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Allelic Effects with MX: Association of ADH2
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A universal problem in genetic association studies is to distinguish associations due to genuine
effects of the locus under investigation, or linkage disequilibrium with a nearby locus that has a
genuine effect, from associations due to population stratification or other artifacts. Fulker et al.
(1999) have suggested a test using unselected sib pairs to distinguish these two causes of asso-
ciation. The test is readily implemented within a standard maximum-likelihood framework using
the MX package. The approach is applied to data on ADH2 genotypes and a measure of alcohol
consumption from an Australian DZ twin pair sample. Results indicate that the association of the
ADH2*2 allele with lower alcohol consumption cannot be explained by simple admixture and
that there may be genuine allelic effects of the locus on alcohol consumption. Power calculations
are provided to show that these results are plausible for the sample size in this study and con-
sider the effects of genetic architecture and sample structure on required sample sizes for the
Fulker et al. test.

INTRODUCTION

Linkage and Association

In order to detect and locate genes affecting a pheno-
type, two broad strategies are commonly employed, link-
age and association. Both strategies depend on having a
linkage map, usually of phenotypically neutral markers,
and both exploit the cosegregation of linked genes. Link-
age analysis (Elston, 1998) relies on the fact that rela-
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tively widely spaced markers will be cotransmitted
within a few generations. Suitable samples for linkage
analysis therefore range from pairs of relatives to pedi-
grees containing several generations. Linkage analysis
requires relatively few markers to conduct a genome scan
for quantitative trait loci (QTL); 200-400 are usually
considered sufficient in the case of humans. The main
disadvantages of linkage analysis are that it yields im-
precise location information and that, in certain circum-
stances, it has substantially less statistical power than
tests of association.

The association study relies upon a within popu-
lation association between the alleles at a specific locus
and the phenotype under study. Only very closely linked
genes may be expected to cosegregate in populations
(i.e., be in linkage disequilibrium with the locus), so the
location information is very precise. Widely spaced loci,
such as those used in linkage studies, would be ex-
pected to be in linkage equilibrium with a QTL in most
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populations and would therefore show no population
association. Closely linked genes, perhaps less than a
centimorgan (cM) apart, may be in disequilibrium and
may show population associations over a large number
of generations (Lander and Botstein, 1989; Risch and
Merikangas, 1996; Sham, 1997). We define an "allelic
effect" as a direct effect of allele substitution on the
expected value of a phenotype, which is of most inter-
est in the search for trait-relevant loci in the genome.

The statistical detection of association is relatively
straightforward; at its simplest level it involves look-
ing at mean differences in phenotype between groups
with different marker alleles. In general, statistical tests
based on means are more powerful than those based on
higher-order moments such as covariances (Cohen,
1969), so tests of association are usually more power-
ful than tests of linkage. In the simplest possible case,
where a marker happens to be a polymorphism within
a functional gene, association analysis is simply clas-
sical Mendelian analysis, although candidate genes may
also be assessed through the methods of within-family
linkage. A major drawback to association testing is that
thousands of markers are needed to conduct a genome
scan. This in turn causes the problem of high type I
error rates (Risch and Teng, 1998). Currently, associ-
ation analysis is popular for the purposes of examining
candidate loci, for which type I error rates are more
easily controlled.

Risch and Merikangas (1996) compared the statis-
tical properties of linkage and association mapping. Both
continuous and discrete traits were considered for random
samples of sib pairs in a linkage study and case-control
samples in an association study. They concluded that,
given a suitably dense marker map, association mapping
would be the preferred procedure for detecting QTLs in
genome scans.

Despite its lower statistical power, linkage analysis
does have the advantage that positive results are unlikely
to arise from artifacts other than type I error. In contrast,
association may appear in a population for many reasons
other than a genuine effect of the locus itself or one very
closely linked to it. For example, population associations
among genes will occur after recent admixture of two or
more subpopulations. Indeed, initially, when two popu-
lations are considered as one, genes on different chro-
mosomes may be associated due to strong disequilib-
rium. Only after many generations of random mating
within and between the subpopulations will loosely
linked genes come into Hardy-Weinberg equilibrium
and appear unassociated, leaving only closely linked loci
in disequilibrium (Sham, 1997). Furthermore, when both

phenotype and genotype frequencies differ between sub-
populations, a genotype-phenotype association will
occur even if there is no effect of genotype on pheno-
type whatsoever, i.e., a heritability of zero.

The ideal situation for association mapping is
where a single mutant allele predisposing to disease
arises in an isolated population and is subjected to many
generations of random mating. Under this model, only
very closely linked markers will remain associated with
the disease gene and detection and location may be
powerful and accurate. For such populations and traits,
classical genetic analysis is straightforward if individ-
uals can be unambiguously genotyped. The mean ef-
fect of a genotype on a trait can be measured in a pop-
ulation and its contribution to disease liability may be
readily assessed.

In the case of complex traits which may be influ-
enced by many genes, the causes of disequilibrium may
include population admixture and interfamilial hetero-
geneity. One way to address problems of this sort is to
consider association within families. The haplotype rel-
ative risk (HRR), transmission disequilibrium (TDT),
and sib TDT are examples of tests that statistically con-
trol for population stratification by measuring the prob-
ability that an allele is transmitted from a parent to an
affected offspring (Allison, 1997; Ewens and Spielman,
1998; Spielman and Ewens, 1996). Allison's test in-
volves continuous phenotypes but requires genotypic in-
formation from the parents. Fulker et al. (1999) de-
scribed a combined linkage and association test for
quantitative traits that does not require data from par-
ents. In this paper we describe the implementation of this
test using MX software (Neale, 1997) and illustrate it
with data on alcohol dehydrogenase genotypes (ADH2)
and alcohol consumption.

METHODS

Likelihood Method

The likelihood method (Edwards, 1972; Fisher,
1925) has a number of statistical advantages. Parame-
ter estimates are asymptotically unbiased and have the
minimum variance of all such estimates. Confidence
intervals may be obtained on parameter estimates by
examining the change in likelihood as a parameter is
varied from its maximum-likelihood estimate, a pro-
cedure which is automated in the MX program (Neale
and Miller, 1997). Similarly, the difference in support
between a model and a submodel may be assessed
using a likelihood-ratio test. In general, denoting the
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log-likelihood maximized with respect to a vector 0 of
t parameters by lnL1 and the log-likelihood with a sub-
set of j < t parameters fixed at hypothesized values by
lnL0, the statistic

is asympotically distributed as x2 with j degrees of
freedom.

Likelihood methods demand a parametric model for
the data. The usual assumption for random variables is
that the data are sampled from a multivariate normal dis-
tribution. Any large allelic effect will disrupt such nor-
mality. Therefore, we seek a method which is multi-
variate normal conditional on the particular alleles that
an individual has at the locus in question. In addition,
other covariates may be included that further improve
the multivariate normality of the conditional distribution.
This much weaker assumption of conditional normality
(normality of the residual variation given the genotype
and covariates) is more likely to be satisfied in practice.

The log-likelihood of a column vector of sib-pair
trait scores, x = (x1 x2)', may be written

where Ei is the predicted covariance matrix of sib pair
i, |Zi| is the determinant of Ei, the prime denotes trans-
pose, and C is a constant term. The predicted mean vec-
tor of the sib pair, ui = (ui1, ui1)', is a function of the
following parameters: the population mean m, the pair
mean si the pair difference di, and the regression
weights B of the phenotypes on a vector of covariates
kij measured on sibling j in pair i.

It is especially important to recognize that the predicted
pair means and differences, si and di, depend on the ob-
served genotypes of the specific pair in question. Also,
the pair mean will be a function of observed covariates
kij. Any model of Ei will be of residual variation not
accounted for by the measured genotype and the co-
variates. We now consider models for si, di and Zi.

Allelic Effects

The theory behind the joint linkage and associa-
tion test is described in detail by Fulker et al. (1999).
Here we restate the principles in brief. Consider an ad-
ditive QTL with alleles A1 and A2, which occur at fre-
quencies p and q. Let the effects of the three genotypes
A2A2, A1A2, and A1A1 be -a, 0, and a, respectively.
Under this model the nine possible combinations of
sibling pair genotypes have the pair means and pair
differences shown in Table I. Their predicted fre-
quencies in a random mating population are also shown
in Table I.

Test of Association

To test for association it is necessary to examine
whether the means of siblings vary as a function of their
genotype at a candidate locus. This test is prone to spu-
rious associations due to population stratification. How-
ever, family members such as full sib pairs originate
from the same stratum of the population; in terms of

Table I. Expected Sib-Pair Means and Differences and Their Frequencies for a Single Additive
Two-Allele Locus

Genotype

Sib 1

A1A1

A1A1

A1A1

A1A2

A1A2

A1A2

A2A2

A2A2

A2A2

Sib 2

A1A1

A1A2

A2A2

A1A1

A1A2

A2A2

A1A1

A1A2

A2A2

Additive effects

Sib 1

a
a
a
0
0
0

-a
—a
—a

Sib 2

a
0

-a
a
0

—a
a
0

-a

Mean Difference/2 Frequency

a
a/2
0
a/2
0

-a/2
0

-a/2
—a

0
a/2
a

-a/2
0
a/2

—a
-a/2

0

p4 + p3q + (p2q2/4)
P3q + (p2q2/2)
P2q2/4
p3q + (p2q2/2)
P3q + 3p2q2 + pq3

(p2q2/2)+pq3

p2q2/4
(p2q2/2) + pq3

(p2q2/4)+pq2 + q4
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the classical twin study, population stratification acts
like a shared environmental factor. With data from rel-
atives such as sib pairs, the allelic effect a may be par-
titioned into effects between families, ab, and effects
within families, aw (Mather and Jinks, 1982). The be-
tween-family component ab affects only pair means,
while the within-family component aw affects only in-
trapair differences. For a pair of sibs with pair mean s
and pair difference d, the predicted means of the sibs
are simply u1 = s + (d/2) for Sib 1 and u2 = s - (d/2)
for Sib 2. The pair means, pair differences, and means
for Sib 1 and Sib 2 for each of the nine possible com-
binations of sib pair genotypes are listed in Table II.

Any genuine allelic effect will contribute to both
within- and between-pair components, and to the same
extent. Thus a test for stratification is to compute T be-
tween the model with separate free parameters ab and
aw and the model with ab = aw.

A robust test for association may be obtained by
computing T between a model with aw free and a model
with aw set to 0, while ab is free in both models. This
test is free of the effects of population stratification. An
MX script that fits this model is given in Appendix 1.

An alternative test is obtained by relaxing the con-
straints on pair means in Table II, so that there are five
distinct ab deviations relative to the A2A2,A2A2 pair
mean, as shown in Table III. The statistical test for a
single value of ab has 5 degrees of freedom, compar-
ing the fit of the model with a1 to a5 free with the fit
of one in which all five deviations are fixed to zero.
While theoretically having lower power,7 the advan-
tage of this test over the more restrictive equal ab test

is that nonadditive allelic interactions (dominance) are
not assumed to be absent.

Technically, the robust tests of association pre-
sented here are tests of association and linkage, because
they require linkage disequilibrium between the locus
being tested and the disease locus. The test detects
8(1 - 20), where 8 is the disequilibrium coefficient and
0 is the recombination fraction. If 8 = 0 is zero, there is
no association and no effect will be detected. Similarly,
if 0 = .5 there is no linkage and no effect will be de-
tected. Essentially, 0 < .5 and 8 > 0 are tested simulta-
neously. This in contrast to nonrobust tests such as those
conducted with unrelated individuals, which are subject
to the effects of population stratification and which may
detect association in the absence of linkage.

Test of Linkage via Identical by Descent (IBD) Status

It is possible to test for what we term "IBD link-
age" via measured probabilities that relatives share zero,
one, or two, alleles IBD at a putative disease locus. In
the model described above, Ei is the covariance matrix
of sib pair i, which, for a test of IBD linkage, may be
parameterized as

where s2 is the estimated variance of a QTL detected
via IBD linkage, s2 is an additional component of vari-
ance contributing to sibling resemblance over and
above that which is due to the QTL, and a2 is nonshared

7 Except for the biologically unusual case of extreme overdominance
(Georges and Cockett, 1996).

Table II. Partitioning the Additive Effect of a Locus into Between (ab)-
and Within (aw)-Pair Components

Genotype

Sib1l

A1A1

A1A1

A1A1

A1A2

A1A2

A1A2

A2A2

A2A2

A2A2

Sib 2

A1A1

A1A2

A2A2

A1A1

A1A2

A2A2

A1A1

A1A2

A2A2

Contribution of locus

Mean

ab

ab/2
0

ab/2
0

-ab/2
0

-ab/2
-ab

Difference/2

0
aw/2
aw

-aw/2
0

aw/2
-aw

-aw/2
0

Predicted mean

Sib 1

ab

(ab/2) + (aw/2)
aw

(ab/2) - (aw/2)
0

(-ab/2) + (aw/2)
-aw

(-ab/2)-(aw/2)
-ab

Sib 2

ab

(ab/2) - (aw/2)
-aw

(ab/2) + (aw/2)
0

(-ab/2) - (aw/2)
aw

(-ab/2) + (aw/2)
-ab
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Table III. Partitioning Additive Effect into Between- and
Within-Pair Components: Saturated Between-Pair Component

Genotype

Sib 1

A1A1

A1A1

A1A1

A1A2

A1A2

A1A2

A2A2

A2A2

A2A2

Sib 2

A1A1

A1A2

A2A2

A1A1

A1A2

A1A2

A1A1

A1A2

A2A2

Mean Difference/2 Sib 1 Sib 2

a1
a2

a3

a2

a4

a5

a3

a5

0

0
aw/2
aw

-aw/2
0

(aw /2)
- aw

-aw/2
0

a1
a2 + (aw /2)

a3 + aw

a2 - (aw /2)
a4

a5 + (aw/2)
a3 - aw

a5 - (aw /2)
0

a1

a2 - (aw/2)
a 3-aw

a2 + (aw/2)
a4

a5 - (aw /2)
a3 + aw

a5 + (aw /2)
0

genetic and environmental variance contributing to sib-
ling differences. The pi, are the estimated proportions of
alleles shared identical by descent (IBD) by sib pair i,
which may be computed using software such as Map-
maker/Sibs or Genehunter2 (Kruglyak and Lander,
1995). Again, it is important to note that the predicted
covariance matrix may be different for each pair of sib-
lings in the sample. This test is known as the variance
component test of linkage (Amos, 1994; Elston, 1998).

A test of IBD linkage is given by computing T be-
tween a model with s2 free and one where s2 = 0. How-
ever, if the variance component s2 has a lower bound
of zero, the test statistic is asymptotically distributed
as a 50:50 mixture of x2 of 0 and x2 with 1 degree of
freedom. This provides a test of linkage between the
putative QTL and the trait. Its distribution is a mixture
because if there is no QTL effect the similarity of IBD
2 pairs has a 50% chance of being less than that of the
IBD 0 pairs.

The key aspect of both the ft and the mixture tests
of IBD linkage is that they do not depend on linkage
disequilibrium between the marker and the disease
locus. They only require that the recombination fraction
0 is less than one-half.

Joint Test of IBD Linkage and Association

Finally, we note that it is possible to conduct the
IBD linkage and the within-family association tests si-
multaneously. However, in the application reported
here, we focus on the association component and sim-
ply parameterize the sibling covariance matrix with a
lower triangular decomposition:

which does not vary between pairs. Since the test of
phenotypic mean differences between genotypes is two-
tailed (i.e., differences in any direction are relevant),
the difference between twice log-likelihoods is not a
mixture distribution but can be interpreted directly as
a x2 statistic. By omitting this component the test fo-
cuses on association due to linkage disequilibrium and
does not include the effects of cotransmitted loci that
are not in linkage disequilibrium.

APPLICATION TO ALCOHOL CONSUMPTION
AND ADH2

Alcohol Consumption and ADH2

The biochemical and molecular basis of the poly-
morphism at the alcohol dehydrogenase 2 (ADH2) locus
is relatively well characterized. The enzymes encoded
by the ADH2 *1 and the ADH2 *2 alleles differ by a sin-
gle amino acid (Hurley et al., 1994). These two en-
zymes differ in the rate at which they catalyze the
breakdown of alcohol into acetaldehyde (Yin et al.,
1984), with ADH2*2 acting more rapidly. There are
striking ethnic differences in the frequency of the
ADH2 *2 allele; for example, in Europeans the ADH2 *2
allele is about .05, compared to approximately .60 in
Asians (Goedde et al., 1992). Alcohol dehydrogenase
carries out the first step in the metabolic pathway of al-
cohol. The second step is carried out by the enzyme
aldehyde dehydrogenase, ALDH2, which is associated
with the flushing response to alcohol, which is also rel-
atively frequent in Asian populations. Only variation
in ADH2 is considered here.

A number of studies have reported associations
between alleles at the ADH2 locus and alcohol con-
sumption or dependence (Higuchi et al., 1994; Maezawa
et al., 1995; Nakamura et al., Matsuo et al., 1995; Neu-
mark et al., 1998; Thomasson et al., 1991; Whitfield,
1997; Whitfield et al., 1998). In both Asians and Euro-
peans, an increased ADH2*2 allele copy number is as-
sociated with lower alcohol intake and dependency.
While the effect of the ADH2 locus on the enzyme ac-
tivity is most likely causal, this association between al-
cohol consumption and the ADH2 genotype is not well
understood. It could be a genuine allelic effect of the
ADH2 locus, or linkage disequilibrium with a nearby
locus, or it might be due to population stratification.

Most present-day populations contain some racial
admixture. Given the differences in allele frequency be-
tween populations, there is a prima facie case for con-
trolling for the effects of population stratification when
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examining ADH2 and alcohol consumption. Even in
samples consisting of, e.g., Caucasians only, admixture
should still be controlled because population stratifica-
tion could arise from other sources. Therefore, data on
alcohol consumption and ADH2 genotypes are ideal to
illustrate the use of MX to partition population stratifi-
cation effects from those of allelic effects or linkage
disequilibrium. This is especially important given the
previous findings of Whitfield et al. (1998), using a sub-
set of the data used here, that showed an intrapair but
not a between-pair effect of ADH2*2 reducing alcohol
consumption.

Subjects and Methods

The ADH2 polymorphism was typed using the
methods of Xu et al. (1988), in Australian dizygotic
(DZ) twins who took part in the Alcohol Challenge
Twin Survey (ACTS) of 1979-1981 (Martin et al.,
1985). The twins were adult volunteers but no other in-
clusionary or exclusionary criteria were applied. In
total, the ACTS study had 118 DZ pairs comprising 37
male, 42 female, and 39 of opposite sex. Subjects were
followed up in 1990-1992 and DNA samples were ob-
tained from 77 of the DZ pairs who completed a ques-
tionnaire on alcohol consumption. At that time their av-
erage age was 34 years (range, 29-45 years). Seven of
the 77 pairs were discordant for ADH2 genotype, one
being ADH2*11 and the other ADH2*12. There were
also 3 pairs concordant for ADH2*12 and the remain-
ing 67 pairs were both ADH2*11. In addition to these
pairs there were 20 on whom data on alcohol con-
sumption or genotype were missing for one member of
the pair. These data were included in the analysis to
help reduce selection biases (Little and Rubin, 1987;
Neale and Eaves, 1993).

Alcohol consumption was estimated as the product
of the weekly frequency of drinking and the number of
drinks on each occasion and is log transformed [log(x +
1)] for analysis [variable FC-2 of Whitfield et al. (1998)].
A plot of the data for ADH2*11 and ADH2*12 individ-
uals is shown in Fig. 1. Visual inspection indicates a rel-
atively normal-shaped unimodal distribution for both
ADH2*11 andADH2*12 groups, with a somewhat lower
mean for the ADH2*12 group.

Basic summary statistics for subjects with the two
genotypes are shown in Table IV. They confirm the im-
pressions gleaned from visual inspection of the data
and indicate little skewness or kurtosis for the trans-
formed alcohol consumption measure.

Fig. 1. Plot of total alcohol consumption [log1 0(x + 1), where x is
number of drinks per week] of subjects with ADH2*12 (cases 1-14)
and ADH2*11 (cases 15-174) genotypes.

Statistical Model

Since DZ cotwins share, on average, 50% of their
genes and some environmental factors, they cannot be
considered statistically independent observations. A
convenient way to take into account this dependence is
by maximum-likelihood estimation using the program
MX (Neale, 1997). The raw observations of phenotypes,
together with the covariate sex and ADH2 genotype,
are analyzed jointly. Parameters that influence the
means are estimated simultaneously with parameters
that predict the covariance matrix of the twins' alcohol
consumption scores. In principle, we could estimate the
probability that siblings share zero, one, or two alleles
IBD at the ADH2 locus by using the ADH2 genotypes
and other available flanking markers and using the joint
test described above. However, because our focus is
genetic association, here we make no attempt to model
the IBD linkage component of the covariance matrix.

Results

We begin by fitting a six-parameter model involv-
ing three parameters for the 2 x 2 symmetric covariance

Table IV. Basic Summary Statistics for Alcohol Consumption of
Subjects with ADH2*11 or ADH2*12 Genotypes

Genotype

ADH2*11
ADH2*12

N

160
14

Mean

.832

.581

SD

.378

.301

Skewness

.139

.266

Kurtosis

.421
-.394
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matrix E, a constant term (which is the expected value
for females who are ADH2*11), a sex effect (the male
deviation), and a deviation for the ADH2*2 allele. Re-
sults of fitting this model (Model 1) and two submodels
(Models 2 and 3) are listed in Table V. Twice the dif-
ference in log-likelihood between a model in which a
parameter is allowed to vary and one in which it is fixed
as zero is given as T, which can be used to assess sta-
tistical significance. The fifth column in Table V shows
T for various pairs of models. Comparing Models 1 and
2, the sex deviation appears highly significant (T1 =
11.53). Parameter estimates reveal that males have a con-
sumption score about 0.198 log unit (1.6 drinks per
week) higher than that of females. The allelic deviation
parameter estimate is also highly significant; Model
3 shows a substantial loss of fit compared to Model 1
(T1 = 8.38, p = 0.006). The direction of the effect is such
that the ADH2 *2 allele is associated with a decrease
in alcohol consumption of 0.314 log unit (i.e., about
2 drinks per week).

To assess the relative impact of stratification and
association, the model was parameterized to estimate the
allelic deviations corresponding to ab and aw in place of
a single deviation (Table V). The maximum-likelihood
parameter estimates under this model (Model 4) were
ab = 0.237 and aw = 0.315, respectively. To test whether
the allelic deviations were due to population stratifica-
tion, the parameter aw was fixed at zero (Model 5). Doing
so led to a significant loss of fit (T1 = 4.59, p = .032),
which suggests that there is a genuine association be-
tween ADH2 polymorphism and alcohol intake or con-
sumption, which is not entirely explained by population
stratification.

For a more robust test of association, the con-
straints on twin pair family means were relaxed and the
means of each genotypically distinct type of family pair
were estimated as five parameters (Model 6). This
model fits only very slightly better than Model 4, which
indicates that the hypothesis of only additive effects of
the locus is not rejected by the data. The significant in-
crease in the x2 value (Model 7) when aw was dropped
from this model (x2 = 4.61, p = .032) was almost ex-
actly the same as when additivity was assumed. Both
results imply that the association between ADH2 poly-
morphism and alcohol intake or consumption is not due
entirely to population stratification. The association
could be due either to an allelic effect of the locus on
alcohol consumption, or to linkage disequilibrium be-
tween the ADH2 polymorphism and a closely linked
functional variant of significant effect.

Power calculations for this study and for a variety
of types of genetic architecture are given in Appendix 2.
These power calculations reveal a number of interesting
features about the power of this method and, in general,
indicate that the results found here are plausible for a
data set of this size and the relative infrequency of the
ADH2*2 allele.

DISCUSSION

The joint test of linkage and association suggested
by Fulker et al. (1999) is a valuable addition to the sta-
tistical tools for the analysis of complex traits. Separa-
tion of the effects of simple association and linkage into
within- and between-sib pair components provides
methods analogous to the sib pair TDT test used for

Table V. Results of Modeling Allelic Effects at the ADH2 Locus on Alcohol Consumption
in 77 DZ Twin Pairs and 20 DZ Twin Pairs with Missing Alcohol Data in Terms of Either

Global Allelic Deviations or Between- and Within-Pair Allelic Effects (ab, aw)

Model

1
2
3

4
5
6
7

Description

Global deviation
Drop sex deviation
Drop allelic deviation

Full (ab + aw

Drop aw

Redefine ab as 5 deviations
Drop aw

-2LL

135.40
146.93
143.76

135.15
139.74
133.99
138.60

df

944
945
945

943
944
939
938

Ta

11.53
8.36

—
4.59
1.16b

4.61

df vs

—
1
1

—
1
4
1

Model

1
1

—
4
4
6

a The likelihood-ratio x2 statistic for the comparison between models.
* The difference statistic is computed as Model 4 x2 - Model 6 x2, as Model 6 has more

parameters.
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qualitative traits (Spielman and Ewens, 1996; Ewens
and Spielman, 1998). This development is especially
valuable because tests based on continuous variables are
generally more powerful than those based on ordinal or
binary measures. Many major public health problems
such as depression, substance abuse, and cardiovascu-
lar disease can be assessed with continuous variables
that index liability. These index variables would prove
highly suitable for this type of analysis (Neale, 1999).

Modeling sibling pair resemblance as a function of
P, as in Eq. (5), is a simple approach which can be gen-
eralized to larger sibships very easily. This method can
be extended to other types of relative such as avuncu-
lar or cousin pairs, identical twins, more distant rela-
tives, or adoptees, but there are limitations. In reality,
sibling pairs consist of three distinct types of pair ac-
cording to whether they share zero, one, or two alleles
IBD at the locus of interest. A finite mixture distribu-
tion model (Everitt, 1981; Neale, 1999) is more appro-
priate for this situation. This theoretically superior ap-
proach has the disadvantage that it is computationally
intensive for large sibships.

A fundamental assumption of the method used here
is that the data are multivariate normal, conditional on
the genotypes of the sib pairs and on any covariates.
Statistical tests based on means are often robust to vi-
olations of normality, whereas tests on variances are less
so (Box, 1953). Therefore we would expect violations
of conditional normality to be have less impact on type
I error rates for tests of association than for tests of IBD
linkage or for the joint test. Allison et al. (1999) inves-
tigated the robustness of variance-components tests of
IBD linkage quite thoroughly and found that it is robust
to some types of nonnormality and not to others. Kur-
tosis may have more adverse effects than skewness, so
simple visual inspection may not be sufficient when IBD
linkage or joint tests are being conducted.

Implementation of the Fulker et al. method in the
MX (Neale, 1997) statistical modeling package has sev-
eral advantages. First, the program is freely available
on the Internet, (http://views.vcu.edu/mx). Second, no
programming is required of the user because the script
language is relatively straightforward and is well
known to many users in the fields of genetic epidemi-
ology and structural equation modeling. Third, the pro-
gram is flexible enough to allow for the joint model-
ing of the effects of covariates, such as age and sex. In
the example used here, the effect of age was not sig-
nificant and was therefore not included in the final
model. Modeling of simple covariates such as age is
merely a starting point for more complex and poten-

tially more powerful multivariate analyses. In many do-
mains it may be prudent to attempt to find association
between allelic variants at a candidate locus and the best
theoretical measure of liability as assessed by multiple
traits. In this case, modeling allelic effects on the means
of a latent factor would be appropriate. The structural
equation modeling features of MX make it ideal for
extensions of this type.

The treatment of association used here involves a
diallelic locus, which is a limitation because most loci
exhibit more than two variants. In some cases it may
be possible to recode alleles into two classes so that the
two allele method can be used. Other cases will require
more complex modeling of within pair differences and
may yield problems with multiple testing or small sam-
ple sizes of genotypes. Occasionally, the investigator
may be able to organize the polymorphisms at a locus,
e.g., by number of CAG repeats. Zhu et al. (1999) used
this approach in a test of association between the length
of the D9S942 polymorphism and a measure of total
body mole count. Size ordering would lend itself to
dichotomizing alleles into two categories but would
typically incur loss of statistical power. A more gen-
eral treatment for the multiple allele case is under de-
velopment.

APPENDIX 1: MX SCRIPT FOR SIMULATED
DATA

The main idea behind the model is that sibling
means are to be modeled as a function of the pair mean
parameter ab and the pair difference parameter aw. The
particular function of these parameters differs according
to the type of the twin pair (A1 A1,A1A1; A1A1, A1A2, etc.)
A preparatory step in the analysis is therefore to classify
the sibling pairs into the nine possible types shown in
Table II. These types form one of three variables in the
raw data file, which has the following structure:

Alci Alc2 Type
2.32 1.45 2

-1.50 0.76 8
1.27 1.98 5
etc.

The Type variable will be used to compute the pre-
dicted mean of the sibling pair; it is not going to be an-
alyzed as an observed variable. The definition state-
ment in the script accomplishes this step. It is then
necessary to set up matrices containing the coefficients
of the ab and aw parameters for the nine sibling types.
These are set in Matrices V and X. The matrix product
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[V|X]W yields a 9 x 1 vector of the predicted means
for Sibling 1, and [V: -X]W yields the corresponding
vector for Sibling 2. Concatenating these matrices hor-
izontally yields a 9 x 2 matrix of predicted means for
both siblings, with the mean vector for a sibling pair
of type i in row i of this matrix. Planting the Type vari-
able in matrix I and forming the matrix E containing
[i1i2], we can use the \part function in MX to obtain
the appropriate submatrix of predicted means for the
sibling-pair type in question.

The example in this paper focuses on the model-
ing of the means of the sibling pairs and leaves the co-
variances to be estimated freely. Maximum-likelihood
estimation is more robust if the predicted covariance
matrix is constrained to be positive definite, so we pa-
rameterize the covariance matrix with a lower triangu-
lar decomposition E = A * A'.

! MX script for association test in the presence of possible
! stratification.
! Comments begin with !

#ngroups 1

! Begin the job and data group

Simulated data, real allele effect
Data NInput=3 ! 3 input variables
Rectangular File=realpub2.rec ! read data from file
Labels p1 p2 type

! type is coded: 1: AAAA 2: AAAa 3: AAaa
! 4:AaAA 5: AaAa 6: Aaaa
! 7: aaAA 8: aaAa 9: aaaa

Definition_variables type;
! only p1 and p2 will be analyzed, type defines the model

Begin Matrices;

A Lower 2 2 Free ! Residual Covariance, Cholesky

Begin Algebra;

E = I|J|I|K; ! to select row of V|X
Z = \part((V|X),E)*W | \part((V|-X),E)*W;

! selects row of V|X and V|-X

End Algebra;

Means (N|N) + Z; ! Grand mean in N plus deviations in Z

Covariance A*A';

Option nd = 4 ! request 4 decimal places in output
Option RS Multiple ! request residuals, multiple fit
Option issat ! this is saturated model for submodel comparison

End

Save simrealpub.mxs
Drop w 1 2 1 ! fit model without a_b

End

Drop w1 1 1 ! fit model without a_b and without a_w

End

Free w 1 2 1 ! fit model with only a_b

End

The MX script that fits the model of age and sex
effects to ADH2 data is somewhat more complicated
due to the additional definition variables and matrices
with free parameters used to model the age and geno-
type effects. A script for this model is available at the
MX website: http://views.vcu.edu/mx.

APPENDIX 2: POWER CALCULATIONS FOR
THE FULKER METHOD

The power of the association test is quite striking,
compared to tests of IBD linkage or for heritability,
both of which involve second-order statistics. Here we
consider a few simple cases to illustrate the power of
the method. Let the frequencies of allele A1 be p and
of allele A2 be q. Under Hardy-Weinberg equilibrium
(i.e., assuming assortative mating, migration, mutation,
and selection to be absent), the contribution of additive
effects of this locus to the variance is

and the contribution of dominance effects is

where a is half the distance between the homozygote
means and d is the deviation of the heterozygote mean
from the midpoint of the homozygotes (Mather and

End Matrices;

Matrix A 1 0 1
Matrix 11
Matrix K 2
Matrix V 1 .5 0 .5 0 -.5 0 -.5 -1
Matrix X 0 .5 1 .5 0 .5 -1 -.5 0

Specify I type
Bound -5 5 N 11

I Full 1 1
J Unit 1 1
K Full 1 1
U Unit 1 2

!To store Type
! 1
! 2
! 1 1

N Full 1 1 Free ! Grand mean parameter
W Full 2 1 Free
V Full 9 1
X Full 9 1

! ab and aw parameters
! between pair coefficients
! within pair coefficients
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Jinks, 1982). Table VI shows the variance components
for various values of p, q, d and a. The effect sizes are
thus 2a for the additive component and d for the dom-
inance component. By choosing values of 0, .2, and .5
we have selected effect sizes that are deemed zero, be-
tween small and moderate, and between moderate and
large in Cohen's (1969) terminology.

Several features are worthy of note. First, an ad-
ditive deviation generates more variance than a domi-
nance deviation, all other things being equal. Second,
comparing the line for DZ and DZ + MZ (monozy-
gotic), when there is no dominance MZ twins are un-
informative for the aw test, resulting in double the re-
quired sample size. However, dominance variation
makes both MZ and DZ twins informative for both the
within- and the between-family components, although
MZ twins are much less informative than DZ. This re-
sult may be an artifact of testing only for additive ef-
fects of the locus. For the test of both components, MZ
and DZ twins are both informative, although required
sample sizes increase by approximately 10%. Third, in

almost all cases, the B + W test is much less powerful
than the W test. The exception is the case of extreme
overdominance where the additive deviation is zero, in
which case there is no information from the between-
family component, as the sample size for both tests is
equal (e.g., 446 for both the W and the B + W tests when
d = .2 and a = .0). Fourth, unequal allele frequencies
lead to a loss of power in all cases, with no dominance
being most adversely affected. Fifth, and most pertinent
to the results presented for ADH2 in this paper, 103
pairs would be required to detect allelic effects of mod-
erate to large size (a = .5) even when allele frequencies
are unequal. This is more than the number available in
this study, indicating that the effect reported for ADH2
is large. Indeed this is so, as the variance of alcohol
consumption is estimated to be approximately .38, and
the estimate of ab = aw = .25, which is approximately
.66 standard deviation, or a Cohen difference of 1.32
standard deviations—a large effect. The allele fre-
quency of ADH2*1 is approximately .95, so the results
in Table V are consistent with the power calculations.

Table VI. Number of Pairs Required to Achieve 80% Power to Reject at the .05 Level the False Hypothesis
of No Allele Effecta

Allele frequency, p = .5

Dominance deviation
Additive deviation

VA

VD

DZ(S)
DZ (NS)
DZ + MZ (S)
DZ + MZ (NS)

d=.0
a = .2

.0200

.0000
567
218

1130
240

d=.0
a = .5

.1250

.0000
103
41

203
45

d=.2
a = .0

.0000

.0100
392
392
446
446

d=.2
a = .2

.0200

.0100
239
146
326
162

d=.2
a = .5

.1250

.0100
86
39

145
43

d=.5
a = .0

.0000

.0625
68
68
77
77

d = . 5
a = .2

.0200

.0625
58
42
66
44

d=.5
a = .5

.1250

.0625
47
30
61
34

Allele frequency, p = .1

Dominance deviation
Additive deviation

VA

VD

DZ (S)
DZ (NS)
DZ + MZ (S)
DZ + MZ (NS)

d=.0
a = .2

.0072

.0000
1559
601

3114
661

d= .0
a = .5

.0450

.0000
273
109
543
120

d=.2
a = .0

.0046

.0013
1354
712

2052
788

d=.2
a = .2

.0233

.0013
433
183
783
201

d=.2
a = .5

.0784

.0013
160
65

305
72

d=.5
a = .0

.0288

.0081
240
125
378
139

d=.5
a = .2

.0648

.0081
77
47
93
50

d=.5
a = .5

.1458

.0081
88
39

159
43

° The first two rows show the additive (VA) and dominance (VD) variance generated by a diallelic locus with allele
frequencies p and q = 1 - p and additive and dominance deviations of a and d, respectively. DZ indicates a de-
sign of DZ pairs (or siblings) only; DZ + MZ represents a design with 50% MZ and 50% DZ pairs. (S) is the test
for the within-family component only (controlling for stratification); (NS) is the less robust test for both between-
and within-family effects. Residual background factors generate an additional variance of 1.0 and a covariance
of .3 between the members of a pair, regardless of zygosity.
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A script to compute the power to detect association
with the Fulker method is available at the MX website:
http://views.vcu.edu/mx/examples/abaw.
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