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A, survival analysis regression model is de­
scribed for analyzing twip. data on the age-at­
menarche. The model includes latent genetic 
and environmental covariates and allows one 
to test hypotheses regarding the nature of fa­
milial aggregation for age-at-onset. Addi­
tionally, the model accommodates a variety of 
baseline survival distributions and therefore 
may be used to test different developmental 
hypotheses. Model-fitting results indicate 
that a survival model with a baseline gamma 
distribution gives an adequate fit to recalled 
age-at-menarche of 1,888 pairs of Australian 
female monozygotic and dizygotic twins. Fur­
ther, results show that additive genetic and 
dominance genetic effects contribute to 
shared variation in age-at-menarche. If there 
are common environmental influences on the 
timing of menarche, they are completely ob­
scured by nonadditivity in genetic factors, 
and information from other relationships 
would be required to detect their effect. 
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INTRODUCTION 

Two approaches have been used previously to study 
genetic influences on the age-at-menarche. The first has 
been to test the significance and compare the magnitude 
of intrapair similarity measures (intraclass correla­
tions, product-moment correlations, or intrapair mean­
differences) computed from mother-daughter or twin 
data sets [Popenoe, 1928; Kantero and Widholm, 1971; 
Gedda and Brenci, 1975; Fishbein, 1977; Gam and 
Bailey, 1978]. Results from these studies have indicated 
a familial aggregation of pubertal timing, which" to 
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some extent, is attributable to genetic effects. However, 
the magnitude of th~ effects remains unknown. Al­
though in some cases Holzinger's [1929] heritability 
estimate has been derived from monozygotic (MZ) and 
dizygotic (DZ) twin correlations [Gedda and Brenci, 
1975], the estimator may be biased due to its insen­
sitivity to sampling variance and between family envi­
ronmental influences [Nichols, 1965; Jinks and Fulker, 
1970]. As a consequence, this heritability estimate of­
fers little in its predictive power. 

The second approach to studying genetic influences on 
menarche has been to use maximum likelihood model­
fitting methods [Eaves et aI., 1978] on twin data sets to 
estimate and test the significance of genetic and envi­
ronmental components of phenotypic variance [van den 
Akker etal., 1987; Treloar anc;l Martin, 1990]. Because it 
yields unbiased heritability estimates and allows the 
testing of specific inheritance hypotheses, this method 
is to be preferred over similarity comparisons. However, 
current approaches to model-fitting have limitations: 
they assume normality of age-at-menarche, and they 
are not easily applied to data sets with censored obser­
vations (i.e., individuals who have not yet begun to men­
struate). Moreover, the methods do not allow the testing 
of developmental hypotheses regarding the mechanisms 
through which the familial age-at-onset correlation 
arises. 

With the shortcomings of the previous methods in 
mind, we suggest a new approach to the analysis of twin 
data on the age-at-menarche. Here, survival analysis 
methods, introduced by Meyer and Eaves [1988], are 
used to model the age-at-menarche as a failure-time. 
'l\vin correlations between failure-times are parame­
terized by including latent genetic and environmental 
effects in a failure-time regression model. Additionally, 
a developmental hypothesis_is tested by adopting the 
gamma distribution as the baseline distribution of the 
regression model. This age-at-onset model is then ap­
plied.b.C_~ecalled age-at-menarche of 1~ pairs of 
Australian female twins. 

MATERIALS AND METHODS 
Subjects and Items 

The Australian National Health and Medical Re­
search Council (NH&MRC) twin data base has been 



described in detail by others LJardine et aI., 1984; Mar­
tin and Jardine, 19861. Briefly, between November 1980 
and March 1982, questionnaires were mailed to 5,967 
adult (ages 18 to 88 years) twin pairs from the volunteer 
Australian NH&MRC Twin Register. After reminders 
were sent to non-respondents, questionnaires were re­
turned by 3,810 complete twin pairs, representing a 64% 
pairwise response rate. Of the respondents, 1,984 were 
female-female pairs. 

Zygosity was diagnosed through questionnaire items 
regarding physical similarity and confusion in recogni­
tion by others [Jardine et al., 1984]. When compared to 
,blood-typing, this method of zygosity determination has 
been found to be approximately 95% accurate in other 
twin populations [Nichols and Bilbro, 1966; Kasriel and 
Eaves, 1976]. From the questionnaire responses, 1,233 
female-female pairs were diagnosed as MZ twins, while 
751 were determined to be DZ. 

The female twins were asked to complete severn' 
items regarding their reproductive history. These in­
cluded items on menstrual history, contraceptive use, 
pregnancy, and childbearing. One of the menstrual 
items was "How old were you when you had your FIRST 
menstrual period?" The twins were asked to give both 
the year and month at menarche; 1,178 complete MZ 
and 711 complete DZ pairs noted at least the year in 
which their periods began. A genetic analysis of the 
covariance structure of these items has been described 
by Treloar and Martin [1990]. 

A subset of 67 individuals who had responded to the 
main questionnaire had previously (about 3 months ear­
lier) completed a pilot questionnaire. A test-retest cor­
relation of 0.91 ± 0.13 (P < 0.001) indicates that the 
self-reports of age-at-menarche are quite reliable over 
the 3 month interval. Unfortunately, we had no means 
of assessing the validity of the responses. 

A Survival Analysis Model 
for Correlated Ages-at-onset 

The failure-time regression modeL A survival 
model for the analysis of familial age-at-onset data has 
been described previously by Meyer and Eaves [1988] 
and Meyer [1989]. In essence, the accelerated failure­
time model (a regression model commonly used in sur­
vival analysis) is modified to include latent genetic and 
environmental covariates. The basic accelerated fail­
ure-time model makes use of the fact that parametric 
survival models are linear in Y = log T, where T is a 
non-negative random variable representing an individ­
ual's time to failure (Kalbfleisch and Prentice, 1980]. 
Specifically, a general linear model for Y is 

Y = -logfL + (7-1 W (1) 

whpre fL and (7 are parameters of the survival distribu­
tion of interest (e.g., the log-normal, exponential, 
Weibull, or gamma) and W is a random error term, with 
density defined by the parameters of the baseline distri­
bution. To include covariates in this model, logfL is re­
placed with 0: + zp t, with 0: being a scaling parameter 
for the population, z, a row vector of s covariates (z = 
(Zl, ... , z.) 1 and p the corresponding vector of regression 
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coefficients. As a consequence, the covariates act ad­
ditively on log failure-time or multiplicatively on the 
failure-time itself. They effectively accelerate or decele­
rate an individual's progression along the time axis by 
increasing or decreasing the value of logfL. 

To introduce latent heterogeneity in an accelerated 
failure-time mo9,el, the existence of a latent "aging" 
covariate, z, is postulated. For.a multifactorial age-at­
onset model, it is assumed that z is influenced by a large 
numoo.r of genetic and environmental effects. If these 
effects act additively and independently, and if there is 
random mating for factors that influence pubertal tim­
ing, then quantitative genetic theory predicts that the 
distribution of z will tend towards normality as the 
number of influencing factors approaches infinity 
[Fisher, 1918]. For convenience, we assume that the 
latent aging covariate is N(O, U-

In a pair of relatives, latent aging covariates Z1 and ~ 
follow a bivariate normal distribution with correlation r 
[denoted <I>(Zlt Z2; r)]. The correlation reflects familial 
aggregation for age-at-onset. If ages-at-onset are avail­
able from informative pairs of relatives, then r may be 
partitioned into genetic and environmental sources of 
shared variation. As an example, the path diagram 
[Wright, 1934] in Fig_ 1 indicates additive genetic (A), 
dominance genetic (D), shared environmental (CE), and 
specific environmental (SE) effects on z in MZ and DZ 
twins. Assuming there is no genotype-environment in­
teraction, genotype-environment covariation or assorta­
tive mating, then, from Fig_ 1, expected MZ and DZ, twin 
correlations for the latent aging covariates are easily 
derived. By the rules of path analysis, r mz = h2 + c2 + rf­
andrdz = 1I2h2 + C + 114£, whilevar z = h2 + C + rf­
+ t?-. Since estimates of rf- and c2 are confounded in data 
from twins reared together [Eaves, 1970; Martin et aI., 
1978], the MZ and DZ age-at-onset correlations may be 
parameterized in terms of h2 and c2 or h2 and rf-. In either 
case, the difference between a variance of unity and the 
expected MZ correlation yields an estimate of e:-. 

1 or 1/4 

1 or 1/2 

o SE A CE A SE 0 

~l/~ly 
z ----~-z 2 

Fig. 1. Path diagram indicating dominance genetic (D), specific 
environmental (8E), additive genetic (AI, and common environmehtal 
(eEl effects on latent aging covariates in twin pairs_ d. e. h. andc are the 
corresponding path coefficients for these effects. The MZ additive and 
dominance genetic correlations are both equal to LO, while the DZ 
additive and dominance genetic correlations are equal to 0_5 and 0.25. 
respectively_ 
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Baseline distribution and likelihood formula­
tions. The method of maximum likelihood may be 
used to estimate the parameters of the accelerated fail­
ure-time model with latent covariates once a baseline 
distribution has been chosen. Although anyone of a 
number of survival distributions could be used for this 
purpose, we have hypothesized (Meyer and Eaves, 1988; 
Meyer, 1989] that age-at-onset is determined by a 
gamma or mUltiple hit process. The reasons for choosing 
this distribution are threefold: it has been used previ­
ously by geneticists to describe the age-at-onset of mit­
ral valve prolapse [Strahan et al., 1983], Alzheimer dis­
ease [Chase et aI., 1983; Breitner et aI., 1986], and death 
(Murphy, 1978; Murphy et aI., 1987]; the parameters 
which define the distribution are heuristically appeal­
ing; and the distribution provides a flexible, positively 
skewed density function over a positive range of values. 
The latter two of these reasons are detailed below. 

In a gamma process, a number ofinsults or "hits" (-y) 
must occur prior to the "failure" of an organism or prod­
uct of interest. These hits occur independently, with the 
inverse of the mean waiting-time between hits given by 
~, the distribution's rate parameter. The gamma distri­
bution is thus equivalent to the convolution of -y identi­
cal exponential processes [Murphy, 1978]. 

When a gamma distribution is specified in the acceler­
ated failure-time model (equation I), CT is fixed to 1.0, ~ 
is simply the inverse ofthe mean waiting-time between 
. the hits of the process, and the value of -y determines the 
mean and variance of the random error term W 
[Kalbfleisch and Prentice, 1980]. Specifically, as -y in­
creases, the mean of W increases while the variance 
decreases due to an individual's age-at-onset becoming 
a better index of the rate prameter. 

Given Ji and the number of hits, -y, the gamma proba­
bility density function (p.d.f.) at time t is 

(2) 

where the - gamma function, f(-y), is equal to 
(oV.,-l exp( -v)dv, which is equivalent to (-y - 1)! for 
integer values of -y [Kalbfleisch and Prentice, 1980]. The 
skewness of the distribution decreases with increasing 
-y: when -y = 1, the distribution is exponential, as -y-+ 00, 

it approaches normality [Bartlett and Kendall, 1946]. 
Because of this relationship between -y and skewness, -y 
is termed the shape parameter of the distribution. On 
the other hand, ~ is a scaling parameter. Decreases in ~ 
result in increases in the mean and variance of the 
distribution but do not affect its higher moments. 

In this application, an individual's failure-time is 
equivalent to her age-at-menarche. Hits of the gamma 
distribution, then, may be thought of as biological 
events that occur prior to menarche, such as hormonal Ol 

steroidal changes. The parameter ~, on the other hand, 
is hypothesized to reflect the rate at which these events 
occur. One possible determinant of ~ is an individual's 
metabolic rate [Cameron et aI., 1985]. If individual dif­
ferences exist in metabolic rate or any other factor that 
contributes to the production of hormones or steroids, 

then the rate parameter ~ will vary in the population and, 
using the accelerated failure-time model discussed previ­
ously, may be parameterized in terms of exp (a + z(3). 

With the introduction of a covariate, equation 2 is 
rewritten as 

f(t;z) 
(3) 

exp(a + z(3)(exp(a + z (3)W - 1 exp( -exp(a + z(3)t) 
f(-y) 

From this, the likelihood of observing N ages-at-onset or 
ages-at-observation (i.e., censored observations) (tu i = 
I, ... ,N), each with latent aging covariate Zi, may be . 
formulated. As noted previously, we use a multifactorial 
model for the latent covariate z and assume that Z is 
N(O, 1). Additionally we assume independent censoring, 
or censoring that does not depend upon the yalue of the 
covariate or the individual's time to failure [KalbfleiSch 
and Prentice, 1980]. The likelihood (with respect to -y, a, 
and (3) is then 

where 4>(z;l is given by the standard normal p.d.f., k i is an 
indicator variable [ki = 1 if ti is a failure-time; ki = 0 if t; 
is a (censored) survival time], and S(ti; Zi) is the gamma 
survival function, or the probability that an individual 
will survive longer than t i• S(ti;Zi) is equivalent to 1 
minus the cumulative prob~bility offailure by time t; or 

I: xy-lexp(-x)dx 

1- [(-y) 

where s = (exp(a + Zi 13K) [Kalbfleisch and Prentice, 
1980]. 

Similarly, the joint likelihood of observing N pairs of 
related individuals with correlated latent aging covari­
ates Zli and Zz;; ages-at-onset or ages at observations tii 
and ~; and indicator variables kli and k2i (i = 1, ... ,N> 
is 

Equation 5 may be maximized with respect to a,I3,-y, 
and r or, alternatively, with informative data sets, r may 
be parameterized in terms of shared genetic and envi­
ronmental components of variance and the likelihood 
maximized with respect to these p"dLameters. 

Computation 

A FORTRAN program (GAMEST) was written to 
minimize the negative logarithm of the marginal and 
joint likelihoods in equations 4 and 5. GAMEST utilizes 



subroutines from the Numerical Algorithms Group 
(N.A.G.) (1988] software library for integration and 
minimization purposes. Subroutine DOIFBF evaluates 
the integrals with Gauss-Hermite quadrature, while 
subroutine E04JBF uses a quasi-Newton algorithm for 
minimization. We have used GAMEST on simulated 
data sets with and without censored observations and 
have found it to yield fairly accurate and precise param­
eter estimates {Meyer and Eaves, 1988; Meyer, 1989]. 

GAMEST computes the matrix of information real­
ized at the final solution with a numerical procedure 
outlined by Davis and Polonsky {l965]. The matrix may 
then be inverted, resulting in approximate variances 
and covariance for the parameter estimates. Standard 
errors derived from these variances may be used in the 
standard normal test statistic for hypothesis testing 
about ii and ~; however, the asymmetries of the likeli­
hood surfaces with respect to f and l' indicate that the 
likelihood ratio statistic is more appropriate fot"hypoth­
esis testing about these parameters (Meyer, 1989] .. 

Data Analysis 

For the analyses described below, it was assumed that 
the twins, who were all at least 18 years old at the time of 
questionnaire completion, had passed through the nor­
mal population's "risk period" for the onset of menstrua­
tion. Non·responses to the menarche item were there­
fore assumed to be due either to: 1) a true (but abnormal) 
absence of menarche; or 2) a failure to respond, even 
though menstruation had begun. Both cases were con­
sidered to be contaminants of the data set and were thus 
discarded rather than treated as censored observations. 
Further, in all analyses, age-at-onset was treated as a 
continuous variable, given in decimal years. This treat­
ment, however, was not strictly correct since many indi­
viduals (1,400 MZ and 851 DZ) only noted the year, and 
not the month, at menarche. Properly, when only age in 
years is available, it should be treated as a discrete 
variable, and the marginal andjoint likelihoods in equa­
tions 4 and 5 should be adjusted accordingly to integrate 
over all possible ages in an age category. However, this 
adjustment would have greatly increased computing 
time, which was already at a maximum. Thus, we as­
sumed that age-at-onset was continuously distributed, 
while noting that specific environmental effects on age­
at-onset (error variance) may increase and twin correla­
tions, decrease, due to the failure to account for the 
discrete nature of the data. 

Comparing MZ and DZ marginal distributions_ 
One prediction under the multifactorial model described 
above is that MZ and DZ marginal age-at-onsetdistribu­
tions will not differ. Failure of this prediction would 
indicate that the simple genetic and environmental 
model used to account for within and between pair varia­
tion is not appropriate, and an alternative hypothesis 
must be considered. In order to test the equivalency of 
MZ and DZ age-at-onset distributions, the FORTRAN 
program GAMEST was used to maximize the logarithm 
of the marginal likelihood in equation 4 for the zygosity 
groups separately and jointly. A likelihood ratio chi­
square test was then used to compare the two models. 
This test statistic has 3 degrees offreedom and is equal 
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to twice the difference of the sum of the log-likelihoods 
for the separate zygosity groups (a six parameter modeD 
and the log-likelihood for the combined groups (a three 
parameter model). It should be noted that this compari­
son will lead to more type [ errors than expected from a 
chosen significance level. This is due to the fact that the 
correlation betweqn observations has not been modeled 
and, as a result, the standard errors for the parameter 
estimates will actually be greater than those computed 
[Cox and Oakes, 1984]. Consequently, the test for an 
MZlDZ distributional differences is liberaL 

The goodness-of-fit of the more appropriate marginal 
model (i.e., the model with either separate or joint zy­
gosity parameters) was assessed with a chi-square test 
by comparing observed and expected frequencies of 
ages-at-onset for each of nine age-at-onset categories. 
Expected frequencies were calculated by integrating the 
likelihood in equation 4 (with maximum likelihood esti­
mates of 0:, 13, and "y) between age-at-onset categories. 
Chi-square tests were then carried out separately on the 
marginal distributions of the first and second born 
twins, since a test on the combined marginal distribu­
tions may lead to an erroneous rejection of the gamma 
model due to the correlation between observations. 

Fitting bivariate models and testing inheritance 
hypotheses. Using the program GAMEST, the log­
arithm of the likelihood in equation 5 was first maxi­
mized with respect to"Y, «, 13, r mz. and rclz. A second model 
was then fit that again included "y, 0:. and 13 but parame­
terized r au; and rclz in terms of genetic and environmental 
variance components. As pointed out previously, these 
parameterizations may include either additive genetic 
(A) and dominance genetic (D.) effects or additive genetic 
and common environmental effects (CE), but may not 
include all three variance components. The choice of an 
A, D model or an A, CE model was guided by the esti­
mates of the latent aging correlations. Specifically, iff cIz 

was less than 0.5f mz. the correlations were parame­
terized in terms of additive genetic and dominance ge­
netic effects, while if fclz was greater than 0.5fau;, an 
additive genetic and common environmental model was 
fit. (The reverse parameterizations were not considered 
since they would yield negative estimates of variance 
components.) One of the alternative models then served 
as a full model against which reduced models (with only 
additive genetic or common environmental effects) were 
compared by likelihood ratio chi-square tests. If the 
reduced model did not give a significantly worse fit to 
the data than the full model, it was chosen as the best 
model; otherwise, the full model was accepted. Since it is 
very unlikely biologically {Eaves, 1988], we did not con­
sider a reduced model with only dominance genetic ef­
fects. 

RESULTS 

Summary statistiCs for both zygosity groups are given 
in Table L Of note is the significant positive skewness in 
all marginal distributions. The Kolmogorov D statistic 
indicates that none of these distributions are normal, 
with P < 0.01 in all cases. 

When gamma accelerated failure-time models were 
fitted to the marginal distributions of responses from 
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TABLE I. Summary Statistics for the Age-at-Menarche of Australian Twins* 

Monozygotic Dizygotic 

Twin 1 Twin 2 Twin 1 Twin 2 

N 1178 1178 711 711 
Mean 
Skewness 
Kurtosis 

13.13 (1.43) 
0.46 (0.07) 
3.99 (0.15) 

13.14 (1.43) 
0.40 (0.07) 
3.45 (0.15) 

13.14 (1.37) 
0.15 (O.09) 
3.15 (0.18) 

13.10 (1.42) 
0.26 (0.09) 
3.06 (0.18) 

., Twins 1 and 2 denote first and second born twins. For means, standard deviations are in parentheses; for 
coefficients of skewness and kurtosis, standard errors are in parentheses . 
• The twin product-moment correlation. 

MZ and DZ twins jointly and separately, a likelihood 
ratio chi-square test indicated that the distributions for 
the two zygosity groups did not differ significantly (X~ = 
1.49, P = 0.68). Therefore, a basic assumption of the 
hypothesized multifactorial inheritance model has not 
been violated. For the model fitted to data from both 
zygosity groups, maximum likelihood estimates of -y, ex, 
and /3 were 461.3 ± 10.0, 3.54 ± 0.01, and 0.0936 ± 
0.0014, respectively. The standard normal test statistic 
indicates that /3 is significant (Z = 66.8; P < 0.001), 
suggesting that there are individual differences in the 
rate parameter of the gamma distribution. 

Goodness-of-fit tests indicated that the gamma accel­
erated failure-time model provides a marginal fit to the 
data from first born twins (ts = 1l.25,P = 0.047) and an 
adequate fit to the data from second born twins (X~ = 
6.64, P = 0.25). Observed and expected cell frequencies 
for each of nine age-at-onset categories are shown in 
Table II. ornote is the overestimate of twins with ages­
at-menarche between 15 and 16 years, and the under­
estimate of twins with ages-at-menarche between 16 
and 17 years. 

The bivariate model-fitting results are shown in Table 
m. In model I, we have estimated rmz and rdz as well as 
the parameters of the gamma log-linear model. The 
estimates of ex, /3, and -y are quite similar to those ob­
tained from the marginal analysis; and using the stan­
dard normal test statistic, are all significant(P < 0.001). 
Noteworthy is the fact that the latent aging correlations 
(f mz and ftJJ are both greater than the observed age-at­
onset correlations. This is expected since, in the log­
linear model (equation 1), Y, the logarithm of time to 

TABLE II. Observed and Expected Cell Frequencies for 
Age-at-Menarche Under the Gamma Accelerated 

Failure-Time Model 

Age-at·menarche 
(t, in years) 

t < 10 
10:5 t < 11 
11 :5 t < 12 
12:5 t < 13 
13:5 t < 14 
14 :5 t < 15 
15 :5 t < 16 
16 :5 t < 17 

t> 17 

• x', = 11.25, P = 0.047. 
b x', = 6.64. P = 0.25. 

Expected 

6 
53 

225 
460 
522 
368 
174 
61 
20 

7 
49 

218 
459 
545 
372 
146 
77 
16 

Observed 

8 
49 

·223 
-407 
528 
361 
157 
76 
20 

TABLE III. Gamma Associated Failure-Time Model-Fitting 
Results for the Age-at-Menarche of Australian 'l\vinst 

Parameters 

a 
f3 
'Y 
-2LRa 

Maximum likelihood estimates 
Model I Model n Model ill 

0.71 (0.01) 
0.22 (0.04) 

3.56 (0.02) 
0.097 (0.002) 
459 (13) 

0.17 (0.11) 
0.54 (0.18) 
0.29 
3.56 (0.02) 
0.097 (0.002) 
459 (13) 

0.71 (0.0l) 

0.29 
3.54 (0.04) 
0.097 (0.001) 
449 (12) 

10.3b 

tStandard errors are given in parentheses . 
• - 2LR is the likelihood ratio criterion against the full model. 
bp < 0.01. 

failure, is a function of the shared aging effect as well as 
a random effect, W. 

In considering an inheritance model for the latent 
aging correlations, we noted thatfdz waS less than 0.5f_. 
It was therefore more appropriate to parameterize the 
correlations in terms of additive and dominance genetic 
effects rather than additive genetic and common envi­
ronmental effects. The parameter estimates under this 
full genetic model (model II, Table rrn indicate that 
dominance genetic effects account for 54% of the total 
variance of z, while additive genetic effects account for 
only 17%. An estimate of the specific environmental 
variance component is obtained by subtracting the total 
genetic variance from 1, yielding an estimate of 29%. 
When a reduced model with only additive genetic effects 
(model lID is compared to the full model by a likelihood 
ratio chi-square test, the statistic indicates that the 
reduced model provides a significantly worse fit to the 
data (x~ = 10.31, P < 0.001). Consequently, we accept 
the full genetic model as the best model. 

DISCUSSION 

The survival model we have described allows for indi­
vidual differences in developmental mechanisms and 
provides.a framework for testin.g hypotheses regarding . 
the nature of these differences. Certainly, parameter 
estimates of the gamma distribution, or any other base­
line distribution, will not have a strict biological inter­
pretation due to the complexity of the physiological 
changes occurring prior to menarche and the relative 
simplicity ofthe parametric processes. However, the es­
timates may provide some insight into development and 



allow us to make distributional and correlational predic­
tions for other data sets. 

Not surprisingly, our model-fitting results suggest 
that a large number of events (-y) occurs prior to men­
arche. Attempting to account for each of these hits would 
certainly be a formidable, and unreasonable, task. In­
stead, insight into the appropriateness of the gamma 
distribution could be gained by estimating -y from addi­
tional data sets to determine whether the complexity of 
the developmental process, rather than the speed, is a 
replicable phenomenon. Further, other developmental 
milestones, highly correlated with the age-at-men­
arche, could be modeled to determine whether the rela­
ti ve timing of these events is paralleled in the relative 
estimates of-y. 

Additional model-fitting results from both the margi­
nal and bivariate analyses yield a significant estimate 
. of 13; suggf'..sting that individual differences do exist in 
the inverse of the mean waiting-time between the hits of 
the gamma process. However, it is the extent to which 
these differences contribute to variability in Y (the log­
arithm of age-at-onset), versus the extent to which vari­
ability in Y is due to within individual variability in the 
waiting time between hits, which is perhaps of greater 
interest to the geneticist. This contribution of the latent 
aging covariate to total variation in Y is derived from 
equation 1 and given by the ratio 132/(132 + var(W). (As 
noted in our discussion of the baseline gamma distribu­
tion, var(W) depends upon -y, decreasing with increasing 
values of the parameter.) For the maximum likelihood 
parameter estimates of model I (Table III), the ratio 
above is equal to 0.81. Thus, under the gamma model, 
most of the variation in age-at-onset can, in fact, be 
ascribed to individual differences in J.L. 

Mter detecting significant individual differences in 
the rate parameter of the gamma model, we set out to 
determine the nature of these differences. The genetic 
and environmental model-fitting results indicated that 
a model including additive genetic, dominance genetic, 
and specific environmental effects was more appropri­
ate than one with additive gene action and specific envi­
ronmental effects alone. From the parameter estimates 
under the full model, we calculate that 71% of the varia­
tion in the latent aging covariate is due to dominance 
and additive genetic effects, while only 29% is due to 
individual environmental influences. Further, using 
the estimated variation in Y due to the latent aging 
covariate (81%), we find that dominance genetic effects 
contribute to 43% of the total variation in Y, while 
additive genetic effects contribute to only 14%. 

The detection of dominance for age-at-menarche is 
especially intriguing since directional dominance ef­
fects are often found for fitness traits [Wimer and 
Wimer, 1985; Treloar and Martin, 1990], and the age at 
which a female begins to menstruate would certainly 
affect her reproductive fitness. However, it is important· 
to mention that alternative hypotheses may be invoked 
to explain the small DZ twin correlation, which we have 
taken as evidence for dominance. These alternative ex­
planations include sibling interaction effects, i.e., the 
onset of menstruation in one twin affecting the onset in 
her co-twin [Eaves, 1976; Carey, 1986; Treloar and Mar-
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tin, 1990] or epistatic effects, i.e., interactions between 
different loci involved in a trait (Mather, 1974; Eaves 
1988]. In their analysis of the covariance structure ofth~ 
menarche data, Treloar and Martin [1990] test the hy. 
pothesis of sibling interaction and conclude that it does 
not provide a better explanation of the data than the 
alternative gen~tic hypotheses. However, they point out 
that a dominan~ versus epistatic model cannot be re­
solved without additional data: from mothers and daugh­
ters .. When available, these data must be interpreted 
with ~re, given the noted secular trend in the men­
archeal age of Australian twins (Treloar and Martin, 
1990]. 

The absence of a common environmental influence on 
age-at-menarche is somewhat surprising. Other inves­
tigators (Cameron et aI., 1985; Belmaker, 1982; Bielicki 
et aI., 1986] have shown that diet and social class influ­
ence age-at-menarche and these factors would pre­
sumedly be shared as equally by DZ twins as by MZ 
twins living in the same household. However, it may be 
that the variability in diet or social class in this volun­
teer twin sample is so low that a common environmental 
influence is not detectable. Alternatively, common envi­
ronmental influences may be obscured by the large 
amount of genetic nonadditivity. Data from other rela­
tionships (e.g., unrelated girls reared together) would be 
required to explore this latter possibility. 

In conclusion, our results suggest that genes playa 
substantial role in determining the age at which Aus­
tralian females begin to menstruate. This fmding 
agrees with previous work that has yielded Holzinger's 
heritability estimates ranging from 0.70 to 0.80 [Gedda 
and Brenci, 1975; Fishbein, 1!;}77] and mean pair differ­
ences typically less than 4 months in MZ twins, but 
6-12 months in DZ twins [Fishbein, 1977; Sklad, 1977]. 
However, since the gamma accelerated failure-time 
model has allowed us to test specific developmental and 
inheritance hypotheses, it is more informative and has 
greater predictive power than the methods that have 
been used previously to study genetic effects on the 
timing of menarche. 
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