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Statistical methods in genetic research on
smoking
Andrew C Heath and Pamela AF Madden Department of Psychiatry, Washington
University School of Medicine, St Louis, Missouri, USA and Nicholas G Martin Division of
Epidemiology and Population Health, Queensland Institute of Medical Research, Brisbane,
Australia

A growing body of evidence suggests that genetic factors have an important in¯uence on the onset and
course of smoking. Here we review some of the statistical methods that have been used to test for genetic
in¯uences on smoking behaviour, with a particular focus on studies of large national twin samples. We
show how many of the hypotheses that have been tested using a genetic model-®tting approach have also
been reformulated using logistic regression models that will be more familiar to epidemiologists. Such an
approach is more easily extended to allow for sociocultural, as well as genetic, in¯uences on smoking
behaviour. Using either approach, data are consistent in indicating that certainly in men, and possibly in
women, genetic factors play an important role in predicting which individuals who become cigarette
smokers progress to being long-term persistent smokers.

1 Introduction

In 1958, a controversial article published by RA Fisher1 argued, on the basis of data
from a small number of twin pairs, that propensity to smoke cigarettes was partially
in¯uenced by genetic factors and further postulated that smoking-disease associations
might not re¯ect a simple cause-and-effect relationship, but rather a tendency for the
same genetic factors that made some individuals more prone to be smokers also to
make them more disease-prone. Fisher's work helped stimulate a series of large
sample twin studies in Scandinavia and the USA2±4 that were in part designed to
falsify Fisher's hypothesis of an indirect association: if twins who were smokers had
higher rates of disease than their twin siblings who were nonsmokers, even in the case
of twin pairs who were monozygotic (MZ) (i.e. genetically identical), this would
provide a very convincing refutation of Fisher's hypothesis. While few would now
accept Fisher's second postulate, data gathered in the intervening 40 years provide
remarkably consistent support for his ®rst assertion. Paradoxically, however, because
the possibility of genetic in¯uences on smoking behaviour became associated with
Fisher's argument against the harmful effects of smoking, that genetic differences
between individuals might be important predictors of failure of smoking cessation
efforts (and thus, when identi®ed and understood, might lead to improved aids for
smoking cessation) received little attention.

How can there be genes that in¯uence smoking behaviour, when sociocultural
in¯uences on smoking are clearly so important? There are huge variations in rates of
smoking between societies and within societies over time, as well as pronounced
gender differences within some societies at some time points. Consideration of
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progress in genetic research on alcoholism, where some of the ways in which genetic
differences can lead to differences in risk are better understood, supports the
plausibility of genetic in¯uences on smoking behaviour. Levels of alcohol
consumption, like rates of smoking, show substantial variation over time (e.g. in the
USA between the era of prohibition and the present) and between societies (e.g.
between Western and Islamic societies). Nonetheless, several lines of evidence have led
alcoholism researchers to the view that there are important genetic in¯uences on
alcoholism risk. In research on rodents, studies of inbred rodent strains that have been
bred to be genetically identical have shown strain differences in the degree to which
different strains will self-administer alcohol when given a choice between alcohol and
water,5 while selection experiments have shown that rats can be selectively bred for
high versus low voluntary alcohol consumption.6,7 Twin and adoption studies have
demonstrated increased rates of alcoholism in the monozygotic cotwins of alcoholics,
compared to dizygotic (DZ) cotwins of alcoholics, and increased rates of alcoholism in
the adopted-away offspring of alcoholic biological parents, compared to control
adoptees.8 High-risk studies, comparing offspring of alcoholic parents and controls,
have established differences in subjective ratings of alcohol's effects and objective
measures of body-sway and hormonal changes, after administration of a standard
body-weight adjusted dose of alcohol, between individuals at low versus high risk of
alcoholism and have shown that individuals with low initial sensitivity to alcohol are
more likely to develop subsequent problems with alcohol.9 Finally, geneticists have
identi®ed in individuals of Asian ancestry polymorphisms that are associated with
effects on the metabolism of alcohol, that lead to large differences in drinking patterns
and alcoholism risk.10,11 Early reports of positive genetic linkage ®ndings in samples
of European ancestry are beginning to emerge.12 Advances in genetic research on
alcoholism have in turn made important contributions to the development of phar-
macotherapies for alcoholism.13

In the present paper, we review statistical methods that have been used to establish
an important genetic in¯uence on smoking. Wherever possible we use analyses of
published data to illustrate data analytic approaches. While we begin with a discussion
of genetic model-®tting techniques that may be unfamiliar to many readers, we then
proceed to show how these same hypotheses have also been tested in a more familiar
logistic regression framework.

2 Example data sets

By way of illustration, we will use three data sets based on mailed questionnaire
surveys of large national twin panels conducted in Finland, Australia and the USA
(see Table 1 for sample sizes and further details). In each survey, smoking was assessed
as a risk-factor, so only limited data about whether an individual had ever smoked
cigarettes, and was still smoking cigarettes, together with information about the age-
of-onset of smoking, the age the respondent quit smoking and the respondent's current
or previous typical number of cigarettes smoked per day, were ascertained. Table 2
summarizes the numbers of twin pairs concordant or discordant for smoking status
(current, former or nonsmoker) from one of these three surveys, the survey of the

166 AC Heath et al.

 at UQ Library on August 22, 2010smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


Australian twin panel conducted in 1980±82.14 Similar data summaries may be derived
from the original publications on the Finnish4 and US Vietnam-era veterans twin-
panel surveys.15

2.1 Summary statistics
Traditionally, twin researchers have used as summary statistics estimates for each

zygosity group of lifetime prevalence, which is the proportion of the sample that report
that they have ever been smokers, and the so-called probandwise concordance rate,16

which is the probability that the cotwin of a smoker will also be a smoker, estimated in
the case of a survey of a general population sample of twin pairs as 2C/(2C + X),
where C is the number of pairs concordant for smoking, and X is the number of
smoking-discordant pairs. Evidence for a signi®cantly higher concordance rate in MZ
pairs than in DZ pairs has been used to infer genetic in¯uences on a trait, under the
supposition that the environments experienced by MZ pairs (e.g. parental smoking
and smoking by peers) are no more highly correlated that the environments
experienced by DZ pairs. `Pairwise' concordance rates, estimated as C/(C + X), have
sometimes also been reported in the literature but are clearly redundant, since the
number of twin pairs for each zygosity group, the lifetime prevalence, and the
probandwise concordance rate, are suf®cient to completely describe for any binary
trait the observed numbers of concordant `unaffected' (e.g. concordant never smokers),
discordant and concordant affected (e.g. concordant for having smoked) pairs. If N is
the observed number of twin pairs, P is the estimate of lifetime prevalence, and CR the
probandwise concordance rate for a given zygosity group, then the number of
concordant affected pairs is estimated as N � P � CR, the number of discordant pairs
as 2N � P � (1 ÿ CR) and the number of concordant unaffected pairs as

Table 2 Numbers of twin pairs concordant and discordant for smoking status in the Australian twin panel
1981 survey

MZ female
(N = 1232 pairs)

DZ female
(N = 747 pairs)

MZ male
(N = 567 pairs)

DZ male
(N = 350 pairs)

I II III I II III I II III I II III

I Non-smoker 629 310 221 121
II Successful

quitter
110 64 98 33 77 70 44 27

III Current
smoker

124 115 190 146 61 99 31 61 77 61 53 44

Table 1 Sample sizes for national surveys of the Swedish, Finnish, Australian and US Vietnam-era veterans
twin panels

Sample sizes (pairs)

Sample Survey date MZ male DZ male MZ female DZ female Reference

Finnish twin panel 1975 1496 3440 1842 3703 Kaprio et al.4

Australian twin panel 1980±82 567 350 1232 747 Heath and
Martin14

US Vietnam-era veterans (VETS)
panel

1987 2204 1793 ± ± True et al.15
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N ÿ N � P � CR ÿ 2N � P � (1 ÿ CR); and the pairwise concordance rate is
simply CR/(2 ÿ CR). In the case of data from Table 2, we obtain estimates of the
lifetime prevalence of smoking (� standard deviation of this estimate) of 39.5% �
1.3% in MZ female twins, 42.2% � 1.5% in DZ female twins, 46.2% � 1.9% in MZ
male twins, and 50.4% � 2.2% in DZ male twins, with corresponding probandwise
concordance rates of 75.9% � 1.5%, 61.3% � 2.4%, 79.4% � 1.9% and 70.3% � 2.8%,
respectively. If we limit consideration to those pairs where both twins have been
smokers, corresponding estimates of prevalence and probandwise concordance for
smoking continuation or `persistence' (i.e. whether or not a twin was still a smoker
when surveyed) are 67.1% � 1.9% and 76.8% � 2.0% in MZ female pairs, 67.1% �
2.8% and 76.4% � 3.1% in DZ female pairs, 51.7% � 2.9% and 71.6% � 3.5% in MZ
male pairs, and 56.9% � 3.4% and 62.4% � 5.0% in DZ male pairs.

Estimates of prevalence derived from data on twin pairs violate the assumption of
statistical independence of observations, so that the usual formula for deriving the
standard deviation of the estimate of a proportion cannot be applied, and one term
(2C) appears in both the numerator and the denominator of the formula for the
probandwise concordance rate, making estimation of the standard deviation of the
estimate of this statistic somewhat complicated. Instead we have used the method of
bootstrapping17 to obtain estimates of the standard deviations of these statistics. This
approach can be applied more generally to the analysis of family data or other data
involving complex clustered sampling schemes, as well as to the development of
empirical estimates of standard deviations for statistics whose sampling distribution is
not known. It involves drawing some large number (e.g. 1000) of random samples, with
replacement, from the observed data, using the twin pair as the unit for resampling.
Thus, in the case of data on female MZ like-sex pairs, we drew 1000 samples of 1232
pairs. Because we sampled with replacement (i.e. the same observation could appear
multiple times, or not at all, in a given sample), estimates of prevalence and
probandwise concordance rate varied across samples; the standard deviations of these
estimates were used as the desired empirical estimates of the standard deviations of
our summary statistics. Some statistical packages (e.g. STATA, S-PLUS) already
include a built-in option for bootstrapping, while in others (e.g. SAS) bootstrapping is
easily programmed via a function for random number generation.

3 Model-®tting approaches

Despite its utility as a summary statistic, the probandwise concordance rate has no
direct interpretation in terms of genetic and environmental effects. The exception to
this is the case of a single-gene recessive trait where penetrance (i.e. the probability
that an individual whose genotype puts him at risk of the disorder will express the
disorder) is uncorrelated over family members, where the concordance rate in MZ
pairs provides a direct estimate of penetrance. Smoking is clearly not a single gene
recessive trait! If there is no familial resemblance for a binary trait, the probandwise
concordance is expected to be equal to the prevalence of that trait, so it is not
surprising that prevalence as well as probandwise concordance rate must be taken into
account when drawing inferences about the genetic or environmental effects on
smoking. In particular, this sensitivity to differences in prevalence makes the con-
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cordance rate an inappropriate summary statistic for pooling results across gender,
birth cohorts or across different societies in which rates of smoking may vary widely.
The recurrence risk-ratio, the ratio of the concordance rate to the prevalence rate in
the general population, has proved to be a very informative statistic in genetic research
on complex traits of relatively low prevalence.18±21For the Australian data set of Table
2, corresponding recurrence risk-ratios for lifetime smoking and for smoking per-
sistence among smokers, with bootstrapped standard errors, are: MZF: 1.92 � 0.06,
1.14 � 0.03; DZF: 1.45 � 0.06, 1.14 � 0.04; MZM: 1.63 � 0.06, 1.39 � 0.06 and DZM:
1.39 � 0.06, 1.10 � 0.07. However, for multifactorial models (i.e. allowing for the
in¯uences of multiple genetic and environmental effects) for traits which may differ
widely in prevalence between population groups, this statistic is still very sensitive to
differences in prevalence (Ridenour TA and Heath AC. Meta-analysis for behavioural
genetic studies of dichotomous phenotypes, unpublished data).

An important advance in genetic research on smoking occurred through the work of
Eaves, beginning in the 1970s,22,23 using an insight by Pearson24 that was rediscovered
independently by Falconer.25,26 If variation in a continuous trait is determined by the
additive effects of even a quite small number of genes or environmental risk-factors
that occur with relatively high probability, the distribution of that trait closely
approximates a normal distribution.27 It is not unreasonable to hypothesize that in the
case of a binary trait such as smoking, propensity to start smoking, or propensity to
continue in the smoking habit once smoking is started, are latent (i.e. not directly
observable) variables (traditionally referred to as `liability' variables) which are
approximately normally distributed.

Human genetic research in the biometrical or quantitative genetic tradition28±30 has
shown how familial resemblance for quantitative traits could be modelled using
genetic and environmental variance components.30,31 Speci®cally, if p0, p1 and p2
denote the probabilities that a pair of relatives will have zero, one or two alleles at any
autosomal genetic locus that are identical by descent, then their expected correlation
for a quantitative trait is given by 1/VP {RVA + p2 VD + R2 VAA + p22 VDD + Rp2
VAD + VC}, where VP is the total phenotypic variance, R = (0.5 p1 + p2) is the
coef®cient of genetic relationship between the relatives, VA is the additive genetic
variance, VD is the dominance genetic variance, VAA is the additive � additive
epistatic variance, VDD is the dominance � dominance epistatic variance, VAD the
additive � dominance epistatic variance (ignoring higher order epistatic terms) and
VC is the variance due to environmental effects shared by the relatives.32 Two alleles
are said to be identical by descent `if one of them has been derived by direct
replication from the other or if both are copies of the same gene in a common
ancestor'.32 Thus, a child will share exactly one allele identical by descent with a
biological parent, except in cases of inbreeding, but a pair of full siblings may share
none, one or two alleles identical by descent. Here VP = VA + VD + VAA + VDD +
VAD + VC + VE, where VE is the variance due to environmental effects that are not
shared by relatives. Maximum-likelihood estimates of model parameters can be
obtained by ®tting models to summary covariance matrices in multigroup analyses
using standard software for structural equation modelling.33 In most practical appli-
cations, epistatic genetic variance components will be confounded with genetic
dominance. While this basic decomposition of the observed phenotypic variance in a
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trait into components due to additive and nonadditive genetic effects and shared and
nonshared environmental effects was subsequently elaborated to allow for more
complex models for genotype±environment correlation, genotype � environment
interaction, environmental contributions to parent±offspring resemblance and assor-
tative mating effects,34±36 it remains central to subsequent quantitative genetic
research on smoking.

In the case of a binary trait such as lifetime smoking, or a unidimensional cate-
gorical (i.e. ordinal) trait, while we clearly cannot treat the observed measure as
though it were a continuous variable, it is possible, following Pearson and Falconer, to
estimate genetic and environmental variance components for the hypothesized latent
`liability' variable, using the assumptions that (1) this liability variable is normally
distributed, with the observed categorical distribution determined by abrupt
thresholds on that underlying latent distribution; and (2) that the distribution of
liability in pairs of relatives is bivariate normal.22,23 Similar assumptions are used in
the estimation of tetrachoric and polychoric correlations by software packages such as
PRELIS.37 For the general case of an n-category ordinal variable, data on relative pairs
of a given type will be summarized as an n�n contingency table. Model parameters
will be correlations between relatives (or genetic and environmental variance
components from which predicted correlations between relatives are derived), and
nÿ1 threshold values (assuming no differences in prevalence between relative types),
scaled as normal deviates, such that individuals with liability scores 1 < si � t1 are
assumed to fall into response category one, those with liability scores t1 < si � t2 fall
into response category two, and so on. For given parameter values, expected
probabilities for the cells of each n�n contingency table may be derived by integrating
the bivariate normal distribution, with predicted correlation between relatives for the
latent-liability variable (`polychoric' correlation) �i. The log-likelihood of the observed
data (ignoring the constant term) is computed as

L �
X

i

X
j

X
k

fijkln pijk

where fijk is the observed frequency of relative pairs from the ith group (e.g. MZ pairs)
in the j,kth cell of the ith observed contingency table, and pijk is the corresponding
expected probability. Maximum-likelihood estimates are obtained by maximizing the
log-likelihood of the observed data with respect to the model parameters, a task which
can now be handled by some statistical software packages (e.g. MX).38 The
approximate sampling covariance matrix of the parameter estimates, from which
standard errors may be obtained, can be derived as the inverse of the Fisher
information matrix, whose m,nth element will be39,40

X
i

X
j

X
k

Ni

pijk

dpijk

d�m

dpijk

d�n

where � is the vector of parameter estimates (however, this does not appear to have
been implemented in MX).

A likelihood-ratio chi-square test of the goodness-of-®t of a given model to the
observed data is computed as 2 (L0 ÿ L), where L0 is the log-likelihood of the observed
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data under a perfect ®t model which equates the expected probabilities for each cell to
the corresponding observed probabilities, and L the log-likelihood under the ®tted
model at the maximum-likelihood solution. The number of degrees of freedom for this
chi-square statistic will be equal to the number of observed statistics (2(n2ÿ1)) in the
case of MZ and DZ like-sex twin pair data on an n-category ordinal scale) minus the
number of estimated parameters. Software packages such as MX typically print this
likelihood-ratio `goodness-of-®t' chi-square statistic without printing the estimated
log-likelihoods.

Likelihood-ratio tests may be used to compare nested models (e.g. a model that
estimates additive genetic and shared and nonshared environmental effects, compared
to a model that ®xes the shared environmental parameter to zero), by subtracting the
goodness-of-®t chi-square under the more general model from that under the reduced
model, with degrees of freedom for this chi-square statistic equal to the difference in
degrees of freedom for the two nested models. However, it is clearly not very helpful to
report only a point estimate for the proportion of the total phenotypic variance that is
attributable to genetic effects (e.g. 57%) when that estimate, while signi®cant, has 95%
con®dence limits of 2%±98%!41 It has, therefore, become standard to report also
approximate likelihood-based 95% con®dence intervals for estimates of genetic and
environmental parameters, corresponding to those values of each parameter that
produce a change in chi-square, compared to the maximum-likelihood solution, of
3.84. Neale and Miller42 discuss technical aspects of the estimation of such con®dence
intervals, which is implemented in MX.38

In the case of Australian twin data on smoking, by way of illustration, we have,
therefore, estimated VA, VC and VE variance components for measures of smoking
behaviour, ignoring nonadditive genetic effects. In the absence of data on separated
twin pairs, the effects of genetic nonadditivity (dominance or epistatis) and shared
environment are, strictly speaking, confounded in twin data; the former will produce
DZ correlations that are less than one-half the corresponding MZ correlation, and the
latter DZ correlations that are greater than one-half the corresponding MZ corre-
lation. Negative estimates of shared environmental variance components, therefore,
imply the presence of genetic non-additivity, and vice versa. In practice, non-additive
genetic variance components are generally small, allowing the detection of shared
environmental in¯uences.

Expected correlations between MZ and DZ pairs will be VA + EC and 0.5 VA + EC,
respectively, where the total phenotypic variance (VA + VC + VE) is standardized to
unity. For the male like-sex pairs, the goodness-of-®t chi-square statistics were: (1)
VE±VC model (degrees of freedom = 2): �2 = 11.28, p = 0.02; (2) VE±VA model
(degrees of freedom = 2): �2 = 7.35, p = 0.12; and (3) VE±VC±VA model (degrees of
freedom = 1): �2 = 0.43, p = 0.94). (The degrees of freedom here, and in subsequent
examples, have been adjusted to allow for the fact that we used a single summary
statistic for numbers of smoking discordant pairs.) Although the VE±VC±VA model
has one degree of freedom, this tests the assumption of equal thresholds in MZ and
DZ pairs; in the case of a binary trait, we have no information with which to test the
appropriateness of the assumption of an underlying normally distributed latent
variable. Comparing the ®t of models (1) and (3) con®rmed signi®cant evidence for
apparent additive genetic effects on smoking onset (likelihood-ratio �2 = 10.86, df =
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1, p < 0.001); while comparing the ®t of models (2) and (3) con®rmed signi®cant
evidence for shared environmental effects on smoking onset (likelihood-ratio �2 =
6.92, df = 1, p < 0.001). Estimated genetic and environmental variance components,
and their 95% con®dence interval, were VA 43% (17%±72%); VC 37% (10%±60%); VE
20% (14%±27%). A similar pattern of ®ndings emerged from analyses of the female
like-sex twin pair data, except that the hypothesis of no shared environment effects
could not be rejected (likelihood-ratio �2 = 3.24, df = 1, p = 0.07). Corresponding
estimates of genetic and environmental variance components, and their 95%
con®dence interval, were: VA 63% (44±84%); VC 18% (0±36%); VE 19% (15±23%).

Such estimates must be interpreted with caution. First, they are valid only if the
assumption of an underlying normal-liability distribution is at least approximately
true.43 Second, any tendency for MZ pairs to be more highly correlated in their
environmental exposures than DZ pairs may cause overestimation of the magnitude of
the genetic variance component. There is evidence that MZ pairs are more likely to
share the same peers when growing up than DZ pairs, however, when similar analyses
were computed separately for pairs who reported that they always or usually shared
the same friends when growing up, and for pairs who rarely or never shared the same
friends, signi®cant evidence for genetic effects on onset of smoking was still obtained
(Madden PAF et al. The genetics of smoking initiation and persistence: a cross-
cultural trait study, unpublished manuscript). This approach of analysing a twin pair
or other familial data which is conditional upon values of a dichotomous
environmental variable (e.g. using separate groups of pairs concordant for exposure
to a low risk environment, concordant for exposure to a high-risk environment, and
where available pairs discordant for environmental exposure), with testing for
heterogeneity of parameters between high-risk versus low-risk exposure conditions,
provides one way in which genotype � environmental interaction effects (including
the special cases of genotype�sex or genotype � cohort interaction) can be detected.44

3.1 Hierarchical/conditional genetic models
New challenges arise when we shift the focus from analyses of genetic in¯uences on

onset of smoking to the arguably more important question of whether there are genetic
in¯uences on probability of persistence of smoking in those who have started to
smoke. Most simply, we could limit analyses to pairs where both twins are smokers,
analysing persistence of smoking as a binary trait, as before.45 In the case of data from
the Australian twin study, this approach yields estimated variance components in men
(with 95% con®dence limits) of: VA 59% (15±73%), VC 0% (0±38%); VE 41% (27±
58%); and, in women, VA 3% (0±54%); VC 43% (0±57%); VE 54% (41±67%). Thus,
from the analyses in men, there is signi®cant evidence for a genetic in¯uence on
smoking persistence, though we cannot exclude the possibility of a strong shared-
environment in¯uence as well. In women, the best-®tting model yields only a small
nonsigni®cant estimate for the genetic parameter, but we also cannot reject the
hypothesis of no shared-environmental effects, with a heritability estimate as high
54%! But is throwing away data from twin pairs, where only one twin is a smoker, the
appropriate thing to do? If it is the case that at least some of the same familial factors
that determine risk of smoking persistence also in¯uence risk of becoming a smoker,
then discarding nonsmokers would be expected to lead to biased estimates of genetic
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and environmental parameters, since it will systematically eliminate the most discre-
pant pairs (which, if there are genetic in¯uences on onset of smoking, will be dis-
proportionately dizygotic pairs).

Eaves23 had the important insight that it was necessary to test hypotheses about the
relationship between genetic in¯uences on onset of smoking, and genetic in¯uences on
persistence in the smoking habit. He considered two extreme cases: (1) a simple
extension of the liability threshold model (`single-liability dimension' model), which
assumes that continuing smokers, on average, have higher liability than successful
quitters, while nonsmokers have the lowest liability; and (2) independent genetic
determinants of onset and persistence of smoking, as well as independent environ-
mental determinants. The ®rst case represents a simple extension of the liability
threshold model to the case of three response categories. However, when we applied
this model to the Australian data, even when both additive genetic and shared
environmental effects, as well as nonshared environmental effects, are included in the
model, it gave a very poor ®t to the data (men: �2 = 49.26, df = 6, p < 0.001; women: �2

= 43.47, df = 6, p < 0.001).
The second case extends the basic liability threshold model by hypothesizing that

there are two orthogonal liability dimensions, the ®rst of which determines the onset
of smoking, the second the continuation of smoking in those who have started to
smoke (described by Eaves as `smoking persistence'). This implies that two sets of
genetic and environmental parameters may be estimated, one for `smoking initiation'
and one for `smoking persistence', as well as one threshold each for the initiation and
persistence dimensions. Parameters for `smoking initiation' determine expected
probabilities, say xijk, for the 2 � 2 tables cross-classifying twin pairs for lifetime
smoking (never smoked versus always smoked) from the ith zygosity group.
Parameters for `smoking persistence' determine expected conditional probabilities,
say yijk, for the 2 � 2 tables cross-classifying twin pairs who are concordant lifetime
smokers with respect to persistence of smoking (successful quitter versus continuing
smoker). Let xi00 denote the probability that a twin pair from the ith group are
concordant never smokers, and xi11, xi01 and xi10 are the corresponding probabilities
that pairs are concordant ever smokers, or discordant with either ®rst twin or second
twin a nonsmoker; and let yi11 denote the conditional probability that a twin pair who
are concordant smokers are successful quitters, yi22 denote the conditional probability
that a twin pair are continuing smokers, and yi12, yi21 the corresponding probabilities
for pairs who are concordant for lifetime smoking but discordant for continued
smoking. Expected probabilities for the 3 � 3 table are then easily written in terms of
these unconditional and conditional probabilities (see Table 3). The only derivation
requiring some thought is that for pairs discordant for lifetime smoking, the expected
probability of observing a pair where one twin is a never smoker and the cotwin is a
continuing smoker is simply the product of the unconditional probability of observing
a pair discordant for lifetime smoking, and the marginal conditional probability of
being a continuing smoker. In other words, given the assumption of independent
liability dimensions, the expected proportion of continuing smokers among smokers
whose cotwin has never smoked does not differ from the proportion of continuing
smokers among all smokers.
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As in the case where a single underlying liability dimension was assumed, we may
compute the log-likelihood of the observed data, summed over zygosity groups, for
given values of genetic and environmental parameters and thresholds for the initiation
and persistence dimensions, and hence obtain maximum-likelihood estimates of these
parameters by maximizing the log-likelihood with respect to these parameters using
programs such as MX.38 Eaves23 also illustrated how this approach could be adapted to
such problems as the analysis of genetic effects on quantity smoked (cigarettes per
day). It does, however, rely upon the strong assumption that there are no genetic or
environmental correlations between the smoking initiation and persistence liability
dimensions, i.e. that they are uncorrelated. When we ®tted this model to smoking
initiation±persistence data from the Australian twin panel, it gave a very poor ®t to the
female like-sex data (�2 = 19.03, df = 4, p < 0.001), while giving an acceptable ®t to
the male like-sex data (�2 = 7.17, df = 4, p = 0.13).

Can we improve our ability to predict the observed data? One obvious approach
would be to relax the assumption of orthogonal liability dimensions for smoking
initiation and persistence. We might expect that it would be possible to relax this
assumption by estimating genetic and shared- and nonshared-environmental corre-
lations between the two dimensions, as in a standard bivariate problem in genetic
analysis.33,46 However, since we cannot assess smoking persistence in an individual
who has never smoked, we can never estimate a within-family environmental corre-
lation between smoking initiation and smoking persistence. One approach would be to
test a submodel of the general bivariate genetic model47 where, if our model for the
mean liability score for the smoking initiation dimension is I = A + C + E, our
corresponding model for the mean liability score for the smoking persistence dimen-
sion is P = b I + A0 + C0 + E0, where A, C, and E denote additive genetic, shared-
environmental and nonshared-environmental effects on smoking initiation, b denotes
the partial regression of persistence-liability on initiation-liability within individuals,

Table 3 Expected probabilities for cells of the two-way contingency table for smoking status for a given
zygosity group under independent liability dimension and combined models (adapted from Eaves and Eysenck23

and Heath and Martin14)

Independent liability dimensions
Twin B

Twin A Never smoked Successful quitter Continuing smoker
Never smoked x00 x01 (y11 � y21) x01 �y12 � y22)
Successful quitter x10 �y11 � y12) x11y11 x11 y12

Continuing smoker x10 �y21 � y22) x11 y21 x11 y22

Combined model
Twin B

Twin A Never smoked Successful quitter Continued smoker
Never smoked x00 � x11y00

�x01y�0 � x10y0�
x01y�1 � x11y01 x01y�2 � x11y02

Successful quitter x10y1� � x11y10 x11y11 x11y12

Continuing smoker x10y2� � x11y20 x11y21 x11y22

Note: y0� � �y00 � y01 � y02�; y1� � �y10 � y11 � y12�; y2� � �y20 � y21 � y22�.
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and A0, C0 and E0 denote additive genetic, shared-environmental and nonshared-
environmental effects that are speci®c to smoking persistence.48 In other words, this
model allows for the possibility that liability to smoking initiation does have an effect
on probability of continued smoking, but that there are other factors, genetic or
environmental, which come into play when an individual becomes a regular smoker
that also in¯uence this outcome. Introducing a single parameter still leaves a single
degree of freedom with which to test our assumptions about the causes of variation in
liability to smoking initiation and persistence (the remaining degrees of freedom
merely test equality of marginal probabilities across zygosity groups). For given values
of genetic and environmental parameters of this bivariate `mediational' model (so-
called because some of the genetic and environmental in¯uences on smoking
persistence are hypothesized to be mediated via effects on smoking initiation), and
given threshold values for the initiation and persistence dimensions, we can derive (by
integrating the quadrivariate normal distribution with expected covariance matrix
derived from the values of genetic and environmental parameters) expected cell
frequencies for a four-way 2 � 2 � 2 � 2 contingency table, i.e. cross-classifying
`initiation' and `persistence' binary traits in ®rst and second twins, for each zygosity
group. Using the assumption that an individual who is negative for `initiation' will
always be a never smoker, we can then derive expected probabilities for the 3�3
contingency tables as before. Hence, maximum-likelihood estimates of model
parameters can be obtained by maximizing the log-likelihood with respect to the
model parameters in the usual manner.

An alternative approach to relaxing the assumptions of the independent-liability
dimensions model, which has proved informative in practical applications14,15 is
represented, in the form of a probability tree (which illustrates only marginal, i.e.
within-person probabilities), in Figure 1. In this `combined' model, we retain the
assumption of orthogonal liability dimensions but introduce a new parameter y0 to
allow for the possibility that individuals who became smokers (i.e. who were above the
threshold on the smoking initiation dimension) but who almost immediately quit the
habit (i.e. who had very low values on the smoking persistence dimension) will classify
themselves as `never smokers' when responding to general health surveys. The con-
ditional probability that a twin pair who are concordant lifetime smokers will report
themselves as concordant never smokers under the model is thus y00, y01 is the
probability that the ®rst twin will report herself as a lifetime smoker and the cotwin as
an ex-smoker, and so on. Expected cell frequencies, in terms of predicted probabilities
xijk and yijk, are summarized in Table 3. Compared to the independent-liability
dimensions model, this `combined' model introduces one new parameter, the
additional threshold value from which y0 is estimated. In the case where y0 = 0, it
reduces to the independent-liability dimensions model; in the case where x0 = 0, it
reduces to the single-liability dimension case. These two alternate models are thus
nested within it, allowing likelihood-ratio chi-square comparisons to the more general
model. In the case of the Australian male like-sex pairs, the ®t of a combined model,
allowing for additive genetic and shared environmental effects on both initiation and
persistence dimensions, represented only a slight nonsigni®cant improvement com-
pared to the independent-liability dimensions model (goodness-of-®t: �2 = 5.47, df =
3, p = 0.14; likelihood-ratio chi-square versus independent-liability dimensions model:
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�2 = 1.70, df = 1, p = 0.19). In the case of the female like-sex pairs, however, the
combined model gave an excellent ®t to the data (�2 = 2.12, df = 3, p = 0.99), whereas
the independent-liability dimensions model had been rejected (p < 0.001). Since the
combined model, and the partial regression model described in the previous
paragraph are not nested, they cannot be directly compared by likelihood-ratio chi-
square. They can, however, be compared using Akaike's information criterion (AIC),49

estimated as (�2-2df), with the model with the lowest AIC being preferred as the most
parsimonious. In this case, since the two models have the same number of degrees of
freedom, this reduces to selecting the model with the lowest chi-square. However, we
shall not attempt this comparison here.

Table 4 summarizes, by gender, estimates under the combined model of additive
genetic, shared- and nonshared-environmental variance components for smoking-
initiation and smoking-persistence dimensions from the Australian twin study. Also
shown are corresponding estimates for the Finnish twin panel and Vietnam-era twin
panel. Results in women are quite disparate, with high heritability of smoking ini-
tiation, but effectively zero heritability of the smoking-persistence dimension, ob-
served in Australian women, but with moderate to high heritabilities for both
initiation and persistence in the Finnish women. Results in males are more strikingly
consistent, with moderate heritability for smoking initiation (31±40%) and high
heritability of smoking persistence (50±71%). In contrast to the Australian data,
estimates from the Finnish sample are strikingly consistent in men and women.

Figure 1 Probability tree representation of a combined model for smoking initiation and smoking persistence
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4 Logistic regression analysis

An alternative approach with its roots in epidemiology is to use multiple logistic
regression analysis to predict the respondents' smoking status as a function of his or
her cotwin's status and the twin pair zygosity (i.e. whether they are monozygotic twins
who are genetically identical, or fraternal twins who on average share 50% of their
genes in common and are no more alike than ordinary full siblings).50,51 Here a double-
entry procedure has been used, with each individual entered into the data set once as a
respondent (i.e. entering into the left-hand side of the regression equation), and once as
the cotwin of a respondent, with each observation assigned a sampling weight of 0.5 to
correct for this double entry. Two sets of binary dummy variables, for MZ and for DZ
pairs, have been used to code the smoking status of the respondent's cotwin (Table 5).

Table 5 summarizes results for initiation of smoking, i.e. whether or not the res-
pondent reports having been a smoker. Odds ratios and 95% con®dence limits are
reported. MZ twins whose cotwin has never smoked have been used as a comparison
group, so that effects of ®ve dummy variables have been estimated in each multiple
logistic regression analysis. For each sample, in both women and men, and assuming
no overall differences in the prevalence of smoking behaviour in MZ versus DZ twins,
results are in every case consistent with a signi®cant genetic in¯uence (or altern-
atively, environmental in¯uences that are shared more often by MZ than by DZ pairs)
on smoking initiation: DZ cotwins of nonsmokers have signi®cantly higher rates of
smoking than do the MZ cotwins of nonsmokers (i.e. exhibit signi®cantly greater
discordance, shown by odds ratios signi®cantly greater than unity); and MZ cotwins of
smokers have signi®cantly higher rates of smoking (higher odds ratios) than do DZ
cotwins of smokers. (If genetic factors are important, MZ cotwins of nonsmokers
should be at the lowest risk, and MZ cotwins of smokers should be at the highest risk.)
In addition, odds ratios are higher for cotwins of continuing smokers than for cotwins
of successful quitters. This latter ®nding is consistent with the interpretation that
some of the same genetic factors that in¯uence initiation of smoking also in¯uence
persistence in the smoking habit by smokers (although it is also consistent with the
`combined' model interpretation that some transient smokers classify themselves as
never smokers). In contrast, if genetic in¯uences on risk of continuing in the smoking

Table 4 Genetic and environmental variance components for smoking initiation and continuation, and 95%
con®dence intervals, estimated under a combined model (see Figure 1 and text for details of model)

Women Men

Finnish Australian Finnish Australian US veterans

Initiation
Additive genetic variance (%) 32 (21±42) 70 (46±92) 31 (19±43) 40 (4±76) 39 (23±56)
Shared environmental variance (%) 59 (50±69) 18 (0±41) 58 (47±69) 51 (15±85) 49 (32±64)
Nonshared environmental variance (%) 9 (6±12) 12 (0±17) 11 (8±15) 9 (3±17) 12 (9±16)

Continuation
Additive genetic variance (%) 49 (16±80) 4 (0±58) 50 (27±71) 71 (31±84) 68 (45±74)
Shared environmental variance (%) 23 (0±47) 57 (7±72) 18 (1±35) 0 (0±36) 1 (0±21)
Nonshared environmental variance (%) 28 (18±42) 39 (26±53) 33 (25±42) 29 (16±45) 31 (26±38)
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habit were statistically independent of genetic in¯uences on risk of initiation of
smoking, odds ratios would be expected to be no higher for cotwins of successful
quitters than for cotwins of continuing smokers.

Table 6 summarizes the results for the multiple logistic regression analyses
predicting persistence in the smoking habit among smokers, with nonsmokers
excluded from the analysis. Here, to facilitate interpretation, we have switched to
using MZ cotwins of successful quitters as a comparison group. As before, the data
from Australian women do not indicate a signi®cant genetic in¯uence on smoking
persistence. For all other groups, however, the odds ratios for DZ cotwins of successful
quitters are signi®cantly greater than unity, consistent with a genetic in¯uence; and in
the Finnish and US veteran males, the odds ratios are signi®cantly higher for MZ than
for DZ cotwins of continuing smokers.

4.1 Likelihood-ratio tests for genetic effects
Inferences about the importance of genetic effects from results summarized in

Tables 5 and 6 are complicated by two factors. First, these analyses do not take into
account possible zygosity differences in the prevalence of smoking. Second, evidence
for genetic effects is derived from multiple comparisons and, as in the case of the
analyses of smoking persistence, not all of these may be signi®cant. A number of
alternative parameterizations of the logistic regression model can be used to provide a
test for genetic effects based on a single degree of freedom. Considering ®rst the case
of smoking initiation, collapsing data from continuing smokers and successful
quitters, we ®tted a logistic regression model which included dummy variables for (1)
twin pair zygosity status; (2) having an MZ cotwin who became a smoker; and (3)
having a DZ cotwin who became a smoker, and compared this to a model which
included only twin pair zygosity status, and an effect of having either an MZ or DZ
cotwin who became a smoker (assumed to be the same regardless of zygosity). A
similar analysis, limited to data from pairs that were concordant ever smokers, was
conducted using smoking persistence as the outcome measure. In each case, a
likelihood-ratio chi-square, estimated as twice the difference in log-likelihoods, was
used to compare the full 3-parameter (plus intercept) and reduced 2-parameter logistic
regression models. Results are shown in Table 7. Except in the case of smoking
persistence in Finnish women, and smoking initiation in Australian men, the test for
genetic in¯uences was in every case signi®cant.

Also shown in Table 7, are the likelihood-ratio chi-squares obtained by ®tting
genetic models to the 2�2 contingency tables for smoking initiation, and for smoking
persistence (excluding pairs where either twin had never smoked), as described
previously. In every case, the chi-square statistic to test the hypothesis of no genetic
in¯uence obtained by structural equation model-®tting and by logistic regression
analysis were very similar. Indeed, if the prevalence estimates were identical in MZ
and DZ pairs, the likelihood-ratio chi-square statistic would be identical regardless of
whether logistic regression or model-®tting approaches were used. This should not be
surprising, since in this latter case we are in either case testing the equality of
proportions in two contingency tables.

In the case of linear regression using continuous outcome measures, Fulker52 has
pointed out that when zygosity is coded as a dummy variable, set to 1.0 for MZ pairs
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and 0.5 for DZ pairs, or more generally set equal to the coef®cient of genetic
relationship (see above),32 ®tting the regression model P = b0 + b1 zyg + b2 cotwin +
b3 (zyg � cotwin) provides direct estimates of genetic and shared environmental
parameters (regression coef®cients b2 and b3, respectively) that are the same as those
obtained by model-®tting methods. The rationale here is that the main effect of
cotwin's score will detect shared environmental in¯uences, while the interaction of
cotwin's score with zygosity will detect genetic effects. A similar parameterization
could be used in the case of logistic regression analysis. However, without considerable
contortions,50 there will be no direct correspondence between the estimated para-
meters of the logistic regression model, and the estimates of genetic and environ-
mental parameters that would be recovered by model-®tting methods. Furthermore,
there is no test for shared environmental effects in the logistic regression model that is
equivalent to the likelihood-ratio chi-square test obtained by model-®tting. Thus,
dropping a shared-environmental parameter from a model allowing for additive gene-
tic and nonshared-environmental effects, in model-®tting analyses of the Finnish
smoking initiation data, produces substantial changes in chi-square (137.43 in women,
47.36 in men); whereas dropping the main effect of cotwin's smoking status from a
logistic regression model produces much more minor changes (�2 = 21.68 in women,
4.20 in men)

4.2 Advantages of a regression approach
Use of a regression approach to the analysis of twin and other family data on

smoking has several attractions. A regression approach is readily extended to test for
possible mediators of genetic in¯uences on smoking behaviours. While genetic model-
®tting approaches can be used for the same purpose,33,47 these are dif®cult to
implement for binary variables, such as continued smoking, that are only assessed in a
subset of individuals (i.e. those who become smokers), and especially so when some of
the same genetic or family environmental factors that determine risk of continued
smoking also determine whether or not an individual becomes a smoker. Many
behavioural genetic studies have shown greater resemblance of MZ than DZ twin pairs

Table 7 Likelihood-ratio tests of hypothesis of no genetic effects on smoking behaviour. (All tests are based
on one degree of freedom, and are signi®cant at the 0.001 level unless otherwise noted)

Women Men

Logistic regression Model-®tting Logistic regression Model-®tting

Smoking initiation �2 �2 �2 �2

Finland 60.75 59.02 70.91 71.99
Australia 45.92 45.34 2.56 (NS) 2.55 (NS)
USA ± ± 61.21 57.48

Continued smoking
Finland 11.91 12.50 18.32 18.18
Australia 0.03 (NS) 0.03 (NS) 7.77** 7.83**
USA ± ± 38.49 38.59

NS = not signi®cant.
**p< 0.01.
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for personality traits,53,54 educational attainments,55,56 and a variety of other psycho-
logical and sociodemographic traits. Thus, it is important to progress beyond the
question of whether there are genetic in¯uences on smoking behaviour, to the question
of how such genetic in¯uences may arise. To the extent that certain variables are
important mediators of genetic in¯uence, including the respondent's scores on these
variables in a multiple logistic regression equation should reduce the estimated
residual association with cotwin's smoking status.

By way of illustration, Table 8 summarizes pertinent personality and sociodemo-
graphic correlates of smoking initiation and persistence in the 1981 survey of the
Australian twin panel, controlling for birth cohort, estimated from a multiple logistic
regression analysis and Table 9 summarizes the partial odds ratios for the association
with cotwin's smoking status when these sociodemographic and personality variables,
as well as birth cohort, are controlled for. In Table 8, the odds ratios for continuous
personality measures are computed for a change in score equal to the inter-quartile
range for each measure. In terms of personality, those who become smokers are more
likely to be extroverted, neurotic, socially nonconforming, and (if women) tough-
minded, as assessed by the Eysenck Personality Questionnaire.57 They are less likely to
report a Protestant (e.g. Methodist) or (if women) Jewish religious af®liation, and
more likely to report a religious af®liation of Roman Catholic (if men), or to report no
religion (if women). They are more likely to be unmarried, or separated or divorced.
For all of these measures, substantial twin pair resemblance has previously been
reported.53,56,58

Table 9, however, shows that the familial transmission of personality and socio-
demographic factors only partially explains twin pair concordance for the initiation
and persistence of smoking. While odds ratios are certainly reduced, compared to
those in Tables 5 and 6 that were not adjusted for personality and sociodemographic
variables, the ®ndings show signi®cant evidence for genetic effects on smoking

Table 8 Sociodemographic and personality correlates of initiation and continuation of smoking in the
Australian twin panel 1981 survey, estimated by multiple logistic regression

Women Men

Initiation Continuation Initiation Continuation

OR 95% CI OR 95% CI OR 95% CI OR 95% CI

Never married 0.73 0.62±0.86 1.65 1.29±2.12 0.75 ± ±
Separated/divorced 1.85 1.43±2.40 ± ± 1.52 1.18±1.95 ± ±
0±10 years education 1.58 1.29±1.94 2.15 1.58±2.91 2.55 1.91±3.41 1.95 1.34±2.85
11±12 years education 1.59 1.32±1.91 1.48 1.12±1.95 1.78 1.43±2.22 1.96 1.44±2.96
Other Protestant religion 0.59 0.51±0.68 ± ± 0.58 0.47±0.73 ± ±
Roman Catholic religion ± ± ± ± 1.52 1.18±1.95 ± ±
No religion 1.37 1.07±1.75 ± ± ± ± ± ±
Jewish/other minority religion 0.57 0.41±0.81 ± ± ± ± ± ±
Extraversion (E) 1.80 1.60±2.01 1.24 1.05±1.48 1.32 1.12±1.55 ± ±
Neuroticism (N) 1.40 1.24±1.58 ± ± 1.42 1.19±1.69 ± ±
Social nonconformity (L) 1.43 1.27±1.60 ± ± 1.68 1.41±1.91 ± ±
Toughmindedness (P) 1.38 1.24±1.53 1.20 1.03±1.48 ± ± 1.31 1.11±1.53

Note all analyses also control for birth cohort.
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initiation in women, and on persistence of smoking in men. As before, we ®nd
signi®cant evidence for familial in¯uences on persistence of smoking in women, but
there is not signi®cant evidence for a genetic in¯uence. However, there is also no
longer signi®cant evidence for genetic effects on smoking initiation in men, although
there is still strong evidence for strong familial (but possibly shared environmental)
in¯uences. Constraining MZ male odds ratios to be the same as DZ male odds ratios,
produces a clearly nonsigni®cant likelihood-ratio chi-square (�2 = 4.02, df = 3, p =
0.26, without adjustment for the nonindependence of observations on twin pairs).

A regression approach also extends readily to a survival analysis framework,59 using
proportional hazards or accelerated failure-time models to take into account the fact
that data on many current smokers are `censored' in the sense that they have not been
followed for long enough to have quit smoking. Use of a simple binary classi®cation of
current versus ex-smoker loses important information, for example, twins who are
current smokers but have only smoked for a few years will surely include many more
future successful quitters than twins who have smoked for several decades. It is indeed
remarkable that such robust evidence for genetic in¯uences on the persistence of
smoking has emerged despite the crudeness of the summary measure of smoking
status that has most often been used for analysis. While attempts have been made to
combine the elements of genetic and accelerated failure-time models,60 ®tting such
models has proved computationally intensive, and their application to multivariate
problems a daunting prospect. Fitting survival models using dummy variables to
represent the cotwin's smoking history circumvents these problems.

5 Discussion

We have given a brief and selective review of methods that have been applied in
genetic analyses of smoking data. We have focused on twin data because adoption data
on smoking persistence are rare, and because interpretation of intergenerational data
is made more complicated by changes in the regulation and marketing of cigarettes
(e.g. changing nicotine yields). Although a variety of different approaches have been
advocated for the summary of twin pair concordance,43,45 we have focused on two
complimentary approaches ± genetic model-®tting under a normal-liability threshold
model, and logistic regression analysis ± which yield quantitatively similar likelihood-
ratio chi-square tests for the signi®cance of genetic effects on smoking. Our illustrative
analyses con®rm previous reports of a signi®cant and substantial genetic in¯uence on
smoking persistence,14,15 at least in men, and in the case of the Australian data, extend
these by showing that genetic effects cannot be accounted for by the inheritance of
sociodemographic or personality variables. As the evidence for a strong genetic
involvement in the course of cigarette smoking continues to grow, statistical ap-
proaches focused on gene-mapping21,61,62 are likely to assume increased importance in
smoking research as in most other areas of genetic research.
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