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Multivariate Genetic
Analysis

Bivariate Heritability

The genetic and environmental components of covari-
ation can be separated by a technique which is

analogous to factor analysis [8]. Just as structural
equation modeling (SEM) can be used to analyze
the components of variance influencing a single vari-
able in the case of univariate analysis, SEM can
also be used to analyze the sources and structure of
covariation underlying multiple variables [8]. When
based on genetically informative relatives such as
twins, this methodology allows researchers to esti-
mate the extent to which genetic and environmental
influences are shared in common by several traits or
are trait specific. Information not only comes from
the covariance between the variables but also from
the cross-twin cross-trait covariances. More precisely,
a larger cross-twin cross-trait correlation between
monozygotic twin pairs as compared with dizygotic
twin pairs suggests that covariance between the vari-
ables is partially due to genetic factors. A typical
starting point in bivariate and multivariate analysis is
the Cholesky decomposition. Other methods include
common and independent genetic pathway models,
as well as genetic simplex models, which will also
be discussed.

Multivariate Genetic Analysis
Cholesky Decomposition

The most commonly used multivariate technique in
the Classical Twin design (see Twin Designs) is the
Cholesky decomposition. As shown in Figure 1, the
Cholesky is a method of triangular decomposition
where the first variable (y;) is assumed to be caused
by a latent factor (sec Latent Variable) () that
can explain the variance in the remaining variables
(2, ..., yn). The second variable (y») is assumed to
be caused by a second latent factor (173) that can
explain variance in the second as well as remaining
variables (y2, . . ., y,). This pattern continues until the
final observed variable (y,) is explained by a latent
variable (n,), which is constrained from explain-
ing the variance in any of the previous observed
variables. A Cholesky decomposition is specified for
each latent source of variance A, D, C, or E, and as
in the univariate case, ACE, ADE, AE, DE, CE, and
E models are fitted to the data (see ACE Model).
The expected variance—covariance matrix in the
Cholesky decomposition is parameterized in terms of
n latent factors (where n is the number of variables).
All variables load on the first latent factor, n — |
variables load on the second factor and so on, until
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Figure 1 Multivariate Cholesky triangular decomposition,
Yi,..., ya = observed phenotypic variables, 0, = latent
factors

the final variable loads on the nth latent factor only.
Each source of phenotypic variation (i.e., A, C or D,
and E) is parameterized in the same way. Therefore,
the full factor Cholesky does not distinguish between
common factor and specific factor variance and does
not estimate a specific factor effect for any variable
except the last.

Although symptoms of fatigue and somatic dis-
tress are frequently comorbid with anxiety and
depressive disorders, a number of studies [6, 7, 14]
have demonstrated that a significant proportion of

Table 1 Phenotypic factor correlations for the fac-
tor analytic dimensions of depression, phobic anxi-
ety, and somatic distress. Male correlations appear
below the diagonal (reproduced from [3, p. 455])

Females (n = 2219)

i 2 3
1 Depression 0.64 0.52
2 Phobic anxiety 0.63 0.58
3 Somatic distress 0.54 0.58

Males (n = 1418)

patients with somatic disorders do not meet the crite-
ria for other psychological disorders. As an example
of how the Cholesky decomposition can be used
to resolve these sorts of questions, we adminis-
tered self-report measures of anxiety, depression,
and somatic distress to a community-based sam-
ple of 3469 Australian twin individuals aged 18 to
28 years. As shown in Table 1, the phenotypic cor-
relations between somatic distress, depression, and
phobic anxiety, for males and females alike, are
all high.

Table 2 Univariate model-fitting for the factor analytic dimensions of depression, phobic anxiety, and somatic distress.
The table includes standardized proportions of variance attributable to genetic and environmental effects (reproduced from

[4, p. 1056])

A C E —2LL df A=2LL Adf p
Depression
0.33 0.00 0.67 10720.59 7987
0.33 0.67 10720.59 7988 0.05 1 .82
0.24 0.76 10729.87 7988 9.28 1 b
1.00 10791.02 7989 70.44 2 ¢
Phobic Anxiety
0.37 0.03 0.59 7968.50 7979
0.41 0.59 7968.62 7980 0.11 I 74
0.30 0.70 7976.54 7980 8.04 1 b
1.00 8051.14 7981 82.64 2 ¢
Somatic Distress
0.11 0.17 0.72 9563.28 7969
0.32 0.68 95606.50 7970 322 1 07
0.25 0.75 9564.08 7970 0.79 1 .37
1.00 9624.57 7971 61.29 2 ¢

Note: A, C & E = additive genetic, shared/common environment, and nonshared environment variance.

Results based on Maximum Likelihood.
A-—-2LL = -2 log-likelihood.

p o< 0.05,

®p < 0.01,

“p < 0.001.
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The results for the univariale genetic analyses in
Table 2 reveal that an additive genetic (see Additive
Genetic Variance) and nonshared environmental
effects model best explains individual differences
in depression and phobic anxiety scores, for male
and female twins alike. The same could not be
said for somatic distress because there is insuffi-
cient power to choose between additive genetic or
shared environment effects as the source of familial
aggregation in somatic distress. This limitation can be

overcome using multivariate genetic analysis, which
has greater power to detect genetic and environ-
mental effects by making use of all the covariance
terms between variables. Moreover, it will allow us
to determine whether somatic distress is etiologi-
cally distinct from self-report measures of depression
and anxiety.

As shown in Table 3, an additive genetic and
nonshared environment (AE) model best explained
the sources of covariation between the three factors.

Table 3 Multivariate Cholesky decomposition model-fitting results. Results are based on combined male and female data
adjusted for sex differences in the prevalence of depression, phobic anxiety, and somatic distress (reproduced from [4,

p. 1056]
Model —2LL df A=2LL Adf P
A C E 26000.29 15285
A E 26003.82 15291 3.53 6 74
C E 26015.20 15291 14.91 6 a
E 26 147.97 15297 147.68 12 ¢
Note: A, C & E = additive genetic, shared/common environment, and nonshared environment variance.
Results based on Maximum Likelihood.
A—-2LL = -2 log-likelihood.
p < .05,
"p < .01,
“p < .001.
Genetic factors
0.15
0.43
(0.36-0.50) (0.05-0.23)
0.57
(0.561-0.63) 0.32
0.55 (0.25-0.38)
(0.48-0.61) 053
(0.26-0.39)
Depression Phobic anxiety Somatic distress
0.63
0.44 (0.61-0.66})
0.82
(0.78-0.86) (0-39-0.48) 0.71
(0.68-0.75)

0.39
(0.34-0.44)

0.17
(0.13-0.21)

Environmental factors

Figure 2 Path diagram showing standardized path coefficients and 95% confidence intervals for the latent genetic (A, to
Az) and environmental (E; to Es) effect (reproduced from [4] p. 1057)
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Z L] Z vl [

Figure 3 Common (a) and independent (b) genetic pathway models. 1 = common factor, yj, ...

, ¥» = observed phe-

notypic variables, Az, C: & E; = latent genetic & environmental factors, A;i_,, Coi—, & Be_, = latent genetic &

environmental residual factors

This is illustrated in Figure 2, where 33% (i.e.,
0.32%/0.43% +0.15 +0.32?) of the genetic variance
in somatic distress is due to specific gene action unre-
lated to depression or phobic anxiety. In addition,
74% of the individual environmental influence on
somatic distress is unrelated to depression and pho-
bic anxiety. These results support previous findings
that somatic symptoms are partly etiologically dis-
tinct, both genetically and environmentally from the
symptoms of anxiety and depression.

Common and Independent Genetic Pathway
Models

Alternate multivariate methods can be used to esti-
mate common factor and specific factor variance (see
Factor Analysis: Exploratory). For instance, the

common pathway model in Figure 3a assumes that
the genetic and environmental effects (A, C and E)
(see ACE Model) contribute to one or more latent
intervening variables (1), which in turn are responsi-
ble for the observed patterns of covariance between
symptoms (¥, ..., Yu).

This is in contrast to the independent pathway
model in Figure 3b, which predicts that genes and
environment have different effects on the covariance
between symptoms. Because it can be shown alge-
braically that the common pathway is nested within
the independent pathway model, the two models can
be compared using a likelihood ratio chi-squared
statistic (see Goodness of Fit).

Parker’s 25-item Parental Bonding Instrument
(PBI) [13] was designed to measure maternal and
paternal parenting along the dimensions of Care and

Table 4 Best fitting univariate models with standardized proportions of variance attributable to genetic and environmental

variance (reproduced from [5, p. 390])

PBI dimensions A C E —~2LL df

Coldness 61 - 39 5979.01 3603
Overprotection 22 .24 54 7438.84 3602
Autonomy 33 17 Sl 9216.17 3599

Note: A, C & B = additive genetic, shared/common environment, and nonshared environment variance.

Results based on Maximum Likelihood.
A-2LL = -2 log-likelihood.

“p < .05,

bp < 01,

¢p < .001.
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0.34
(0.11-0 .56)
0.37 0.29
(0.12-0.63) (0.22 - 0.36)
C
A

0.59
(0.50 - 0.70)

0.02
(0.00 - 0.13)

033 0.16

(0.00 - 0.15)

0.06 (0.25 - 0.41)(0.00 - 0.31) (0. 40 0.55)(0.00 - 0.22)

002 039

0.28

(0.20 - 0.36)
0.21

(0.02 - 0.33)

Figure 4 Common pathway genetic model (saturated) for the PBI dimensions with standardized proportions of variance and
95% confidence intervals (reproduced from 5, p. 391). AUTO = Autonomy, OVERP = Overprotection, COLD = Coldness,

Results based on Weighted Least Squares

Table 5 Comparison of the common and independent pathway models for the PBI dimensions of Autonomy, Coldness,

and Overprotection [5]

P

Model X df r AIC
Independent pathway 9.17 15 .87 —20.83
Common pathway 13.39 19 .82 —24.61

Note: Results based on Weighted Least Squares.
AIC = Akaike Information Criterion.

Overprotection [11,
the short l14-item version based on 4514 females,
aged 18 to 45, has yielded three correlated fac-
tors: Autonomy, Coldness, and Overprotection [5].
Univariate analyses of the three dimensions, which
are summarized in Table 4, reveal that variation in
parental Overprotection and Autonomy can be best
explained by additive genetic, shared, and nonshared
environmental effects, whereas the best fitting model
for Coldness includes additive genetic and nonshared
environmental effects. As is shown in Table 5, when
compared to an independent pathway model, a com-
mon pathway genetic model provided a more parsi-
monious fit to the three PBI dimensions. The common
pathway model is illustrated in Figure 4.

Genetic Simplex Modeling

When genetically informative longitudinal data are
available, a multivariate Cholesky can again be

12]. However, factor analysis of

fitted to determine the extent to which genetic and
environmental influences are shared in common by a
trait measured at different time points. However, this
approach is limited in so far as it does not take full
advantage of the time-series nature of the data, that
is, that causation is unidirectional through time [1].
One solution is to fit a simplex model, which
explicitly takes into account the longitudinal nature
of the data. As shown in Figure 5, simplex models
are autoregressive, whereby the genetic and environ-
mental latent variables at time i are causally related
to the immediately preceding latent variables (1;—).
Bta (n;) is a latent variable (i.e., A, C, E, or D)
at time i, §; is the regression of the latent factor on
the immediately preceding latent factor n;_;, and ¢;
is the new input or innovation at time 7. When using
data from MZ and DZ twin pairs, structural equa-
tions can be specified for additive genetic sources of
variation (A), common environmental (C), nonaddi-
tive genetic sources of variation such as dominance
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0.37
(0.12 - 0.63)

0.34
(0.11- 0 .56)
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Figure 4 Common pathway genetic model (saturated) for the PBI dimensions with standardized proportions of variance and
95% confidence intervals (reproduced from 5, p. 391). AUTO = Autonomy, OVERP = Overprotection, COLD = Coldness,

Results based on Weighted Least Squares

Table 5 Comparison of the common and independent pathway models for the PBI dimensions of Autonomy, Coldness,

and Overprotection [5]

Model 2 df 4 AIC
Independent pathway 9.17 15 .87 —20.83
Common pathway 13.39 19 .82 —24.61

Note: Results based on Weighted Least Squares.
AIC = Akaike Information Criterion.

Overprotection [
the short 14-item version based on 4514 females,
aged 18 to 45, has yielded three correlated fac-
tors: Autonomy, Coldness, and Overprotection [5].
Univariate analyses of the three dimensions, which
are summarized in Table 4, reveal that variation in
parental Overprotection and Autonomy can be best
explained by additive genetic, shared, and nonshared
environmental effects, whereas the best fitting model
for Coldness includes additive genetic and nonshared
environmental effects. As is shown in Table 5, when
compared to an independent pathway model, a com-
mon pathway genetic model provided a more parsi-
monious fit to the three PBI dimensions. The common
pathway model is illustrated in Figure 4.

Genetic Simplex Modeling

When genetically informative longitudinal data are
available, a multivariate Cholesky can again be

I, 12]. However, factor analysis of

fitted to determine the extent to which genetic and
environmental influences are shared in common by a
trait measured at different time points. However, this
approach is limited in so far as it does not take full
advantage of the time-series nature of the data, that
is, that causation is unidirectional through time [1].
One solution is to fit a simplex model, which
explicitly takes into account the longitudinal nature
of the data. As shown in Figure 5, simplex models
are autoregressive, whereby the genetic and environ-
mental latent variables at time { are causally related
to the immediately preceding latent variables (1,-).
Eta (1) is a latent variable (i.e., A, C, E, or D)
at time 7, §; is the regression of the latent factor on
the immediately preceding latent factor n;_;, and ¢
is the new input or innovation at time i. When using
data from MZ and DZ twin pairs, structural equa-
tions can be specified for additive genetic sources of
variation (A), common environmental (C), nonaddi-
tive genetic sources of variation such as dominance
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Figure 5 General simplex model. = regression of the
latent factor on the previous latent factor { = new input or
innovation at time i n = latent variable at time {

or epistasis (D), and unique environmental sources of
variation (E).

Because measurement error does not influence
observed variables at subsequent time points,
simplex designs therefore permit discrimination
between transient factors effecting measurement

at one time point only, and factors that are
continuously present or exert a long-term influence
throughout the time series [1, 9]. Although denoted
as error variance, the error parameters will also
include variance attributable to short-term nonshared
environmental effects.

We have used this model-fitting approach to inves-
tigate the stability and magnitude of genetic and
environmental effects underlying major dimensions
of adolescent personality across time [2]. The junior
eysenck personality questionnaire (JEPQ) was admin-
istered to over 540 twin pairs at ages 12, 14, and
I6years. Results for JEPQ Neuroticism are pre-
sented here.

The additive genetic factor correlations based on a
Cholesky decomposition are shown in Table 6. These
reveal that the latent additive genetic factors are
highly correlated. This is consistent with a pleiotropic
model of gene action, whereby the same genes
explain variation across different time points. As
shown in Table 7, the fit of the ACE simplex models

Table 6 Additive genetic (above diagonal) and nonshared environmental latent factor correlations for JEPQ Neuroticism

(reproduced from [2])

Females Males
1 2 3 1 2 3
1 12 years 0.76 0.68 0.86 0.79
2 14 years 0.40 0.94 0.24 0.74
3 16 years 0.36 0.41 0.12 0.53

Table 7 Multivariate model-fitting results for JEPQ Neuroticism based on twins aged 12, 14, and 16years (reproduced

from [2])
Neuroticism
Females Males
—2LL df A2LL Adf P —2LL df A2LI Adf P
Cholesky
ACE 10424.88 1803 10016.48 1753
Simplex
ACE 10424.95 1805 0.07 2 96 10016.88 1755 0.40 2 .82
AE 10425.34 1810 0.39 5 1.00 10021.26 1760 4.38 5 .50
Drop &q3 10426.57 1811 1.23 1 27 10058.59 1761 37.32 i ¢
CE 10432.45 1810 7.50 5 .19 10032.32 1760 15.44 5 b
E 10 663.09 1815 238.14 10 g 10650.99 1765 634.11 10 ¢

Note: Results based on Maximum Likelihood.
L = Genetic innovation at time 3.
Best fitting models in bold.
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Female neuroticism

4.61

Male neuroticism

1 1 1
0.62 0.95
el al Pl
§e1 4—82 §68
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Figure 6 Best fitting genetic simplex model for female and male Neuroticism (reproduced from [2]). Nj;_ 16 = Neuroticism
12 to 16 yrs, A3, E|_3 = additive genetic & nonshared environmental effects, ,i_3, ¢.1-3 = additive genetic innovations
& nonshared environmental innovations, &3 = error parameters 12 to 16 yrs double/single headed arrows = variance

components/path coefficients

provided a better explanation of the Neuroticism
time-series data, in so for as the fit was no worse
than the corresponding Cholesky decompositions.
The final best-fitting AE simplex models for male
and female Neuroticism are shown in Figure 6.

It is difficult to imagine that genetic variation in
personality is completely determined by age 12. As
shown in Figure 6, smaller genetic innovations are
observed for male Neuroticism at 14 and 16, as well
as female Neuroticism at 14. These smaller genetic
innovations potentially hint at age-specific genetic
effects related to developmental or hormonal changes
during puberty and psychosexual development.

When data are limited to three time points, a
common genetic factor model will also provide a
comparable fit when compared to the genetic simplex
model. Other possible modeling strategies include
biometric growth models (see [10]). Despite these
limitations, time-series data even when based on
three time points still provides an opportunity to test
explicit hypotheses of genetic continuity. Moreover,
the same data are ideal for fitting univariate and
multivariate linkage models to detect quantitative trait
Toci of significant effect.

The above sections have provided an introduction
to bivariate and multivariate analyses and how these

methods can be used to estimate the genetic and envi-
ronmental covariance between phenotypic measures.
This should give the reader an appreciation for the
flexibility of SEM approaches to address more com-
plicated questions beyond univariate decompositions.
For a more detailed treatment of this subject, see [9].
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Multivariate Kurtosis see
Multivariate Normality Tests

Multivariate Multiple
Regression

The multivariate linear model is used to explain and
to analyze the relationship between one or more
explanatory variables and p > | quantitative depen-
dent or response variables that have been observed
at n subjects. In case all the explanatory variables
are qualitative, the multivariate linear model is called

the Multivariate Analysis of Variance (MANOVA)
model. When all the explanatory variables are quan-
titative, that is a multivariate system of quantitative
variables is given in which the relationships between
p dependent quantitative variables and, say g, inde-
pendent quantitative are of interest, then the model is
referred to as a multivariate regression model. Mullti-
variate regression analysis is used to investigate the
relationships when the p dependent variables are cor-
related. In contrast, when the dependent variables
are uncorrelated, relationships can be assessed by
carrying out p univariate regression analyses (see
Regression Models). Often, there is an implied pre-
dictive aim in the investigation, and the formulation
of appropriate and parsimonious relationships among
the variables is a necessary prerequisite.

Consider the small example given in [2]. The
data in Table 1 show the four measurements: chest
circumference (CC), midupper arm circumference
(MUAC), height and age (in months) for a sample
on nine girls. One practical objective would be to
develop a predictive model for CC and MUAC from
knowledge of height and age.

The dependent variables CC and MUAC are
highly correlated with each other and Pearson’s cor-
relation coefficient is 0.77, so they should be incor-
porated in a single multivariate regression model for
maximum efficiency as multiple regression analyses
for each variable separately will ignore this cor-
relation in the construction of hypothesis tests or
confidence intervals.

Let y;; denote the CC of the ith girl, y;» the
MUAC, x;the height, and x;; the age; then, the
univariate regression models for each variable are

yit = Por + Buxi + Parxio + ey,
i=1,...,n=09, (H
and
yi2 = Poz + Biaxit + PBaxiz + ez,
i=1,. ..n=9 )

In the multivariate case, the observations y;; and
yiz are put in a row vector so that the model has the
form

Bor Poz
(yir yi2)=(1 xp xi2)| Bu P
B2 Bn

+ (e en), i=1,....,.n=9. 3)



