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A model is presented which allows for the contribution of genes and en- 
vironment to categorical data on multiple symptoms. The model distin- 
guishes between parameters needed to express the relationship between 
a latent trait and observed responses and the parameters required to 
represent the causes of  variation in the latent trait. The regression of the 
latent trait on covariates may also be specified. The model is applied to 
symptoms of  depression in 1983 pairs of  adult female monozygotic and 
dizygotic twins. A model which allows only for polygenic variation in the 
latent trait is supported as well as the "mixed model," which also allows 
for the effects of  a major gene. The likelihood is significantly lower when 
all genetic effects are ascribed to a single gene. Practical limitations of 
the method are discussed. 
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regation; polygenes; psychometrics; heritability. 

I N T R O D U C T I O N  

M a n y  d i a g n o s e s  a re  a c h i e v e d  b y  c o m b i n i n g  d a t a  on  a n u m b e r  o f  s y m p -  
toms .  This  is e s p e c i a l l y  the  ca se  wi th  p s y c h i a t r i c  d i s o r d e r s ,  w h i c h  m a y  
b e  d i a g n o s e d  on  the  bas i s  o f  r e p o n s e s  to a n u m b e r  o f  spec i f i c  i t ems  in a 
s t a n d a r d i z e d  i n t e rv i ew .  S imi la r ly ,  m a n y  p s y c h o l o g i c a l  t e s t  s co re s  a r e  as-  
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signed to individuals on the basis of their answers to a number of dicho- 
tomous items. 

Such complex diagnoses and scores may present particular problems 
for genetic analysis because the categories or scores assigned may not be 
related in a simple fashion to the primary dimension on which genetic and 
environmental effects operate. The same basic underlying biological or 
psychological variable may be assessed more or less arbitrarily by a num- 
ber of different sets of items. Before embarking on any genetic analysis, 
therefore, it is necessary to recognize that the items of which our scales 
are composed can influence the findings of our analysis and that failure 
to take into account the properties of our measurements may lead to 
erroneous conclusions about the number and action of genes in the de- 
termination of a particular trait. Eaves (1983) has shown, for example, 
that the effects of a major gene might be inferred incorrectly when no 
allowance is made for the relationship between the latent dimension on 
which genetic effects are primarily expressed and the test scores used to 
summarize behavior. A similar problem is expected to arise when statis- 
tical methods such as linear discriminant function analysis are used to 
generate scores which are then examined directly for evidence of mul- 
timodality (e.g., Cloninger et al., 1985). 

We present a model for multiitem data which incorporates the dis- 
tinction between the "genetic" and the "psychometric" aspects of the 
primary data. Although we describe the model as it would be applied to 
multiple items of a psychological test, the same approach can be employed 
in the analysis of any set of multiple-symptom data generated by system- 
atic clinical diagnosis according to a clinical interview schedule. The 
model is illustrated by application to multiple symptoms of depression in 
a large sample of female monozygotic and dizygotic twins. 

THE MODEL 

We distinguish two parts of the model. The "genetic" component 
represents the causes of family resemblance in a hypothetical latent di- 
mension. The genetic model is summarized in the (multivariate) frequency 
distribution of the latent trait in the population of families from which a 
sample has been drawn. The second, "psychometric" component de- 
scribes the relationship between the latent dimension and the responses 
of individuals to the test items or the symptoms on a physician's checklist. 

There is already an extensive psychometric literature on "latent 
trait" models for psychological test data (e.g., Lord and Novick, 1968; 
Boek and Lieberman, 1970; Book and Aitkin, 1981). Mislevy (1984) used 
a latent trait model to test for component normal distributions in the dis- 
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tribution of spatial ability caused by a hypothetical sex-linked locus but 
did not employ family data in the analysis. 

There are several possible models for the relationship between a sub- 
ject 's  score on a latent trait and the probability that he/she will endorse 
a particular item on a test. We assume that the probability that a given 
dichotomous item will be endorsed is a cumulative normal function of the 
subject's latent trait value. Thus, writing Xi for the response (zero-one) 
to the ith item and 0 for the trait value of the subject, the probability of 
endorsement is 

1 fa f~  P , ( O )  : _ e 

The parameter ai is the "discriminating power"  of the item. The trait 
value which results in P;(0) = 0.5 is the "item difficulty" parameter hi. 
The regression of Pc(0) on 0 is steeper at bi for items with larger a+ (see, 
e.g., Lord and Novick, 1968). 

For a subject of given ability, 0, the likelihood of a particular vector 
of k zero-one responses X is 

i = k  

/(X[0) = I-[ Pi(O)Xi[ 1 - Pi(0)] 1-x' 
i=1  

In many psychometric applications, the distribution of the latent trait 
is not known a priori and the psychometrician is faced with the (formi- 
dable) task of estimating the item parameters and latent trait values for 
all the subjects. For many genetic applications, however, it is sufficient 
(although not necessarily easier) to estimate parameters of the distribution 
of 0 in families sampled from the population. For example, if we are 
prepared to assume a large number of genes of infinitesimal effect (the 
"polygenic" model), then the distribution of 0 is assumed to be normal 
and the covariances between relatives simply a function of the heritability 
and the degree of genetic relatedness. Under the so-called "mixed" model 
(e.g., Lalouel et al., 1984) the distribution is assumed to be a mixture of 
normal distributions, each centered on the average trait value of individ- 
uals having a given genotype at a locus of large effect. If the major locus 
accounts for all the genetic variation, then the residual trait values are 
uncorrelated in families. If there are also polygenic effects, then the trait 
values will be correlated within families even when the effects of the major 
locus are controlled. 

We write ~b(0) for the frequency distribution of the latent trait in the 
population. The conditional likelihood of a given response vector, X, is 
thus the integral 

f r l(X) : +(O)/(X 0)d0. 
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and the likelihood of a whole sample of unrelated individuals is simply 
the product of the individual likelihoods. The likelihood may then be 
maximized with respect to the item parameters and the parameters of the 
distribution of 0. 

In genetic applications, however, unrelated individuals do not yield 
the information necessary to test alternative hypotheses about the genetic 
and environmental determinants of 0. For this purpose we require kinship 
data. For simplicity, we consider only two-member kinships, but the theo- 
retical extension to large kinships is straightforward. As we shall see, 
however, the practical application of the model even with kinships of two 
individuals requires considerable computational resources so the treat- 
ment of larger families may be difficult in practice. 

We let 01 and 02 denote the trait values of pairs of related individuals 
and the vectors X and Y be typical response vectors of the first and second 
individuals. The likelihood of the responses is then 

I(X,Y) = c~(01,02)l (XlO,) l (YlO2)dO2dO,. . . ,  (1) 

where qb(01,02) is the bivariate frequency distribution of the trait values 
in pairs of relatives of the given type. The form of q~(01,02) will depend 
on the type of relationship being considered and the genetic model being 
tested. In applications where the latent trait is dependent on covariates 
such as sex and age, it is conceivable that each pair will have its own 
unique expected trait values so that ag will have to be expressed separately 
for each pair. The likelihood, I(X,Y), may be evaluated for each pair of 
relatives and the overall likelihood accumulated and maximized with re- 
spect to the item parameters and parameters of the genetic model. 

APPLICATION TO TWIN DATA ON SYMPTOMS OF DEPRESSION 

We illustrate the approach with data on 1983 pairs of adult Australian 
female twins [1233 monozygotic (MZ) and 750 dizygotic (DZ)]. The data 
comprise six items relating to depression from the 14-item Delusions- 
Symptoms-States Inventory (DSSI) designed by Bedford et al. (1976) for 
easy administration in epidemiological studies. Respondents are asked to 
rate their recent state with respect to each symptom on a four-point scale: 
"none,"  "a  little," "a  lot," and "unbearably." A detailed univariate 
genetic analysis of all 14 symptoms in both males and females has been 
published elsewhere (Kendler et al., 1986). These authors describe the 
properties of the sample and the items in greater detail. The twins were 
not selected for any prior history of psychiatric disease, so no correction 
for ascertainment is required. In view of the extremely heavy computa- 
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Table I. I tems Used  in Analysis 

I tem Recently (I have) . . . 

been so miserable I have had difficulty sleeping. 
been depressed without knowing why. 
gone to bed not caring if I woke up. 
been so low in spirits that I just  sat. 
the future seemed hopeless.  
lost interest in just  about everything. 

tions, we have restricted our analysis to six of seven depression items 
and female twins. A seventh item, relating to "suicide," was omitted 
because the low endorsement frequency rendered it relatively uninfor- 
mative. Females were chosen in preference to males because the higher 
frequency of symptoms in females (Kendler et al.,  1986) is expected to 
yield a more powerful statistical analysis. 

The earlier analysis of the individual items by Kendler et al. has 
shown that an additive genetic model is adequate to account for nearly 
all the polychoric correlations between the responses of twins to the in- 
dividual items and that there is no unequivocal evidence for nongenetic 
familial effects on liability to endorse the items. Jardine et al. (1984) con- 
firm this finding for transformed scale scores for anxiety and depression. 
Kendler et aI. (1987) conducted a multivariate analysis of the polychoric 
correlations using the method of weighted least squares. They showed 
that both genetic effects and individuals' unique nonfamilial environmen- 
tal experiences contributed to the intercorrelation of the items. Neither 
of these earlier analyses, however, addressed specifically the issue of 
whether the inherited liability to depression was due to one gene or many. 
These earlier analyses suggested that the depression items could be se- 
lected as an illustration of the feasibility of exploiting latent trait theory 
in an attempt to resolve polygenic and monogenic inheritance of the di- 
mension underlying the manifest symptoms of a psychiatric syndrome. 

Table I gives the items on which the analysis is based and Table II 
summarizes the basic properties of the data. In computing these summary 
statistics, we included all female twins in the sample (including those from 
male-female pairs). Our subsequent genetic analysis includes only the 
female twin pairs in the sample. The phenotypic correlations between the 
items were computed by applying the product-moment formula to the 
raw responses coded 0, 1, 2, 3 in order of increasing severity. The first 
two eigenvalues of the correlation matrix are 3.359 and 0.671. There is 
strong support for a unidimensional model for the latent space. When the 
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Table H. Preliminary Statistics (N -- 4872) 

Correlation 
Endorsement 

Item frequency 2 3 4 5 6 Loading 

1 0.242 0.416 0.406 0.441 0.457 0.451 0.698 
2 0.351 0.401 0.471 0.404 0.459 0.692 
3 0.073 0.445 0.525 0.563 0.747 
4 0.195 0.486 0.538 " 0.755 
5 0.178 0.588 0.778 
6 0.120 0.812 

latent trait is normally distributed and unidimensional, the item difficulties 
and loadings on the general factor of the tetrachoric inter-item correlations 
are sufficient to determine the parameters of the latent trait model (Lord 
and Novick, 1968). However, this will no longer be the case if a major 
gene is segregating, since the assumption of normality will be violated, 
or if genetic and environmental effects do not affect the phenotype through 
the same common underlying variable (e.g., Kendler et al., 1987). 

For the purpose of genetic analysis, the original items were recoded 
to be dichotomous by scoring all symptomatic responses as one and all 
nonsymptomatic responses as zero. Although analysis of the raw multi- 
category data is possible in theory, it is likely to be prohibitive in practice 
with our current computing resources. 

We fitted three genetic models to the data. The "polygenic" model 
assumes additive genetic effects at a large number of loci and that no 
single gene has a major effect on liability so that q5(01,02) is simply the 
standardized bivariate normal distribution. In the case of MZ twins the 
correlation in the latent trait is assumed to be h 2, i.e., the narrow herit- 
ability, and to be �89 2 in the case of DZ twins. The second model is the 
"major gene" model, in which we assume that all genetic effects on li- 
ability are due to a single major locus. Residual effects are assumed to 
be due to normally distributed chance environmental effects which are 
uncorrelated in twins. There is no barrier to the inclusion of shared en- 
vironments if this proves necessary (e.g., Kendler et al., 1986). We as- 
sume that there are two alleles at the major locus and that the heterozygote 
is exactly midway in expression between the two homozygotes. This as- 
sumption can also be relaxed to allow for dominance. In addition to the 
12 item parameters, the polygenic model has a parameter for the herit- 
ability (h z) and the major gene model has parameters for the frequency 
(p) of the allele which increases liability and for the additive deviation, 
d, of the increasing homozygote from the midpoint, m, of the homozy- 
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gotes. The third model is the "mixed" model, in which the genetic effects 
are partitioned into the effects of a major locus and residual polygenic 
effects. All three models allow for the effects of a normally distributed, 
random environmental variable. In all cases, the item parameters and 
genetic effects at the major locus are scaled so the latent trait has zero 
mean and unit variance. The polygenic component of the latent trait is 
assumed to be normally distributed. Kendler et  al. (1986) showed that 
the frequency of "depressive" symptoms declined significantly with age 
(X -= 35.54 years in our sample; range, 18-84 years). This effect is in- 
cluded in our models by estimating simultaneously the linear regression 
(z) of latent trait on age. Ideally, we should also like to fit the more general 
"unified mixed model" (Lalouel et al. ,  1984) which seeks additional like- 
lihood-ratio tests for the Mendelian inheritance of a hypothetical major 
locus but this task is not feasible with our current algorithm and computer 
r e s o u r c e s .  

NUMERICAL METHOD 

The maximum-likelihood procedure was implemented in a FOR- 
TRAN program. Two main numerical issues have to be faced. The first 
is the integration of the bivariate expression (1) pair by pair to compute 
the likelihood for a given set of parameter values. The form of/(X,Y) 
changes markedly with (X,Y) from one pair to the next because of the 
unique response patterns generated by each pair. We have employed 
Gauss-Hermite quadrature, embodied in the Numerical Algorithms 
Group's (1982) FORTRAN subroutine D01FBF. Such methods approx- 
imate the integral by a weighted sum of function values for a specified 
optimal set of abscissae. Preliminary studies suggested that the approx- 
imation was very poor unless quite a large number of abscissae were used 
in each dimension (N = 12), necessitating 144 function evaluations to 
obtain the likelihood for each twin pair. Our finding is consistent with 
that reported by Bock and Aitkin (1981), who found, for the unidimen- 
sional case, that N = 10 gave very similar values for the likelihood of 
five LSAT responses of 1000 subjects to those obtained with N = 40. 

The second numerical problem is that of maximizing the likelihood 
with respect to variation in the parameters. In our case, this was per- 
formed using the NAG subroutine E04JBF and associated subroutines 
which minimize a general function of several variables without requiring 
algebraic first and second derivatives of the function. This subroutine was 
used to minimize the negative log-likelihood ( - L )  over all twin pairs in 
the sample. Other investigators have used an EM algorithm in the uni- 
dimensional case to obtain item parameters without assuming any prior 
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distribution for the subjects' trait values (Bock and Aitken, 1981). To 
enhance the performance of the algorithm, - L  was divided by a scale 
factor, s, so that L* = L/s was in the range 0-1. The procedure was 
assumed to have converged when parameter estimates were stable to five 
significant figures. Typically, this criterion resulted in the gradients of L* 
having values of the order of 10 - 7  . 

RESULTS 

The results of fitting the three models are summarized in Table III. 
The item parameters and major gene effects are expressed relative to the 
standardized liability scale. The polygenic component is expressed as a 
proportion of the residual (normally distributed) variation in liability. The 
item parameters do not change much as a function of the genetic model 
but have altered rather more than those obtained by Bock and Aitkin in 
their analysis of LSAT data. The item difficulty parameters show their 
expected consistency with the raw endorsement frequencies and there is 
broad agreement between the discriminating powers of the items and the 
loadings of the general factor extracted from the product-moment cor- 
relations. The heritability of the latent trait under the polygenic model is 

Table I I I .  P a r a m e t e r  E s f i m a t e s U n d e r  T h r e e  G e n e t i c M o d e l s f o r M u l f i p l e  S y m p t o m s  of  
D e p r e s s i o n  a 

P o l y g e n i c  M a j o r  g e n e  M i x e d  

I t e m  ai bi al bi ai bi 

1 1.038 0.991 0.989 1.009 1.008 1.003 
2 0.948 0.568 0.913 0.566 0.928 0.566 
3 1.549 1.739 1.430 1.819 1.450 1.770 
4 1.337 1.091 1.259 1.116 1.310 1.099 
5 1.478 1.133 1.376 1.163 1.429 1.147 
6 1.900 1.322 1.751 1.368 1.873 1.330 
p - -  0.242 0.0064 
d - -  1.091 2.276 
h 2 0.510 - -  0.463 
z - 0.0103 - 0.0114 - 0.0112 
L - 9073.16 - 9074.57 - 9070.69 
X z 4.94 7.76 - -  
d f  2 1 - -  

P (%) > 5  <1  - -  

a a i  = d i s c r i m i n a t i n g  p o w e r  of  the  i th  i t em;  b,- = i t e m  di f f icu l ty ;  p = f r e q u e n c y  of  i n c r e a s i n g  
a l le le  a t  m a j o r  l ocus ;  d = add i t i ve  d e v i a t i o n  a t  m a j o r  l ocus ;  h z = n a r r o w  he r i t ab i l i t y  of  
p o l y g e n i c  c o m p o n e n t ;  z = r e g r e s s i o n  of  l a t en t  t ra i t  on  age;  L = log- l ike l ihood ;  X z = log- 
l i ke l i hood- ra t i o  ch i - squa re  for  c o m p a r i s o n  w i t h  m i x e d  mode l .  
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estimated to be 0.51. This is remarkably close to the value Kendler e t  a l .  

(1987) obtained when fitting a single common factor model to the cross- 
twin interitem polychoric correlations. The value given is the heritability 
of the latent trait and is expected to be greater than the heritability of 
scale scores derived from the data because the latter are subject to sto- 
chastic error. Jardine e t  a l .  (1984) report a narrow heritability of 0.37 for 
the raw depression scores for the same data. 

Under the major gene model, the contribution of genetic effects to 
variation in liability is g2 = [1 - 2p(1 - p ) ] d  2 - [(2p - 1)d] 2, from 
which we find g2 = 0.437 in our data. Under the mixed model, the total 
genetic variation (major locus plus polygenic effects) accounts for 51% 
of the variation, with approximately 7% being explained by the hypoth- 
esized major locus and 41% by residual polygenic effects. 

The main purpose of the analysis is to distinguish between two very 
different genetic models for the same data. Since the polygenic model 
and the major gene model are both special cases of the more general mixed 
model, we may see if either or both of the former receive significantly 
less support than the mixed model by computing the likelihood-ratio chi- 
square as twice the difference between two log-likelihoods (L) under the 
two models. We find that the mixed model is not supported better than 
the polygenic model (X2 z = 4.94, 0.05 < P < 0.1) but that the mixed model 
is significantly better than the major gene model (Xl z = 7.76, 0.005 < P 
< 0.01). 

Generally, we anticipate the power of such tests to be low. Bock and 
Aitkin (1981) observe that " . . .  the likelihood is . . . insensitive to the 
shape of the prior (distribution in the population so) . . . this approach 
could not be depended upon to estimate accurately the finer features of 
the ability distribution (e.g., coefficients of skewness and kurtosis) in 
practical sample sizes." However, in our case involving comparatively 
large samples, we have been able to show that the observations cannot 
be explained by a genetic model which invokes only one locus. It does 
not necessarily follow that the number of genes is large or that their effects 
are necessarily equal. Our analysis shows merely that no single gene has 
such outstanding effects as to be clearly distinguishable from any other. 

DISCUSSION 

A significant issue in genetic analysis of discontinuous traits is how 
to cope with multiple items which reflect, in different ways, the underlying 
phenotype. One approach is to devise more or less arbitrary "scales" 
prior to genetic analysis. This approach, however, is likely to be mis- 
leading because assumptions about the distribution of liability are con- 
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founded with those about the relationship between liability and the derived 
scores. Our approach separates the genetic and psychometric components 
of a model for multiple symptoms and allows Us to test alternative genetic 
hypotheses about the underlying scale of liability under a plausible psy- 
chometric model for the relationship between the latent trait and the ob- 
served responses. Although our model does not avoid problems of scaling 
entirely, because we still have to assume a particular form for the i tem- 
trait regression, we avoid some of the more obvious pitfalls of applying 
likelihood-ratio tests for a major gene when the assumptions of normally 
distributed residual effects are clearly unwarranted. The approach is tract- 
able with small kinships (N = 2) and simple genetic hypotheses. The 
incorporation of covariates into the model has been demonstrated by the 
simultaneous estimation of the regression of the latent trait on age (z). 
Allowing for the interaction of such covariates with the effects of a major 
locus presents little further practical difficulty (Eaves, 1984). The model 
recognizes that different symptoms may need to be given different weight 
in genetic analysis and allows the genetic data to decide how symptoms 
should be weighted to yield the best index of the latent genotype. It is 
important to note that this model, in common with many others which 
try to use multiple items or thresholds to define a scale of liability for 
genetic analysis, makes the strong assumption that the underlying liability 
is unidimensional and that genetic and environmental effects all contribute 
to the same dimension of liability. It is quite likely that failure of this 
assumption could also lead to spurious support for a major locus. A de- 
tailed multivariate analysis of the polychoric correlations for the anxiety 
and depression symptoms (Kendler et al. ,  1987) suggests that genetic and 
environmental effects do not operate on the same underlying phenotype 
so our model is, at best, an approximation. 

When we applied the model to multiple symptoms of depression 
we found no statistical evidence for a major gene, even though there 
was strong support for a genetic component. As long ago as the 1950s 
(e.g., Eysenck, 1952), it was argued that liability to psychiatric dis- 
order might be under the same form of genetic control as variation 
in normal personality. Our analysis suggests that variation in the liabil- 
ity underlying twins' responses to set of symptoms of depression has 
exactly the same type of genetic control (more than one locus, addi- 
tive genetic effects, intermediate herltability) as has been found 
repeatedly for normal variation in neuroticism. The case is strengthened 
still further by the recent demonstration by Jardine et al. (1984) of a very 
high genetic correlation between the neuroticism scale of the Eysenck 
Personality Questionnaire and the anxiety and depression scales of the 
DSSI. 



Testing Genetic Modds for Multiple Symptoms 341 

In a more general context, our analysis illustrates an approach which 
can be used to generalize the segregation analysis of diseases to the case 
where systematic data are gathered on multiple symptoms. The statistical 
power of the analysis might be enhanced if the analysis were applied to 
data on more extended kinships ascertained through probands with ex- 
treme responses. However, the correction for ascertainment and the com- 
putational demands of the current algorithm are formidable. 

Practical limitations notwithstanding, many theoretical aspects of the 
model are applicable to attempts to analyze genetic linkage between 
marker polymorphisms and diseases which are usually diagnosed on the 
basis of multiple symptoms. Some of the practical problems we encoun- 
tered, especially the amount of computer time needed to estimate the 
parameters of the mixed model, may disappear with the next generation 
of computers. The limiting factor will be not what is technically feasible, 
but what can be achieved statistically with realistic sample sizes. 
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