rates, and heterozygotes only margin-
ally more prone to genotype discrepancies. Pools of three
replicate MDAs moderately improved call rates, and reduced
the number of discrepant genotypes. From previous SNP
genotyping experience using the Sequenom MassARRAY
platform, we have noted that allele peak heights are typically
more variable in MDA samples (data not shown) due to allele
amplification bias. We suggest that pooling likely reduces
overall allele peak height bias, resulting in more robust, accur-
ate automated genotyping calls. While the cost effectiveness
of MDA pooling should be carefully assessed for large studies,
we recommend it as a simple method for improving STR
genotyping results as has been reported previously in the con-
text of extremely limiting template DNA (9).

Individual STR markers displayed considerable variation
in performance in the MDA–DNAs. We found 34 markers
to have an unacceptable combined failure/discrepancy rate
of >40%, despite performing very well in genomic DNA.
In contrast, combined failure/discrepancy rates for gDNA did
not exceed >40% for any of the 768 STRs. Although our
sample size is small, and using a >40% cut-off is somewhat
arbitrary, this suggests that further optimizing of STR sets for
genotyping of MDA–DNAs may be warranted. We suspect
that the systematic increase in genotype failure and discrep-
ancies for these 34 STRs in the MDA samples is likely due
to low representation and/or reduced F29 DNA polymerase
fidelity at these loci, depending on exact sequence context. We
hypothesise that the MDA step (i.e. many additional rounds of
DNA replication in addition to PCR) may introduce further
potential for STR expansion/deletion through DNA poly-
merase replication slippage. In addition, certain flanking
genomic sequences may interfere with MDA efficacy, leading
to under-representation of these loci.

Our study examined 20 MDA samples, but clearly, a larger
study would provide more comprehensive data to identify a
subset of markers that are more or less robust with MDA
material in the same way that the current marker sets have
evolved with experience (15). Notwithstanding the encour-
aging results presented here, our experience with SNP geno-
typing of MDA–DNA using a wider range of gDNA quality
(P. A. Dickson and M. R. James unpublished data) has shown
that it is critical to perform preliminary quality checks prior
to large scale use in genotyping experiments. In particular we
found MDA derived from Guthrie cards to be very unsatis-
factory and we found variable results when using DNA from
buccal swabs to produce MDA product. Similarly, we have
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also found that the quality of the input DNA is very important
when using the Affymetrix SNP genotyping platform (16). A
simple cost effective method for pre-screening MDA product
for suitability for genotyping remains to be established but
we currently perform genotyping of �25 SNPs.

In summary, our results show that MDA material is overall
well suited for STR genotyping applications, with pools of
independent MDAs showing a slight improvement in call rates
and accuracy. However, we found that a small subset of STRs
accounted for a substantial proportion of genotyping failures
and discrepancies. We recommend the inclusion of appropri-
ate controls to identify and remove problematic markers prior
to statistical genetic analysis.
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