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Lipid levels in plasma strongly influence the risk for coronary heart disease. To localise and subsequently
identify genes affecting lipid levels, we performed four genome-wide linkage scans followed by combined
linkage/association analysis. Genome-scans were performed in 701 dizygotic twin pairs from four samples
with data on plasma levels of HDL- and LDL-cholesterol and their major protein constituents,
apolipoprotein AI (ApoAI) and Apolipoprotein B (ApoB). To maximise power, the genome scans were
analysed simultaneously using a well-established meta-analysis method that was newly applied to linkage
analysis. Overall LOD scores were estimated using the means of the sample-specific quantitative trait locus
(QTL) effects inversely weighted by the standard errors obtained using an inverse regression method.
Possible heterogeneity was accounted for with a random effects model. Suggestive linkage for HDL-C was
observed on 8p23.1 and 12q21.2 and for ApoAI on 1q21.3. For LDL-C and ApoB, linkage regions frequently
coincided (2p24.1, 2q32.1, 19p13.2 and 19q13.31). Six of the putative QTLs replicated previous findings.
After fine mapping, three maximum LOD scores mapped within 1 cM of major candidate genes, namely
APOB (LOD¼ 2.1), LDLR (LOD¼1.9) and APOE (LOD¼1.7). APOB haplotypes explained 27% of the QTL
effect observed for LDL-C on 2p24.1 and reduced the LOD-score by 0.82. Accounting for the effect of the
LDLR and APOE haplotypes did not change the LOD score close to the LDLR gene but abolished the linkage
signal at the APOE gene. In conclusion, application of a new meta-analysis approach maximised the power
to detect QTLs for lipid levels and improved the precision of their location estimate.
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Introduction
The risk of coronary heart disease is influenced by genetic

factors. Identification of the underlying variation in genes

and other genomic sequences may provide valuable in-

sights into the biological pathways contributing to cor-

onary heart disease. Achieving this goal by investigating

the disease itself in human genetic studies is challenging.
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Patients diagnosed with the same disease will frequently

have been exposed to genetic disturbances of different

biological pathways. A powerful alternative approach is the

analysis of quantitative intermediate phenotypes correlat-

ing with disease risk.1,2 For coronary heart disease, LDL-

and HDL-cholesterol are well-characterised intermediate

phenotypes.1

LDL particles contribute to coronary heart disease by

accumulating in the vessel wall thus forming a lipid core

and initiating various cellular responses that promote

atherosclerosis.3 LDL particles contain one molecule of

the protein apolipoprotein B (ApoB), which serves as a

ligand for receptors such as the LDL-receptor. Hence, levels

of LDL-C and ApoB in plasma are highly correlated. The

function of HDL particles is to transport cholesterol from

peripheral tissues, including from LDL particles trapped in

the vessel wall, back to the liver.4 The major protein consti-

tuent of HDL, apolipoprotein AI (ApoAI), mediates the up-

take of cholesterol. HDL particles contain a varying number

of ApoAI molecules.5 Therefore, levels of HDL-C and ApoAI

are correlated although less strong than LDL-C and ApoB.

Importantly, interindividual variation in plasma levels of

LDL-C, HDL-C and their main apolipoproteins is consi-

derably heritable,6,7 which provides the rationale for studies

aimed at identifying the underlying genetic variation.

A commonly adopted strategy to disentangle the genetic

basis of complex phenotypes is localisation using a

genome-wide linkage scan in families followed by identi-

fication using association approaches to scrutinise genetic

variation in positional candidate genes. For lipid research,

the power of this approach is illustrated by the recent

identification of the USF1 as a gene involved in familial

combined hyperlipidaemia.8 Notwithstanding successes

like this and others,2 genome-wide scans have attracted

criticism for their relatively low statistical power and

consequently high rate of false negative results.9 An

advantage of genome-wide scans, however, is that the

design allows detecting the effects of multiple, individually

rare allelic variants at a locus. Alternative approaches, like

(genome-wide) association studies that rely on common

single-nucleotide polymorphisms (SNPs) to tag haplotypes,

depend on the validity of the ‘common disease, common

variant’ hypothesis, which may not apply to all genetic

variation influencing complex traits. Indeed, evolutionary

models predicted rare variants to make up a large part of

the genetic risk for common diseases,10 and recently mul-

tiple rare variants of candidate genes were shown to signifi-

cantly contribute to variation in HDL-C in the general

population.11 Hence, despite the concern of low power,

genome-wide linkage scans may remain one of the major

tools to map loci contributing to complex traits. Therefore,

developing new analysis methods is vital to overcome the

relatively low power of the study design. Meta-analysis

methods that allow the simultaneous analysis of multiple

genome scans are among the most promising solutions.

We performed four autosomal genome-wide linkage

scans to localise quantitative trait loci (QTLs) influencing

LDL-C and HDL-C and their major apolipoproteins, ApoB

and ApoAI. To maximise power, data from the four twin

populations were combined using a well-established meta-

analysis method12,13 newly applied to linkage analysis. The

method estimates an overall LOD score using the mean of

the sample-specific QTL effects weighted by the precision of

these estimates (ie inversely weighted by their standard

errors (SEs)). Next, the influence of haplotypes of positional

candidates was tested within the same framework.

Subjects and methods
Subjects

The current study was performed using twin studies from

three countries:7 Australia (Semi-Structured Assessment for

the Genetics of Alcoholism Study), The Netherlands

(Netherlands Twin Registry) and Sweden (Adoption/Twin

Study of Aging); from The Netherlands two twin samples

were used: an adolescent and an adult sample. All twins

were recruited without regard to any trait or disease status

and may thus be regarded as representing the general

population. Zygosity was initially determined using stan-

dard questionnaires on physical similarity and the degree to

which others confused them (Australia, Netherlands Adult)

or serological markers (Netherlands adolescent, Sweden).

Subsequently, the relationship of dizygotic (DZ) twin pairs

was checked using short tandem repeat markers measured in

the genome scan with the software GRR.14 Phenotypes and

genotypes were available for 457 Australian, 83 adolescent

Dutch, 117 adult Dutch and 44 Swedish DZ twin pairs.

In addition, 76 parents and 75 siblings of Australian DZ

twins without phenotypic data were genotyped to

improve the estimate of the proportion of alleles shared

identical-by-descent (IBD). One adult Dutch family and

five Australian families had two DZ twin pairs and were

analysed as such.

Phenotyping

Phenotyping was performed as described previously.7

Briefly, blood samples were taken after an overnight fast

except for the Australian twins. HDL-C levels were

measured in plasma after precipitation of ApoB-containing

lipoproteins. Plasma ApoB and ApoAI were measured using

a Behring nephelometer (Australia), radial immunodiffu-

sion (Netherlands adolescent), Beckman Instruments’

Array Protein System (Netherlands adult) or a radio-

immunoassay (Sweden). LDL-C was calculated using the

Friedewald formula (LDL-C¼ total cholesterol�HDL-

C�(triglycerides/2.2); unit mmol/l) and set to missing if

plasma triglyceride concentration exceeded 4.52 mmol/l.

Plasma levels of total cholesterol and triglycerides were

determined using standard enzymatic methods.
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Genotyping
Short tandem repeat polymorphisms A 395 marker

genome scan (B10 CM spacing) was performed in Dutch,

Swedish and half of the Australian DZ pairs (n¼ 250) by the

Molecular Epidemiology Section, Leiden University Medi-

cal Centre, The Netherlands. The scan was performed in

several phases. First, chromosome 19 was scanned using in-

house markers at an B8 CM spacing using an ALFexpress

automated sequencer (Amersham Pharmacia Biotech) as

described previously.15 Next, chromosomes 1, 2, 6, 7, 8, 11,

15, 16 and 17 were scanned at an 18 CM spacing on the

basis of early power calculations16 with markers from

Weber screening set 8 using an ALFexpress automated

sequencer. While the scan was ongoing, results from other

genome scans showed that an 18 CM spacing is too sparse.

Therefore, additional markers were measured on these

chromosomes to decrease the spacing to B10 CM. These

markers were taken from the Human Linkage Set v2.5

MD10 and HD5 (Applied Biosystems) and measured using

an ABI Prism DNA Analyzer 3700 (Applied Biosystems).

The remaining chromosomes were finished with the 10 CM

Human Linkage Set v2.5 MD10 and the same equipment.

Genotyping was performed according to the manufacturer

except that the amount of primer pairs for the markers was

reduced up to five-fold and duplex PCR reactions were

designed if possible to reduce costs, time expense and

amount of genomic DNA used. Lastly, fine mapping was

performed for promising linkage regions on chromosomes

2 and 19 with 12 and 9 markers, respectively, from the

Human Linkage Set v2.5 MD10 and HD5. Genotyping was

carried out using Fragment Analyser 1.02 (Amersham

Pharmacia Biotech) when using ALFexpress equipment

and Genemapper 2.0 and 3.0 (Applied Biosystems) when

using an ABI Prism DNA Analyzer 3700. For the purpose of

quality control, B5% of samples were genotyped twice and

the results compared. These comparisons indicated that

markers D5S416, D9S158, D11S4175, D12S86, D14S68,

D18474 and D19S209 from the Human Linkage Set v2.5

MD10 could not be genotyped reliably in our hands due to

unstable ratio of the signal of the long and short allele, low

success rate or unclear 1-bp alleles.

An additional 730 marker genome scan (B5 CM spacing)

was carried out in 354 Australian DZ pairs by the Mammalian

Genotyping Service, Center for Medical Genetics, Marsh-

field, USA. Two marker sets were used: screening set 13 and

52. Marker ATA27C11 had 1-bp alleles and showed an

excessive noncorrespondence rate when genotypes were

compared for eight samples that were genotyped in dupli-

cate. This marker was removed prior to statistical analysis.

There was an overlap of 147 Australian pairs between the

scans carried out in Leiden and in Marshfield so that the

total number of scanned Australian DZ pairs is 457.

Mendelian errors were detected using PEDSTATS and un-

likely double recombinants using MERLIN.17 A locally

developed SQL server database was used to store genotypic

data, compare repeated genotypings, integrate the Leiden

and Marshfield genome scans and generate files for linkage

analysis. The location of the markers was taken from an

integrated genetic map with interpolated genetic map posi-

tions (http://www2.qimr.edu.au/davidD/). The position is in

Decode CM, estimated via locally weighted linear regression

(lo(w)ess) from the Build 34.3 physical map positions and

published Decode and Marshfield genetic map positions.

Single-nucleotide polymorphisms Tagging SNPs in the

genes APOB, LDLR and APOE were selected from litera-

ture18 – 20 and associated databases on the web (APOB:

rs512535 (�837G/A; minor allele frequency (MAF) in

Australian sample¼0.48), rs934197 (�516C/T;

MAF¼0.34), rs693 (T2488T; MAF¼0.46), rs676210

(P2712L; MAF¼0.22), rs1801701 (R3611Q; MAF¼0.10),

rs1042031 (E4154K; MAF¼0.18); LDLR: rs6511720

(MAF¼ 0.12), rs8102912 (MAF¼0.24), rs6511721

(MAF¼ 0.49), rs12980593 (MAF¼0.47), rs5925 (AvaII;

MAF¼0.45), rs2738459 (MAF¼ 0.46), rs13306506 (MspIa;

MAF¼0.24), rs1433099 (MspIb; MAF¼0.27); APOE:

rs449647 (�491A/T; MAF¼0.19), rs405509 (�219G/T;

MAF¼0.42), rs769450 (MAF¼0.49), rs429358 (e3/e4;

MAF¼0.14), rs7412 (e3/e2; MAF¼0.08)). The two APOE

SNPs underlying the e2/e3/e4 isoforms were measured using

PCR followed by HhaI digestion. For the remaining 17

SNPs, Assay Designer software (Sequenom) was used to

design multiplex genotyping assays.21 Genotyping was

performed using the MassArray platform according to the

protocols of the manufacturer (Sequenom). Briefly, after

PCR, a primer extension reaction was performed to intro-

duce mass-differences between alleles and, after removing

salts by adding a resin, B15 nl of the product was spotted

onto a target chip with 384 patches containing matrix.

Mass differences were detected using matrix-assisted laser

desorption\ionisation time-of-flight mass spectrometry

(MALDI-TOF) and genotypes were assigned real-time using

Typer 3.0 software (Sequenom). As quality control, cluster

plots were made of the low and high mass allele signals as

detected using mass spectrometry. Calls falling outside a

cluster and no-calls falling inside a cluster were checked

manually. In addition, 5–10% of samples were genotyped

in duplicate and no inconsistencies were observed.

Statistical analysis

Prior to analysis, phenotypes were transformed by the

natural logarithm if appropriate (this was the case for all

phenotypes but LDL-C in the Australian and LDL-C and

ApoB in the adult Dutch sample), adjusted for sex and age

and standardised, for each study population separately, so

that all phenotypes had a mean of 0 and a standard

deviation of 1. Phenotypic values of individuals using

statins were included in the analysis without correction (11

Australian DZ twins from 10 pairs and four adult Dutch DZ

twins from four pairs). To check the validity of this
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approach, the linkage analysis was repeated after excluding

statin users, which did not materially alter the results for

LDL-C and ApoB levels.

Linkage analysis was performed using an inverse regres-

sion method22 implemented as MERLIN-REGRESS in the

software MERLIN. This method regresses the estimated

proportion of alleles shared IBD on the squared sums and

squared differences of standardised trait values of the

relative pairs and yields an estimate of the QTL effect and

its SE. Although designed for selected samples, this inverse

regression method has asymptotically equivalent power to

variance components linkage analysis for random sam-

ples,23 but has advantages that it is fast and less sensitive to

the assumption of multivariate normality than variance

components analysis. Inverse regression needs the herit-

ability of the phenotype to be specified, which has the

advantage that an appropriate upper limit for the estima-

tion of QTL effects is obtained and the risk of over-

estimation is reduced.24 Heritabilities of standardised and

age and sex adjusted phenotypes were estimated for each

study population separately using variance components

analysis as implemented in the software QTDT.25 For this

analysis, data on both monozygotic and DZ twins were

used. Only the genetic (heritability) and unique environ-

mental variances were estimated since previous work

showed that neither dominance nor common environ-

ment affected the variance.7 Heritabilities of lipid pheno-

types were greater than 0.50 in all samples generally being

somewhat lower among the Australian twins and highest

among adolescent Dutch twins.7 Sample-specific heritabil-

ities and allele frequencies of short tandem repeat poly-

morphisms (for estimation of the proportion of alleles

shared IBD) were used in the linkage analysis.

After analysing the four twin samples separately on a

common 1 CM grid using the inverse regression method,

the four QTL effects and their corresponding SEs were

combined into a single QTL effect estimate and SE using

meta-analytic tools that account for heterogeneity.12,13 The

single QTL effect estimate was calculated as the mean of

the sample-specific QTL effects weighted by their precision

(ie inversely weighted by their SE). Meta-analysis under

heterogeneity acknowledges the fact that the true QTL

effect may be different in different samples, and attempts

to estimate the mean QTL effect around which these

sample-specific QTL effects vary (using a random effects

model). If no heterogeneity exists, the power of the meta-

analysis method accounting for heterogeneity is the same

as the method assuming homogeneity (ie without random

effects model). The overall LOD score for each location was

calculated using the weighted mean QTL effect (b) and its

standard error (SE(b)), which can be converted into a

Z-score (Z¼ b/SE(b)) and subsequently into a LOD score

(LOD¼Z2/2*ln 10). The meta-analysis method has been

implemented in R (http://www.r-project.org/) and is avail-

able from the authors. A manuscript describing details on

how this meta-analysis method is applied to linkage

analysis is in preparation.

For putative QTLs that harboured well-known candidate

genes, it was tested whether genetic variation in these

genes contributed to the LOD score observed. If so, this

would lent support the linkages observed and the applied

meta-analysis method. This analysis was performed in

three steps for every twin sample separately. First, the

expectation-maximisation algorithm implemented in

SNPHAP was used to assign diplotypes (ie haplotype pairs)

to individuals (http://www-gene.cimr.cam.ac.uk/clayton/

software/). Diplotypes were assigned only if the probability

of the most likely haplotype was greater than 50%. Second,

the effect of haplotypes on lipid phenotypes was assessed

using a maximum likelihood method that simultaneously

estimates haplotype frequencies and haplotype–pheno-

type associations implemented in the software THESIAS.26

Table 1 Characteristics of four twin samples under investigation

Australia Netherlands adolescent Netherlands adult Sweden

Age 45.9 (11.7) 16.7 (2.0) 44.2 (6.6) 65.6 (8.4)
Male (%) 33.5 50.2 49.2 40
DZ pairs (n) 457 83 117 44
HDL-C (mmol/l) 1.44 (0.39)1 1.30 (0.27) 1.23 (0.35) 1.48 (0.43)6

ApoAI (g/l) 1.44 (0.28)2 1.39 (0.20) 1.72 (0.42) 1.40 (0.28)
LDL-C (mmol/l) 3.43 (0.97)3 2.64 (0.71) 3.67 (0.97)5 4.63 (1.23)7

ApoB (g/l) 0.98 (0.26)4 0.79 (0.17) 1.24 (0.34) 1.10 (0.24)

HDL/ApoAI
Total correlation 0.70 0.77 0.71 0.73
Genetic correlation 0.78 0.87 0.77 0.77

LDL-C/ApoB
Total correlation 0.79 0.80 0.88 0.82
Genetic correlation 0.87 0.83 0.94 0.85

Data are number, percentage or mean (SD).
1–7. Number of DZ twin pairs with incomplete data was 41 (for 1), 19 (for 2), 66 (25/66 because triglycerides 44.52 mmol/l; for 3), 18 (for 4), 1 (1/1
because triglycerides 44.52 mmol/l; for 5), 8 (for 6) and 6 (2/6 because triglycerides 44.52 mmol/l; for 7).
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Third, the estimated regression-coefficients associated

with the various haplotypes were used to adjust the

phenotypic value for the DZ twins and these haplotype-

adjusted values were used for linkage analysis. Prior to

haplotype analysis, QTDT was used to test for the presence

of population stratification by comparing the within- and

between-twin pair association of SNPs with the phenotypes

under study.

Results
In total, 701 DZ twin pairs were studied from four twin

samples: an Australian, an adolescent Dutch, an adult

Dutch and a Swedish sample (Table 1). There was a strong

correlation between levels of LDL-C and ApoB as well as

between levels of HDL-C and ApoAI in all four samples

(Table 1). Consistent with biology, the correlation between

HDL-C and ApoAI (40.70) was somewhat lower than that

between LDL-C and ApoB (40.79).

Genome-wide scans were performed on the four twin

samples and were analysed simultaneously using a meta-

analysis method. The principle of the meta-analysis

method is that it combines effect estimates from the four

twin samples inversely weighted by their SEs and is robust

to heterogeneity. The result of the genome scan for the

correlated lipid phenotypes HDL-C and ApoAI is shown in

Figure 1 Result of a meta-analysis of four genome-wide scans for plasma levels of HDL-C and ApoAI.

Table 2 Chromosomal regions yielding a LOD score 41.5 in the simultaneous analysis of Australian, adolescent Dutch, adult
Dutch and Swedish twins

Chromosome
Position in cM
(Decode map) Marker

LOD score

HDL-C ApoAI

1p36.23 13 D1S1612 1.8 0.2
1q21.3 246 AAT243–AATA011 0.1 2.1
2p21 71 D2S391 0.3 1.7
3p14.2 81 GATA10H05 1.6 0.1
8p23.1 18 D8S1130 2.0 0.3
12q21.2 91 D12S326 2.2 0.2

LDL-C ApoB

2p25.1 25 D2S423 1.9 2.0
2p25.1a 25 D2S423 2.0 2.0
2p24.1 45 AAT263 1.6 2.1
2p24.1a 45 AAT263/D2S2150 2.1 2.1
2q31.2 184 D2Ss335–D2S1391 2.1 1.7
2q32.1a 187 D2S1391 2.0 1.7
5p15.33 0 D5S1981 1.6 0.3
19p13.12 37 D19S714 1.9 0.6
19p13.2a 33 D19S221 1.9 0.7
19q13.32 76 APOC2–D19S246 1.7 1.0
19q13.31a 73 APOC2 1.7 0.7

aAfter fine mapping.
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Figure 1. LOD scores greater than 1.5 were found on

chromosomes 1, 3, 8 and 12 for HDL-C and on 1 and 2 for

ApoAI (Table 2). There was no overlap in regions yielding a

LOD score greater than 1.5 between the two lipid

phenotypes.

Figure 2 shows the contribution of the four separate twin

samples to the LOD scores greater than 2. Linkage with

ApoAI on 1q21.3 (LOD¼2.1) and with HDL-C on 12q21.2

(LOD¼ 2.2) was mainly dependent on the Australian

sample (sample-specific LODs on 1p36.23 and 12q21.2

both 2.5). In contrast, three out of four twin samples

contributed to the LOD score of 2.0 found for HDL-C on

8p23.1 with the highest sample-specific LOD score being

1.4 in the adult Dutch sample.

Linkage signals observed for LDL-C and ApoB levels

generally coincided (Figure 3 and Table 2). LOD scores

greater than 2 were observed for both LDL-C and ApoB on

2p and 2q. LOD scores between 1.5 and 2 were observed for

LDL-C on 19p and 19q; the corresponding LOD scores for

ApoB varied between 0.5 and 1.0. Typing additional

markers did not appreciably change the height of these

LOD scores but shifted their position up to 4 CM (Table 2).

Linkages with LDL-C and ApoB on chromosome 2 were

mainly attributable to the Australian sample except for

2p24.1, which was also influenced by the adolescent Dutch

and Swedish sample (Figure 4). In contrast, all four samples

contributed to the linkage with LDL-C on chromosome 19

(Figure 4). These sample-specific linkage signals were

distributed over the whole chromosome. The simultaneous

analysis, however, indicated the presence of two distinct

linkage signals on the p- and the q-arm.

After fine mapping, the position of maximum LOD

scores observed for LDL-C on chromosome 2p24.1 (45 CM),

19p13.2 (33 CM) and 19q13.31 (73 CM) were close (B1 CM)

to three main candidate genes APOB (44 CM), LDLR (32 CM)

and APOE (72 CM). To assess the possible contribution of

genetic variation in these genes to the linkages observed,

tagging SNPs were measured in the twin pairs (six in APOB,

eight in LDLR and five in APOE) and haplotype analysis

was performed. Genotype distributions of all SNPs were in

agreement with Hardy–Weinberg equilibrium and popula-

tion stratification could be excluded by testing for

differences in between and within twin pair association

of SNPs with lipid phenotypes in the four samples.

Diplotypes were assigned to DZ twins only if diplotype

probability exceeded 50% (96.5% of individuals) and only

part of the Australian sample was genotyped (250 DZ

pairs). Nevertheless, linkage signals for LDL-C obtained

using this subset of DZ pairs were similar as compared to

those observed in the complete data set (Figure 5).

Accounting for the association of APOB haplotypes in the

linkage analysis reduced the LOD score for LDL-C from 1.8

to 1.0 and the QTL effect from 44 to 32% near the APOB

gene. The strongest association of APOB haplotypes with

LDL-C was observed in the Australian sample, namely for

haplotypes ACCCGA (frequency, 7.2%; P¼0.0018) and

ACCCGG (frequency, 6.4%; P¼0.012; see Subjects and

methods for SNPs measured). APOB haplotypes did not

influence the linkage signal observed 20 CM p-ter on the

same chromosome. Accounting for the effect of the LDLR

Figure 2 HDL-C and ApoAI: result of meta-analysis and analysis
individual samples. Linkage of ApoAI with chromosome 1 (a), HDL-C
with chromosome 8 (b) and HDL-C with chromosome 12 (c).
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and APOE haplotypes did not change the LOD score close

to the LDLR gene but abolished the linkage signal at the

APOE gene. Moreover, the QTL effect was reduced from 39

to 9%, thus the haplotypes tested explained the bulk of the

LDL-C QTL on 19q. As expected, especially APOE haplo-

types harbouring the e2 and, to a lesser extent, the e4 allele

Figure 3 Result of a meta-analysis of four genome-wide scans for plasma levels of LDL-C and ApoB.

Figure 4 LDL-C and ApoB: result of meta-analysis and analysis individual samples. Linkage of ApoB with chromosome 2 (a), LDL-C with
chromosome 2 (b) and LDL-C with chromosome 19 (c).
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were strongly associated with LDL-C levels in all four twin

samples (data not shown).

Discussion
To map QTLs for HDL-C, LDL-C and their main apolipo-

proteins, we performed a meta-analysis of four new

genome-wide linkage scans on DZ twins from Australia,

The Netherlands and Sweden. For HDL-C, suggestive

linkage was observed on 8p23.1 and 12q21.2, whereas for

its protein component ApoAI this was observed on 1q21.3.

The explanation for the lacking overlap in linkage signals

for HDL-C and ApoAI is not clear but may be related to

differences in underlying biology5 as described in the

Introduction. Also, the power of our study may play a role

since the QTL effects observed for ApoAI at putative HDL-C

QTLs were greater than 10%, and thus compatible with the

presence of genetic variation influencing both HDL-C and

ApoAI.

For LDL-C and its protein component ApoB, suggestive

linkage signals were coinciding on 2p25.1, 2p24.1 and

2q32.1. LOD scores between 1.7 and 1.9 for LDL-C with

lower levels of evidence for ApoB were observed on

19p13.2 and 19q13.31. Haplotype analysis of the well-

known candidate genes APOB, LDLR and APOE showed

that genetic variation in these positional candidates was

responsible for linkage of LDL-C with 2p24.1 and

19q13.31.

Thresholds for significant linkage in genome-wide scans

remain a matter of debate (suggested LOD score thresholds

include 3.6,27 3.028 and 2.029). Additional data may assist

in discriminating true from false positive results. Within

our study, linkage of LDL-C level with 2p24.1 and 19q13.31

could be attributed to variation in positional candidates

adding credibility to our linkage results and the meta-

analysis method applied. Moreover, previous studies also

Figure 5 Effect on linkage with LDL-C of accounting for APOB
haplotypes for chromosome 2 (a) and both LDLR and APOE haplotypes
for chromosome 19 (b). Accounting for the effect of APOB haplotypes
reduced the LDL-C QTL effect on 2p24.1 from 44 to 32% (a).
Accounting for the effect of LDLR and APOE haplotypes reduced the
LDL-C QTL effect on 19q13.31 from 39 to 9% (b).

Table 3 Putative quantitative traits loci influencing lipid levels from the current study that are supported by previous studies

Chromosome cMa LOD Phenotype Population and reference

2p 25 2.0, 2.0 LDL-C, ApoB Twins (this study)
20 2.2 Total cholesterol European-American sibling pairs37

2p 45 2.1, 2.1 LDL-C, ApoB Twins (this study)
40 2.2 LDL-C Old order Amish38

2q 187 2.0, 1.7 LDL-C, ApoB Twins (this study)
164 3.7 LDL-C Sardinian isolate39

12q 91 2.2 HDL-C Twins (this study)
74 4.1 HDL-C Quebeçois families32

115 2.1 Unesterified HDL-C Mexican-American families40

19p 33 1.9 LDL-C Twins (this study)
33 2.1 LDL-C Old order Amish38

20 3.9 Total cholesterol Pima Indians41

35 2.3 LDL size fraction Mexican-American families42

19q 73 1.7 LDL-C Twins (this study)
72 3.6 LDL-C Quebeçois families32

aPosition in cM originally reported transformed to our Decode genetic map.
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observed an indication for linkage at these two loci

(Table 3). Likewise, four other putative QTLs mapped in

our study are backed by previous genome scans (Table 3).

Such replication increases the probability that our and

previous findings are true positives and warrant efforts to

identify the underlying genetic variation.

Comparing different genome-wide scans, however, has

limitations and interpretation of its result is not straight-

forward. For example, various analysis methods are used,

studies may focus solely on significant evidence for linkage

not reporting potentially interesting suggestive linkages

and, importantly, there are no criteria for the maximum

distance between two mapped QTLs that can still be

considered replication. Thus, comparison of published

genome scans remains problematic and individual genome

scans generally lack power, so producing many false

negatives. Therefore, combining the available original data

rather than the published results is imperative to obtain a

complete map of QTLs for lipid phenotypes. Meta-analysis,

using our method or others’,30 will be crucial to achieve

this goal. A meta-analysis based map of QTLs for lipid

phenotypes will provide valuable information, for exam-

ple, on significant linkages previously reported for LDL-

C31,32 and HDL-C33 that have not been replicated possibly

due to lack of power of single genome scans. Also, such a

map may shed light on the suggestion that the majority of

the genetic variance of lipid phenotypes can be attributed

to well-known candidate genes.34

The meta-analysis approach presented in this study is

based on well-established methods developed for the

analysis of clinical trials.12,13 We newly applied it to

genome scans analysed using an inverse regression meth-

od22 that has asymptotically equivalent power to variance

components linkage analysis,23 and produces the SEs for

QTL effects as is necessary for meta-analysis. However, any

other linkage analysis providing effect estimates and SEs

may be used. Importantly, the meta-analysis method

provides valid estimates for the QTL effect and LOD score

in the presence of heterogeneity without compro-

mising power in the presence of homogeneity. Causes of

heterogeneity between genome-wide scans include differ-

ences in QTL effect, overall heritability, phenotyping assay,

differences in allele frequencies of short tandem repeat

markers and different marker sets. Hence, heterogeneity

between studies is a common phenomenon. All causes of

heterogeneity mentioned were present in our study.

The effect of heterogeneity in QTL effect is illustrated for

the suggestive linkage with HDL-C on 12q21.2. Linkage

was supported by the Australian sample but not by the

other samples, and the overall LOD score was lower

than that in the Australian sample alone. The increased

power of meta-analysis if multiple samples support

linkage was illustrated by the 8p23.1 result. None of the

individual samples showed suggestive linkage and this

putative QTL would have been missed. When analysed

simultaneously, however, the LOD score increased

to 2.0.

Meta-analysis may not only provide more insight into

the strength of the statistical evidence for linkage but may

also allow a more precise mapping of QTLs in some cases.

For instance, individual samples indicated the presence of

linkage with LDL-C distributed over chromosome 19

whereas meta-analysis supported the presence of two

distinct QTLs: one on the p-arm close to LDLR and one

on the q-arm close to APOE. Interestingly, our previous

combined analysis of chromosome 19 using a large part of

the currently presented data analysed within a variance

components framework did not resolve the two QTLs as

our current method does.15 A drawback of our meta-

analysis method is that either raw data are needed or,

logistically less complicated, different research groups need

to reanalyse their data according to the same protocol and

share QTL effects and SEs. However, initiatives have been

launched to assemble existing genome scans.35 Large-scale

application of meta-analysis methods may thus become

feasible in the near future.

Gene identification should follow linkage mapping of

QTLs. We were able to ascribe two putative QTLs to

haplotypes of positional candidates using a combined

analysis of linkage and association. To our knowledge this

is the first time that this was carried out successfully using

unphased haplotypes. APOB haplotypes explained part of

the linkage with LDL-C found at the APOB locus itself on

2p24.1. Factors that may have contributed to the observa-

tion that not all linkage was explained include the

presence of additional relevant but undetected genetic

variation either in APOB itself or in neighbouring genes,

the possibility that the remaining LOD score simply

constitutes a false positive signal and limitations of the

statistical method used. As to the latter, future statistical

approaches that take into account family relations when

assigning haplotypes and use complete distributions of

possible haplotypes for individuals may have higher power.

Haplotypes of positional candidates completely ex-

plained linkage with LDL-C at the APOE gene on

19q13.31. Interestingly, linkage with LDL-C at the LDLR

gene was not explained by LDLR-haplotypes. Apart from

limitations of our statistical method, it may be that genetic

variation in the LDLR gene did indeed not contribute to

the linkage result and unknown genes are involved.

Alternatively, our haplotype analysis using common SNPs

may not have been successful in capturing the relevant

genetic variation. The latter is supported by extensive data

showing that rare variants with severe or milder effects in

the LDLR gene affect LDL-C levels36 and would be

compatible with the notion that linkage is able to detect

the effects of multiple rare variants.2 The same statistical

framework may also be applied to the remaining replicated

HDL-C and LDL-C QTLs to reveal the underlying genetic

variation. In these instances, however, a positional candi-
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date approach may not suffice since the linkage regions

lack strong candidates in which case the limited current

biological knowledge may be a poor guide to select genes

for further study.

In conclusion, meta-analysis of multiple genome scans

maximises power to detect QTLs and, in addition, may

improve the precision of their location estimate. In

conjunction with combined linkage/association analysis

to test haplotypes, meta-analysis provides a powerful

approach to disentangle complex traits. Using this

approach we mapped multiple putative QTLs for lipid

levels and identified genes underlying two of them.
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