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Summary. 1. The genetical and environmental structure of covariation between finger ridge
countsin twin and sibling data has been analysed using the method of Martin and Eaves (1977)
adapted from Joreskog. ' :

2. The model for environmental covariance contains a single factor loading on all ten
digits but most environmental variance is specific to each finger.

3. Foradditive genetic variance there is one common factor loading on all digits. There are
also five other independent factors, one for each digit. The thumb factor loads only on the two
thumbs but the four finger factors load on the finger in question and on the adjacent fingers.

4. A single common factor for non-additive genetic variance produces a considerable
improvement in the model.

5. The pattern of genetic effects differs between left and right hands.

6. Although the same model is appropriate for males and females, different parameter
estimates are required.

7. The fit of models is sensitive to the scale of measurement.

1. Introduction

Since the ridge count was introduced as the most convenient measure of pattern size
on fingers by Galton (1892) and later modified to its present form by Henry (1900), there
has been no consensus of opinion as to how this measurement should be used for
comparative or genetical studies. The main controversy concerns use of the total ridge
count (TRC) which is the sum of higher counts of all fingers as opposed to the higher
counts on individual fingers considered separately.

Holt in her series of studies on inheritance of the TRC (summarized in Holt 1968)
showed that the heritability of this character is high and postulated the existence of a
single, predominantly genetic, factor determining the general magnitude of finger ridge
counts on all ten fingers with the variability between fingers being of an accidental
nature.

An opposite view has been expressed by Weninger (1964, 1965, Weninger et al.
1976) who claims that ridge counts on individual fingers are genetically independent
traits, and consequently, TRC is merely a combination of different traits so that genetic
parameters obtained for this combination are invalid. Evidence for an intermediate
position assuming a certain degree of genetical independence of ridge counts on
individual fingers has been presented by others (Roberts and Coope 1975, Mi and
Rashad 1975, Reed et al. 1975, Loesch 1979).

The mean ridge counts vary greatly between individual fingers but the correlation
between them is high, ranging from about 0-4 to 0-8. In most cases the pattern of
correlations is generally consistent in different population samples and in different
races(see, for instance: Mavalwala 1962, Brehme et al. 1966, Knussmann 1967, Roberts
et al. 1974, Jantz 1977). However, lower correlations have been reported in the Waskia

. tribe of New Guinea (Harvey and Singh 1977) and higher correlations in some African
samples (Jantz 1977) and these extremes suggest that real racial differences exist. Jantz
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(1977) also claims that there is a tendency in some populations for correlations in males
to be higher than those in females.

More specific information concerning the relationships between ridge counts on
individual fingers has been provided by numerous studies using factor analytic and
other techniques (Knussmann 1967, Roberts and Coope 1975, Crawford et al. 1976,
Jantz and Owsley 1977, Reed et al. 1978, Lin et al. 1979, Siervogel et al. 1979). The
results, in particular, show the relative independence of the thumb from other digits and
a close relationship between fingers 11 and 11 and between 1v and v. There is an apparent
contrast between the three medial and the two lateral digits. At the same time, however,
there is a strong common or ‘general’ factor determining the magnitude of ridge count
on all ten digits.

It has been evident though, that the relationship between statistically identified
factors and biological reality is obscure. Consequently, genetical analyses of the
identified ridge count factors instead of individual characters have been applied based
on variance analysis in MZ and DZ twins (Reed and Young 1979) in the offspring of
MZ twins (Reed and Young 1979), or on regression analysis in other relatives (Chopra
1977, Rostron 1977). These merely disclosed a substantial genetic component in some
of these factors, comparable to that in individual variables. A maternal effect has also
been reported for some factors (Reed and Young 1979) as it has for individual variables
(Reed et al. 1979). Iagolnitzer (1979) found a stronger genetic determination of the
component representing general magnitude of ridge counts than of those representing
its variability between individual fingers.

Univariate analyses of the digits with left and right counts added indicate
considerable differences in heritability, some being as high as for TRC (Holt 1968, Reed
et al. 1975, Ghindilis 1977, Loesch 1979). This suggests that there may be genetic factors
specific to corresponding pairs of digits. None of the ten individual finger heritabilities
is as high as the heritability of TRC (Martin et al. 1982 a).

However, none of the methods in the papers cited above tests either the implicit
genetic model concerning the sources of covariation or the structural model
hypothesised to explain the pattern of covariation. In this respect they are all
inadequate since there is no good criterion for saying that one model is better than
another.

In this paper we adopt the approach of the genetical analysis of covariance
structure which uses a maximum likelihood technique to allow the simultaneous
testing of hypotheses about both the sources and structure of covariation.

2. Materials and methods

Finger ridge counts were available for 60 male and 50 female MZ twin pairs, 62
male and 49 female DZ pairs, and 80 pairs of opposite sex sibiings. The data are
described in detail elsewhere (Martin et al. 1982a) together with the results of
univariate analyses of the characters under investigation here.

The genetical analysis of covariance structure was adapted from the work of
Joreskog (e.g. 1973) on confirmatory factor analysis. Its development is discussed by
Martin and Eaves (1977) and further illustrated by Eaves et al.(1977), Fulker (1978) and
Martin et al. (1979). Briefly, it allows one to test hypotheses about the genetical and
environmental sources of variation simultaneously with biological hypotheses about
the contribution of theses sources to the structure of covariation between variables and
the residual variation specific to particular variables.
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A simple model for the sources of variation in our data is that only individual
environmental experiences (E;) and the additive gene action (Dg) need be invoked to
explain variation in finger ridge counts. In the univariate case these sources contribute
to the mean squares between (B) and within (W) MZ and DZ pairs with the following
coefficients:

MSguz=E; + Dy,
MSwuz=Ej,
MSgpz=E, +%DR7
MSywpz=E, +4Dg,

Note that Dy is twice the additive_genetic variance (V,) in a randomly mating
population (Mather and Jinks 1971). This simple model was found adequate to explain
individual differences in each of the ten separate ridge counts (Martin et al. 1982 a).

It seems, therefore, that the multivariate extension of this simple E; Dy model will be
a good initial hypothesis for the sources of covariation, and this may be written:

Y smz=HH'+E*+ AA'+ D?,

Y wuz=HH'+E?,

Y spz=HH'+E*+3(AA + D?),
Y woz=HH'+ E*+4(AA'+ D?),

where ) ; is the i-th expected mean products matrix. Hence H and A are matrices of E,
and Dy factor loadings respectively, and E? and D? are the corresponding diagonal
matrices of specific variance components for those two sources.

In more general terms, we may write the expectation for a mean-products matrix:

I4
Y= 3 el BADAYB,+07],
j=1

where there are p sources of variation and c;; is the coeflicient from the univariate model
for the i-th mean square 4nd j-th source. For the j-th source A; is the matrix of the factor
loadings and ©7 the diagonal matrix of specific variance components, as above. Note,
however, that we may complicate the model by introducing correlations between the
factorsin @, or relate the factor structures ofdifferent sources by a simple scalar held in
the diagonal matrix B.

Having specified the sources of variation and the factor structures of a model, how
can it be tested? The approach is described fully by Martin and Eaves (1977). Generally,
the data will consists of k matrices of mean products. We may write S; for the ith matrix,
having N, degrees of freedom. Given some model for the S;, we compute the expected
values ) ,, being positive definite, for particular values of the parameters of the model.
When the observations are multivariate normal, the log likelihood of obtaining the k
observed independent S; is

uMu

logL=—% N[log|Z|+tr(S )|

(omitting the constant term).
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For a given model we require the parameter estimates that maximize log L. Given
maximume-likelihood estimates of our parameters, the hypothesis that a less restricting
model (i.e., one involving more parameters) does not significantly improve the fit can be
tested by computing

Xz =2(L0 _Ll),

where L, is the log likelihood obtained under the restricted hypothesis (H,) and L, is
the log likelihood obtained under the less demanding hypothesis (H,). The H, we use is
that which assumes that as many parameters are required to explain the data as there
are independent mean squares and mean products in the first place, i.e., Y ;=S; for every
i. In this case we have simply

i—k
Ly=-1% Z NiUOgISil+p]-
i=1

When there are k matrices the y2 has 2kp(p + 1) —md.f,, where m denotes the number of
parameters estimated under H; and p is the number of variables.

The likelihood is maximized by attempting to minimize —log L for a given model.
There are many numerical methods for doing this and a variety have been implemented
by the Numerical Algorithms Group (Mark 6 1977). We employed their FORTRAN
routine EO4JAF for minimization. Several models were also fitted using the LISREL
IV computer program (Joreskog and S6rbom 1978) as employed by Cantor et al. (1982)
in their analysis discussed below. In each case identical results were obtained and this
gives confidence in the models being uniquely specified.

3. Results

The phenotypic correlation matrices for males and females are shown in table 1.
They are in close agreement with those found by Holt (1951, 1959) and others in that (i)
the correlations are all appreciable ranging from about 0-8 to a ‘base level’ correlation
of about 0-4; (ii) the highest correlations are between corresponding digits on the two
hands; (iii) after that, correlations are highest with adjacent fingers and decline with
more remote fingers; (iv) the exception appears to be the thumb which has only a base
level of correlation withi other fingers.

We now proceed to investigate the genetical and environmental basis underlying
these correlations using the genetical analysis of covariance structure described above.

Table 1. Observed phenotypic correlations between finger ridge counts. Males, upper triangle, females
lower triangle. Decimal points omitted.

L1 L2 L3 L4 LS RI R2 R3 R4 RS

L1 — 54 49 40 42 79 45 50 34 40
L2 49 — 67 57 51 52 65 62 50 50
L3 62 69 — 67 51 48 64 75 59 48
L4 51 57 73 — 65 42 53 63 76 61
LS 251 63 70 71 —_ 46 47 51 64 80
R1 74 48 56 54 49 — 48 49 39 46
R2 60 72 74 60 68 54 — 70 53 51
R3 52 60 74 68 64 53 68 — 61 52
R4 45 55 69 82 72 45 59 69 — 66
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Just as the raw data for univariate model fitting are the between and within pairs
mean squares of each twin or sibling group calculated from an analysis of variance, so
the raw data for the analysis of covariance structure are the ten 10 x 10 mean products
matrices shown in the Appendix. Note that one degree of freedom is subtracted from
the opposite sex sibling within pairs matrix for the vector of differences in sex means by
which the matrix has been corrected.

All the explanatory model-fitting has been to the male data, which are slightly more
numerous, and only when we have developed a model for males shall we fit it to the
female and opposite sex data.

Because nearly all the information about E; comes from variance within MZ pairs,
we may obtain a good idea of the E, covariance structure by first fitting models to the
MZW mean products matrix. The simplest model for the action of E, is that there is a
single factor causing covariation between all fingers and that there is specific
environmental variation for each finger. This model has 20 parameters. In the MZ
within pairs matrix there are n(n+ 1)/2=>55 unique statistics and so there are 35d.f. to
test the fit of the model. The residual y35=41-4 (P~0-20) so this model gives an
adequate account of E, covariation. The estimates of the E, factor loadings (4g,’s) and
specific standard deviations (fg,’s) and their significance are shown in table 2. It can be
seen that all but one of the factor loadings are smaller than their specific counterparts
and that many of ZEl’s are not significant. Only the thumb and little finger are
consistent in showing any pattern of E, covariation. Thus any environmental
influences on ridge counts are largely specific to the individual fingers. Nevertheless,
attempts to eliminate factor loadings, in whole or in part, from the model result in its
failure and for this reason we retain the first model of E, covariation in subsequent
genetical and environmental models fitted to all four male mean products matrices.

In the first attempt to fit a genetical and environmental model to all the male data,
we simply replicate the E; structural model for the Dy source of covariation; i.e. for
both E; and Dy sources there is a single factor and specifics. This model has 40
parameters but there are now 4 x 55 or 220 unique statistics. The result of fitting this
model is yZg,=508, equivalent to a standard normal deviate, c=12-8. Clearly this
model is quite inadequate to explain covariation between finger ridge counts.

Rostron (1977) and others have carried out principal components analyses in an
attempt to account for genetical covariation between fingers and this was the next
approach tried. Rostron proposed two factors, a general factor loading on all ten

Table2. Common factor loadings and specific standard deviations for environmental covariance in the MZ
male within pairs mean-products matrix. Significance of estimates is indicated.

L1 L2 L3 L4 LS5
Loadings 0-83* -007 014 —-0-04 1-73%**
Specifics 2:15%** 2:55%** 2:37%** 2:07*** 1:04**
R1 R2 R3 R4 RS
Loadings 093* 076 1-24* 014 1-23%**
Specifics 2:38*** 3-35%** 3-47%** 1-91%** [-75%%*
Bs=414.
*0-01 < P<005.
**(0-001<P<001.

*** P<0-001.
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fingers and an independent factor described as a contrast between the thumb and digits
1—v in males and n-v in females. Preliminary principal components analysis of our
data suggested that a contrast of thumb with digits i—v was more appropriate for the
male data. This model was fitted and the results are shown in table 3. It includes six
more Dy factor loadings than the first but the resulting yx%,,=368, while a great
improvement on the first model, indicates a quite inadequate account of the
covariation. A number of variations on the principal component model, including
correlated Dy factors and extra loadings were tried but none gave any significant
improvement in the chi square. This illustrates the weakness of the post hoc principal
components approach which postulates structures of covariance without providing
any test of the models proposed. ‘

We proceed from the initial observations that the largest correlations are between
corresponding fingers and then between adjacent fingers. Our next model retains the
general Dy factor loading on all fingers but adds five independent factors, one for each
digit loading on the two corresponding fingers. This adds ten more factor loadings to
the model but causes a drop in chi square of 202 to x%,,=306. This is already a great
improvement over the various principal components models tried but is still an
inadequate account of genetical covariation.

The next step is based on the observation in our previous paper (Martin et al. 1982 a)
that, contrary to earlier beliefs, there appears to be non-additive genetical variation for
finger ridge counts. This may be either dominance or epistatic interaction between
additive genetic effects. With only twin data the expectations of the two are completely
confounded (Mather 1974). However, genetical analysis of a full set of twin, sibling and
parent-offspring correlations for the trait of finger pattern intensity (which correlates
0-76 with TRC) suggests that the non-additive genetic component for finger pattern
intensity is additive x additive epistatic variance (Loesch et al. 1982). For the sake of
simplicity, therefore, we shall refer to this source of variance as epistasis, while
remembering that we should remain agnostic about its true nature.

Addition of a single epistatic (Iy) factor loading on all fingers caused a significant
reduction of x2,=71 to y3¢,=235. Regardless of the order in which the Dy model was
elaborated, addition of a epistatic factor always caused this same significant reduction
in residual chi-square. However, attempts to elaborate the factor structure or add

Table 3. Estimates for a model with two independent factors of additive genetic variation for males.

Environmental Additive genetic
Specific Factor Specific Factors
1 1
L1 161 4-52 318 3-83 0-05
L2 271 1-62 383 646 —
L3 222 091 2:55 687 —
L4 225 017 243 569 2-59
L5 2:03 091 0-70 369 4-28
R1 240 400 203 345 073
R2 361 143 373 758 —
R3 310 0-98 0-05 719 —
R4 194 012 331 560 312
RS 1-89 098 1-84 3-80 4-30

Xi74=368.
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specific deviations for epistasis did not result in any further significant reduction.
Clearly, fitting models to the full mean products matrices provides a more powerful test
for the presence of epistatic variance than can be found in the univariate analysis of
each finger separately. '

We have yet to take account of the higher correlations observed between adjacent
fingers. This is done by adding loadings to the five existing Dy individual finger factors.
As previously observed, the thumb does not appear to be correlated with any other
fingers above base level so this factor remains loading on the two thumbs only.
However, the second finger factor is also allowed to load on the third finger, the third
finger factor on the second and fourth and so on. This is a modification of the
circumplex model described by Joreskog (1973). It adds twelve more parameters to the
model but results in a significant reduction of ¥2, =35 to y?,5=200. We now find that
this rather elaborate model has removed nearly all the specific additive genetic
variation and if we remove the ten specific Dy deviations, the fit is only worsened by
X10=6 to xis5=206. Other attempts to simplify the model by omitting small Dy
loadings, however, all resulted in a significant worsening of the model.

* Our final model, therefore, contains 62 parameters and while it still fails (P = 0-006),
is better than any other models tested. Further attempts to improve the model by
relating all the I loadings to the Dy common factor loadings by a constant multiplier
did not improve the model. To test whether there was any further additive genetic
covariation not accounted for, we estimated a positive-definite matrix of additive
genetic covariances without any constraint on structure. Removing all the constraints
of the factor model for genetic differences, however, only reduced the residual chi-
square very slightly, for the addition of many more parameters, to y3;5=194.

It may be asked whether it is redundant to fit separate genetical loadings for
corresponding fingers. If we demand that the Dy and Hy loadings for corresponding
fingers are the same this reduces the number of parameters but significantly worsens the
residual chi-square by x3, =40, a highly significant deterioration. This implies that
although genetic factors affect corresponding fingers, their action is not identical so it
appears that there is instability in the action of these genes in left and right hands.
Estimates for this model are shown in table 4.

It is possible that a major contributor to model failure is that MZ and DZ total
variances and covariances are not equal, although there was not much evidence of this

Table 4. Estimates for model with left and right genetic loadings constrained to be equal.

Environmental Additive genetic Epistasis
Specific  Factor  Specific Factors Factor
1 o 11 v v General
2-13 0-80 310 502 — — — — 3-02 554
2:60 003 303 — 032 1-51 — —_ 4-17 872
2-18 044 2-38 — 1-47 293 0-04 — 436 633
221 —015 0-00 — — 324 172 289 4-12 348
1-71 1-13 1-48 — — — 2:83 2:68 337 328
241 0-84 0-00 502 — — — — 302 554
347 1-19 3-38 — 032 1-51 — —_ 4-17 872
291 1-36 0-00 — 1-47 293 0-04 — 436 633
1-98 051 2:60 — — 324 1-72 2-89 4-12 348
1-55 1-42 1-95 — — — 283 2:68 337 328

stq =242
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in the univariate analyses. We therefore tested the equality of dispersion in the MZ and
DZ matrices using the multivariate equivalent of a variance ratio test (Morrison 1967,
p.152). The value of y25=71 (0-05 < P <0-10) suggests that this is a contributing factor
to model failure but by no means an overwhelming one.

A further possibility is that the analysis of covariance structure is sensitive to
departures from multivariate normality. In the previous paper (Martin et al. 1982 a) we
showed that minimizing non-normality by raising the raw observations to the power
1-5 made little or no difference to the results of univariate model fitting. Although the
normalization of individual variables is no guarantee of the multivariate normality of
their covariances, it is not unreasonable to suppose that it improves it. We therefore
fitted the final 62 parameter model to mean products matrices calculated using the
same transformation of the raw observations. This yields a value of y?55=195
(P =0-025) considerably less than the value of 3255 =206 of the same model fitted to the
raw data.Itappears that the method is sensitive to departures from normality and if the
data were truly multivariate normal it is possible that even more considerable

improvements to the fit could be made.

Does transformation change the relative contributions to the variance of different
factors or indeed sources of covariation? Table 5 shows the relative contributions to
variance of factors and specifics in the final model for both the raw and the transformed
data. It can be seen that transformation does alter the pattern of contributions of
different factors somewhat within a source but does not much change the total
contribution for each source.

The fact that the final model fails is a common experience in covariance structures
analysis and maximum likelihood factor analysis and has been discussed elsewhere (e.g.

Table 5. Contributions to variance (per cent) for each character in males according to 62 parameter model.

Environmental Additive Genetic Epistasis
Specific  Factor  Total : Factors Total Factor
1 il 1 v v General

(a) Model fitted to raw data
L1 14

1, 15 48 - — - — 10 58 27
L2 17 0 17 — 1 3 —_ —_ 21 25 58
L3 15 1 16 — 3 0 22 —_ 23 48 36
L4 21 0 21 — — 7 16 29 65 14
L5 9 11 20 — —_ 1 41 25 67 13
R1 24 2 26 40 — —_— — —_ 16 56 18
R2 23 1 24 — 13 7 —_ —_ 24 44 32
R3 25 3 28 — 7 2 7 —_ 28 4 28
R4 13 0 13 — — 15 12 11 45 - 83 4
RS 12 6 18 — —_ . — 0 19 58 77 5
(b) Model fitted to data raised to power 1-5
L1 15 1 16 41 — — — — 13 54 30
L2 19 0 19 — 3 1 —_ — 24 28 53
L3 13 0 13 —_ 5 2 12 —_ 33 52 35
L4 22 0 22 — —_ 2 18 10 38 68 10
L5 6 - 17 23 — —_ —_ 2 43 20 65 12
R1 27 4 31 31 —_ —_ _ 22 53 16
R2 22 2 24 10 9 — —_ 28 47 29
R3 24 2 26 — 9 0 3 39 51 23
R4 19 0 19 —_ — 6 8 8 58 80 1
RS 14 6 20 — — — 2 27 48 77 3
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Joreskog 1969, Martin et al. 1979). Although the model fails, we can get some
indication of its adequacy by using it to predict the phenotypic correlation matrix. This
can then be subtracted from the observed correlation matrix (table 1) to give a residual
correlation matrix and this is shown in table 6. It can be seen that the model predicts the
phenotypic correlations very well and that most of the residuals are trivial, the largest
being 0-05. '

Having developed a model to explain the male covariance data, is the same model
appropriate for the female data and, if so, can we fit a single model to explain
covariation in the same-sex twin data and the opposite sex sibling data? The final 62-
parameter model fitted to the female data yields y?sg =192 (P =0-035). This is a better
fit than to the male data but chi-square is only smaller in the same proportion as
females are less numerous than males. The residual correlation matrix for females is
also shown in table 6 and the fit of the model is evidently as good as for the males.

If the same model is appropriate for males and females is this true for the parameter
estimates themselves? If we fit the same model jointly to all eight covariance matrices
this yields 3,5 =538, corresponding to a heterogeneity of y2,= 140 for the fit of the
model in males and females. Evidently, there are significant differences in the size of the
parameter estimates in the two sexes.

It is possible that most of this heterogeneity can be explained by a scalar difference
in the size of parameter estimates in males and females. We thus restricted the model to
the same corresponding parameters in males and females but related them (using
Joreskog’s B matrix) by a constant. This constant factor, by which all female parameter
estimates are greater than all male ones, was estimated as 1056 and caused a
significant but trivial improvement in the log likelihood equivalent only to y?=615.
Evidently the heterogeneity of fit between males and females is caused by some, perhaps
many, small discrepancies rather than a single scalar factor of size of variance
components. This could have been predicted from the rather haphazard groups of sex
heterogeneities observed in the univariate analysis of the data (Martin et al. 1982 a).
One model attempting to account for some of these produced a small but not very
substantial improvement of y25=26. It was concluded in the previous paper that these
heterogenieties were of no great biological interest so perhaps we are justified in
proceeding to fit the 62 parameter model to all ten covariance matrices of the male and
female twin data and thejopposite sex sibling data. There are now 550 unique statistics
and the fit of the model is y3g5 =685 (P~ 107 8), an increase of %, ,= 147 over the fit to
the male and female data jointly.

Table 6. Residual phenotypic correlations for 62 parameter model. Males top triangle, females
lower triangle; coefficients multiplied by 100.

Residual phenotypic correlations
L1 L2 L3 L4 Ls R1 R2 R3 R4 RS

L1 — 0 2 4 4 0o -1 4 3 3
L2 -2 — 1 0 2 0 0o -2 -1 0
L3 0o -1 — 0o -2 0 0 0 -1 -1
L4 -2 0 0 S— ) 3 -1 0o -3 =2
LS 0 1 2 0 — 5 0o -2 =2 0
R1 1 2 -1 1 4 — 1 1 2 2
R2 0o -2 -2 -1 0 1 — 0 -1 -1
R3 -4 -3 0o -1 1 1 =2 — 0 -2
R4 -2 0 0 0 0 1 -1 -1 S )
RS -3 0 1 0 -1 2 2 -1 0 —
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4. Discussion

The difficulty of the approach used above is to know when to stop elaborating the
model. The method is so powerful that even trivial departures from the model will cause
it to fail. We have discussed this problem in an earlier paper (Martin et al. 1979).
Nevertheless, it is possible to recognize major improvements in the goodness-of-fit
although there may be a certain arbitrariness in the details of the final model proposed.

Several features are clear. Our model represents a considerable improvement on the
various principal components models proposed by Rostron (1977) and others. It is
necessary to take account of the high covariance between corresponding fingers and
also between adjacent fingers (excepting the thumb) although we are not claiming that
improvements cannot be made to the structure we propose of one general additive
genetic factor and an independent genetic factor for each of the five fingers. It is also
apparent that a significant improvement is made if non-additive genetic parameters are
included in the model. This is further evidence for our contention (Martin et al. 1982 a)
that there is either epistatic or dominance variation (or both) for finger ridge counts.
Better evidence might be obtained on this point if relatives other than twins and siblings
‘were available.

Simultaneously with this analysis, Cantor et al. (1982) have explored the sources
and structure of covariation between finger ridge counts in the relatives of MZ twins.
They arrived at the same structure for E; and non-additive genetic covariance, but in
their design the coefficients for dominance and epistasis are so similar that it is
impossible to distinguish between them. Their structure for additive genetic covariance
is somewhat different, however. They postulate eight independent factors comprising a
general factor, two hand factors and five finger factors. Their loadings for the general
and finger factors were equal for left and right hands so that, in all, 20 additive genetic
parameters were estimated against our 32. When this model was fitted to our male twin
data a fit of x2,,=234 was obtained, significantly worse by x?,=28 (P~0-001) than
our 62-parameter model. Firstly their model takes no account of the high correlation
between adjacent fingers. Secondly any differences between loading of fingers between
left and right hands are confined to the two hand factors. Cantor et al. state that
elaborating their model to take account of these effects produces no significant
improvements. However, given the assumption about genetic and environmental
effects under which both analyses were conducted this is not surprising. A design
consisting of MZ and DZ twins provides more precise estimates of genetic covariances
than a design consisting of comparable numbers of half and full siblings.

Most environmental variation is specific to each finger but many of the smaller E,
covariance terms are negative (see Appendix) and together with positive additive
genetic correlations between fingers this explains why the heritability of total ridge
count is always found to be higher than the heritability of any of the ten individual
finger ridge counts (Martin et al. 1982a).

The failure of the attempt to fit the same genetical parameters for both left and right
hands indicates that there are asymmetries in the action of genes and we explore the
nature of these more extensively elsewhere (Martin et al. 1982 b).

The improvement of fit of the model when the raw data are transformed by raising
them to the power 1-5 confirms that the method is sensitive to scale, probably because
of departures from multivariate normality. However, we have chosen to work with the
character on the original scale and must suffer the consequences of a worse fit of the
model.

It is clear that there is significant heterogeneity of fit of the model to the male and
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female data, but as with the case of significant left-right assymmetry, it is difficult to
judge the substantive importance of these discrepancies. If the same discrepancies are
found in other samples then one might begin to regard then as biologically, as well as
statistically, significant. '

We do not regard the model presented here as definitive but as a first attempt to
provide a systematic hypothesis-testing approach to the study of the sources and
structures of covariation between finger ridge counts. The methods and models applied
may prove useful in the explanation of covariation in other biomedical and behavioural
variables.

Appendix

Mean products matrices for raw data

MZ males between pairs 59 d.f.

7661 41-54 31-45 2736 2394 5827 4398 3633 2324 22:81
533 6562 4063 31-85 2220 3790 5765 - 4413 2746 2244
—042 651 55-85 3141 17-38 2843 5001 48-54 27-88 17-78
—005 1-83 564 25-03 4230 3448 35-87 21-38
119 -010 0-37 2871 1999 2251 2795
128 —-004 -007 —-028 - 3548 2505 24-11
149 —-038 023 0-33 1-65 60-39 3889 31-66

—-008 075 0-17 —041 1-58 0-67 61-49 31-36 2395
190 . —-093 —0-39 1-01 2:22 0-14 0-01 13-54 45-85 2742
0-22 -0-03 1-15 —-007 022 —-0-51 0-03 1-89 368 3577
1-26 -0-17 1-51 —-0-18 213 1-00 0-49 1-25 0-03 4-59

MZ males within pairs 60 d.f.

DZ males between pairs 61 d.f.
42-00 24-18 24-56 19-80 1650 32:55 1830 23-68 1563 1698
2539 42-84 31-08 31-60 25-18 2491 3295 2998 2613 26-50
16:65 3504 47-17 3734 25-42 2548 3711 37-32 3144 24-34
1271 1893 20-19 21-11 3232 34-35 3729 29-27
2-81 9-79 9-80 1793 22-18 2281 28-14 27-88
4-50 9-65 9-35 997 15-82 2344 1822 19-74
1473 9-23 590 1-50 227 17-11 40-31 30-58 27-44
1688 2301 1642 4-69 8-38 9-40 - 4637 3126 2564
11-65 1819 16-50 820 9-75 608 1893 21-42 43-63 2819
611 14-53 12:02 11:95 1044 4-10 11-19 13-08 20-70 3613
505 9-52 738 831 996 343 7-81 6-85 10-84 11-31
DZ males within pairs 62 d.f.

MZ females between pairs 49 d.f.

5892 40-03 44-77 41-29 3734 . 4942 5576 3390 3094 3667
9-03 74-48 5668 44-87 49-31 35-89 71-68 4447 40-32 4705
—-013 1791 6833 5514 49-66 3849 67-20 49-11 49-07 50-42
0-27 0-84 635 7229 51-40 4099 5371 50-19 59-66 4816
—098 0-53 331 9-17 5365 41-07 4562 4794
0-89 0-01 0-40 -023 4597 31-67 3159 3385
067 0-66 -022 —-051 1-71 100-63 56-36 4645 5228

034 -326. -072 1-67 0-40 1-52 11-57 5622 4579 4541
—-056 —427 0-83 —1-47 0-25 0-03 —-021 670 61-96 4506
—-012 —-041 1-92 299 0-26 —0-62 -072 022 584 6194

—201 -037 -013 —-05 -095 0-03 096 —-062 —045 524
MZ females within pairs 50 d.f.

-
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Appendix (continued)

Mean products matrices for raw data

. DZ females between pairs 48 d.f.
50-54 26:50 3497 25-88 19-38 29-63 37-32 2574 21-00 19-32
2238 49-01 34-60 26:00 26-82 2097 4531 30:72 25-00 21-43
1023 32:83 5224 35-81 2923 25717 47-67 39-11 3224 2449
1098 20-89 25-86 44-20 2920 22:60 3775 3215 3615 29-57
10-23 21:47 2041 3355 3831 35-65 2647 28-64 3019
470 9-95 9-95 12:81 1332 3036 23-86 1698 1555
15-50 10-10 10-87 11:73 335 2049 6773 41-54 3497 31-07
13.08 29-59 24-13 20-87 15-86 10-58 47-42 4649 2929 24-16
11-37 20-16 16:64 17-84 816 10-78 21-01 2251 40-22 27-52
997 1818 1474 20-14 10-50 8-01 21-02 15-86 2428 3522
678 11-87 1324 19-37 10-30 667 19-82 9-42 13-21 2573
DZ females within pairs 49 d.f. .

Opposite sex siblings between pairs 79 d.f.
3795 17-47 1898 16-33 19-75 2834 21-11 12:81 13-88 13-33
2290 53-78 3499 23-44 19-15 18-12 3699 2862 2444 19-02
808 3467 : 20-89 2177 43-04 42-79 32:38 2030
614 14-09 - 2028 3751 2812 3442 2391
548 698 9-22 . 21-34 27-59 17-02 2428 23-54
820 11-82 683 870 - 4711 19-32 15-60 17-09 17-84
13-24 713 690 470 6-90 18-54 6614 3627 3429 2676
12-30 20-62 1803 10-13 13-58 11-97 39-77 4479 2895 13-98
11-14 14-88 1649 9-36 9-24 759 17-69 2866 3877 20-39
559 911 825 10:32 9-45 4-88 1097 9-20 1620 2848
630 883 4-32 666 1026 533 744 726 690 13-84
Opposite sex siblings within pairs 79 d.f.
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Zusammenfassung. (1) Die genetische und Umweltstruktur der Kovarianz zwischen Fingerleistenzahlen
bei Zwillings- und Geschwisterdaten wurde unter Verwendung der Methode von Martin und Eaves (1977),
angepaBt nach Joreskog, analysiert.

(2) Das Modell der Umwelt-Kovarianz enthilt eine einzelne Faktorenladung l'ur alle zehn Fingerbeeren,
aber die meiste Umweltvarianz ist fir jeden Finger spezifisch.

(3) Fiir die additive genetische Varianz gibt es eine gemeinsame Faktorenladung fiir alle Fingerbeeren. Es
finden sich auBerdem funf weitere unabhingige Faktoren, jeder fiir eine Fingerbeere. Der Daumenfaktor
betrifft nur die beiden Dauben, aber die vier Fingerfaktoren betreflen den jeweiligen Finger und die
benachbarten Finger.

(4) Ein einzelner gemeinsamer Faktor fiir die nicht-additive genetische Varianz bewirkt eine betrichtliche
Verbesserung des Modells.

(5) Das Muster der genetischen Wirkungen unterscheidet sich zwischen lmker und rechter Hand.

(6) Obwohl dasselbe Modell fir Minner und Frauen zutrifft, werden unterschiedliche
Parameterschiatzungen benétigt.

(7) Das Passen des Modells ist empfindlich gegeniiber der Skala des MaBes.

Résumé. (1) La structure génétique et mésologique de la covariation entre les comptes de crétes digitales
chez des jumeaux et des germains a €té analysée selon la méthode de Martin et Eaves (1977) adaptée de
Joreskog.

(2) Le modéle pour la covariance mésologique contient un seul facteur portant sur tous les dix doigts mais
la majeure partie de la variance mésologique est spécifique pour chaque doigt.

(3) Pour la variance génétique additive, il y a un facteur commun portant sur tous les doigts. Il y a aussi
cinq autres facteurs indépendants, un pour chaque doigt. Le facteur du pouce porte seulement sur les deux
pouces mais les facteurs des quatre doigts portent sur le doigt en question et sur les doigts adjacents.

(4) Un facteur commun unique pour la variance génétique non additive produit une amélioration
considérable du modéle.

(5) La configuration des effets génétiques différe entre les mains gauche et droite.

(6) Bien que le méme modéle soit approprié pour les hommes et les femmes, des estimations différentes des
parameétres sont nécessaires.

(7) Le bon ajustement des modéles est sensible a I'échelle de mesure.



