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Abstract Migraine is a painful disorder for which the

etiology remains obscure. Diagnosis is largely based on

International Headache Society criteria. However, no fea-

ture occurs in all patients who meet these criteria, and no

single symptom is required for diagnosis. Consequently,

this definition may not accurately reflect the phenotypic

heterogeneity or genetic basis of the disorder. Such phe-

notypic uncertainty is typical for complex genetic disorders

and has encouraged interest in multivariate statistical

methods for classifying disease phenotypes. We applied

three popular statistical phenotyping methods—latent class

analysis, grade of membership and grade of membership

‘‘fuzzy’’ clustering (Fanny)—to migraine symptom data,

and compared heritability and genome-wide linkage results

obtained using each approach. Our results demonstrate

that different methodologies produce different clustering

structures and non-negligible differences in subsequent

analyses. We therefore urge caution in the use of any single

approach and suggest that multiple phenotyping methods

be used.

Introduction

The essential first step for linkage analysis or association

studies is to accurately identify the phenotype. For com-

plex diseases such as migraine, identification of the

phenotype is challenging due to the lack of objective

markers and uncertainty about the etiology of the disease.

The diagnosis of this type of disorder is often based on

satisfaction of clinically accepted criteria. Although they

may not be useful for diagnosis and treatment, these

clinical-based phenotypes may not be optimal for genetic

research, in particular finding genetic loci contributing to

disease inheritance (eg., Hallmayer et al. 2003) and this

has led to a call for the development and use of new

phenotyping strategies in genetic research (e.g., Wessman

et al. 2007).

Migraine is a common, painful and debilitating disorder.

Numerous researchers have shown that there is a significant

genetic component to risk of this disorder (Ziegler et al.

1998; Mulder et al. 2003; Svensson et al. 2003, 2004;

Nyholt et al. 2004, 2005), with estimates of heritability

ranging between 34 and 57% in twin-cohort studies across

six countries (Mulder et al. 2003). The diagnosis of

migraine is found to be difficult due to lack of biological

markers and overlap with other types of neurological dis-

orders, such as tension type headache and brain tumour.
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To date, the diagnosis of migraine relies on classifying

self-reported headache characteristics using International

Headache Society (IHS) criteria (Headache Classification

Committee of the International Headache Society 1988;

Olesen and Steiner 2004; Silberstein et al. 2005). These

criteria were developed for standardising headache defini-

tion (e.g., Ligthart et al. 2006). The two major subtypes of

migraine are migraine without aura (MO) and migraine

with aura (MA); the definitions of both types are listed in

Tables 1 and 2, respectively.

These criteria have improved migraine diagnosis and

subsequently, epidemiological research. However, none of

the features occur in all patients who meet a strict defi-

nition of IHS migraine, and no single symptom is required

for diagnosis. In other words, migraine is a complex of

symptoms with variable symptom profiles and individuals

presenting with dissimilar symptoms can equally satisfy

the same diagnosis. Furthermore, although individuals

may not quite satisfy IHS criteria they would nonetheless

be treated as such in a clinical setting; indeed there is an

IHS classification of ‘‘probable migraine’’ (previously

termed ‘‘migrainous disorder not fulfilling the above cri-

teria’’). The majority of genetic studies for migraine to

date have concentrated on either MO or MA and found

various chromosome regions associated with each

(Table 3). Under these phenotype definitions, no common

gene was replicated across studies. However, when

migraine phenotypes were identified using a statistical

(rather than medical) phenotyping classification via latent

class analysis, Ligthart et al. (2008) successfully repli-

cated two susceptibility loci: chromosome 5q21 and

10q22–q23 (Nyholt et al. 2005; Anttila et al. 2006, 2008;

Ligthart et al. 2008).

A wide variety of statistical methods have been

employed to identify clusters and classes based on symp-

tomatic data. Classical methods such as principal

component analysis (PCA) and discriminant analysis (DA)

have previously been used in genetic linkage analysis.

However, these approaches assume individuals belong to

only one of potentially many clusters, which may neglect

the phenotypic heterogeneity present in complex human

diseases (Kaabi and Elston 2003; Manton et al. 2004). In

contrast, ‘‘fuzzy’’ clustering such as latent class analysis

(LCA) and grade of membership (GoM) resolve the

Table 1 The 1988 International Headache Society diagnostic criteria

for migraine without aura (MO)

Item Description

A At least five attacks fulfilling B–D

B Headache attacks lasting 4–72 h

C Headache has at least two of the following characteristics:

Unilateral Locations

Pulsating quality

Moderate or severe intensity(inhibits or prohibits

daily activities)

Aggravation by walking stairs or similar routine

physical activity

D During headaches at lease one of the following:

Nausea and (or) vomiting

Photophobia and phonophobia

Table 2 The 1988 International Headache Society diagnostic criteria

for migraine with aura (MA)

Item Description

A Headache fulfilling criteria B–D list in Table 1

B At least five attacks fulfilling B–D

C Aura consisting of at least one of the following but

no motor sickness

Fully reversible visual symptoms including positive

features (i.e. flicking of lights) and (or) negative

features (i.e. loss of vision)

Fully reversible sensory symptoms including

positive (i.e. pins and needles) and (or) negative

features (i.e. numbness)

Fully reversible dysphasic speech disturbance

D At least two of the following:

Homonymous visual symptoms and (or) unilateral

sensory symptoms

At least one of the aura symptom develops

gradually over C5 min

Each symptom lasts C5 min and B60 min

Table 3 Table showing the significant linkage signals which are

identified in the literature for IHS criteria defined migraine with aura

(MA) and migraine without aura (MO)

Phenotype Cohort Chromosome References

MO Icelandic 4q21 Björnsson et al.

(2003)

MO Italian 14q21.2–q22.3 Soragna

et al.(2003)

MA Canadian 11q24 Cader et al.

(2003)

MA Finnish 4q24 Wessman et al.

(2002)

MA and MO Sweden 6p12.2–p21.1 Carlsson et al.

(2002)

MA* Finnish and

Australian

10q22–q23 Anttila et al.

(2008)

* Including three types of migraine with aura

–Pure MA, individuals fulfilling IHS criteria for migraine with aura

–Unclassified MA, a group of individuals that cannot be grouped into

the IHS defined categories, but clearly suffer from aural features

–Mixed migraine, a group of individuals that commonly have both

MA and MO type of attacks
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heterogeneity by assigning individuals to multiple clusters

and quantified measures of the probability of belonging to

each group.

Latent class analysis (McCutcheon 1987) has been

widely used in subtyping complex diseases such as

migraine (Nyholt et al. 2004, 2005), attention-deficit/

hyperactivity disorder (ADHD) (Volk et al. 2005) and

schizophrenia (Jablensky 2006) in the field of genetics.

Another type of fuzzy clustering, Grade of Membership

(GoM), has also been frequently used to obtain empirical

phenotypes. This clustering method was first used for

medical classification in 1978 (Woodbury et al. 1978)

and is now commonly employed for disease subtyping.

It has been employed in genetic research for dis-

eases with complex etiology (Cassidy et al. 2001; Corder

and Woodbury 1993; Fillenbaum 1998; Manton et al.

1994).

Most recently, Kaabi and Elston (2003) proposed a

different type of clustering method which is also called

Grade of Membership (GoM). Unlike the model-based

GoM proposed by Woodbury et al. (1978), the method

suggested by Kaabi and Elston (2003) is based on parti-

tioning the data into a pre-determined number of clusters.

To avoid confusion in nomenclature, the grade of mem-

bership proposed by Kaabi and Elston (2003) will be

referred to as Fanny (Kaufman and Rousseeuw 1990) in

this paper. This method has been used to identify loci

causing anxiety disorder (Kaabi et al. 2006).

Although some literature has compared the mathemati-

cal and statistical differences between LCA and GoM

(Manton et al. 1994; Potthoff et al. 2000; Erosheva 2002b,

2005), the effects of these three common phenotyping

methods, LCA, GoM and Fanny in genetic analyses such as

heritability and genome-wide linkage have not been

investigated. Therefore, the aim of this study is to (1)

compare these three methods as they apply to common

migraine symptomatic twin data, (2) benchmark their

performance in genetic research and (3) investigate whe-

ther different clustering methods result in different loci

being implicated in linkage analysis.

Materials and methods

The symptomatic data were first analyzed by three different

phenotyping methods: latent class analysis (LCA), grade of

membership (GoM) and fuzzy clustering (Fanny) to obtain

a continuous (quantitative) phenotype trait (score) for

individuals. The value of phenotypic measures derived

from these three models was constrained to be between 0

and 1, which was then used as a continuous trait in the

genome-wide linkage analysis. LCA and GoM are both

model-based approaches in which the optimum number of

clusters was determined by likelihood ratio, Bayesian

Information criteria (BIC) and Akaike information criteria

(AIC). For Fanny, the number of clusters was set to 2,

analogous to previous Fanny-based genetic studies (Kaabi

and Elston 2003; Kaabi et al. 2006).

Phenotype data

Migraine data were obtained from extensive semi-struc-

tured telephone interviews as part of a study designed to

assess physical, psychological and social manifestations of

alcoholism and related disorders (Heath et al. 2001). The

sample was unselected with regard to personal or family

history of alcoholism or other psychiatric or medical dis-

orders Mulder et al. (2003). The interviews were conducted

during two periods of time: 1993–1995 and 1996–2000.

The earlier interviews were administered to Australian

twins listed with the volunteer-based Australian Twin

Registry who were born between 1902 and 1964, whereas

the second interviews were focused on twins born between

1964 and 1975.

Participants of both cohorts were first asked the

screening question: ‘‘Do you have recurrent attacks of

headaches?’’ If the participant screened positive, then

he/she was asked a number of questions which were

developed by an experienced migraine researcher based on

the IHS diagnosis criteria (Table 4). A total of 13,062

individuals from 6,764 families participated in this study,

with 2,716 MZ twin pairs (63.6% females and 36.4%

males), 3,399 DZ twin pairs (34.52% female twins, 22.36%

male twins and 43.13% mixed sex twins), 15 twins with

unknown zygosity and 817 first degree family members,

including both siblings and parents. The mean age of

participants was 37.5 ± 11.3 and ages ranged from 23 to

90 years at the time of interview.

Although the wording of questions was identical for

both cohorts, not all questions in Table 4 were included for

the older cohort. The questions relating to having more

than 5 migraine/episodes of headache during lifetime (‘‘C5

episodes’’), average duration of migraine/episodes between

4 and 72 h (‘‘4–72 h’’), and pain associated with headache

described as moderate to severe (‘‘mod/severe’’) were

not include in the questionnaire for the older cohort. We

conducted separate analyses for older, younger and two

cohorts combined data.

Models

Latent class analysis (LCA)

Latent class analysis is a multivariate technique which can

be applied to clustering, regression and factor analysis. The

classes are latent because they are not directly observed,
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but are identified based on a function of a set of observed

variables. LCA was developed in the 1950s for dichoto-

mous variables (Lazersfeld 1950); however, the full

potential and practical application of LCA only became

evident after the introduction of more general latent class

analysis and a simpler method of obtaining maximum

likelihood estimates of the parameters in the 1970s

(Goodman 1974a, 1974b). The latter LCA is capable of

dealing with both dichotomous and polytomous variables

and more than one latent variable can be included in the

model.

Suppose there are n individuals, J observed (manifest)

variables and each variable j has Lj levels of response, i

= 1, 2, ...,n, j = 1, 2, ...,J and l = 1, 2, ...,Lj. Let yijl denote

the binary response of the ith individual to symptom j with

level l and Yi is then the vector of subject i’s response to all

symptom questions. Assuming there are K latent classes

within the latent variable, let kkjl denote the class condi-

tional probability that an observation in class k produces

the lth outcome on the jth variable; therefore, within each j,
P

l kkjl ¼ 1: In this paper, the data consist of binary

responses, and thus Lj is two. Assuming local indepen-

dence, the probability of a particular set of responses from

an individual i in class k is:

f ðYijkkÞ ¼
YJ

j¼1

YLj

l¼1

ðkkjlÞyijl ð1Þ

Let pk denote the weight of latent component k. Then the

joint distribution for all J variables under the latent class

model is

PrðYijk; pÞ ¼
XK

k¼1

pk

YJ

j

YLj

l

ðkkjlÞyijl

The LCA analyses were carried out using the

poLCA (Linzer and Lewis 2007) package of R2.4.1

(R Development Core Team 2006). The parameters were

estimated via the expectation–maximization (EM) algorithm

(Dempster et al. 1977). The details of the EM algorithm for

LCA are in Linzer and Lewis (2007). Unlike the other models

described in this paper, the class membership probabilities are

estimated post-hoc using Bayes’ formula:

pik ¼ PrðkjYiÞ ¼
pkf Yijk̂k

� �

P
k pkf Yijk̂k

� �; ð2Þ

where k̂k is an estimate of outcome probability condi-

tioning on class k. Because the parameters are estimated

using the EM algorithm, the latent class for the obser-

vations with missing value(s) can still be estimated. This

is achieved by excluding cases with missing values when

calculating Eq. 1 and the denominator of Eq. 2 (Lazers-

feld 1950).

Grade of membership (GoM)

Grade of membership (GoM) also fits into the latent class

framework. GoM was first developed by Woodbury et al.

(1978) for expressing non-stochastic heterogeneity in a

population by direct latent variable estimation. This

method has been further developed by various researchers

and is frequently applied in medical and genetic research

(Erosheva 2002a).

Let gi = (gi1, gi2,...,giK) be the latent vector of grade

membership scores for individual i having a partial mem-

bership of component k, where gik C 0 for each i and k and
PK

k¼1 gik ¼ 1: The value gik can be interpreted as the

intensity of membership in each component. Unlike LCA,

the membership scores of individuals are estimated directly

from data. Let kkjl denote the probability of positive

response to level l of variable j for a complete membership of

component k, kkjl = Pr(xijl = 1|gik = 1) where i = 1, 2,...,n,

Table 4 The survey questions

designed based on 1988

International Headache Society

diagnostic criteria

Notation Abbreviation Descriptions

a C5 episode Have at least 5 episode of headaches in your life time.

b 4–72 h Average headache lasts between 4 and 72 h

c1 Unilateral Headache often occurs at one side of head

c2 Pulsating Headache pain can be described as throbbing, pulsating

or pounding

c3a Moderate/severe Headache pain can be described between moderate and

severe

c3b Prohibitive Headache pain prohibits daily activities

d1 Nausea/vomiting Headache associated with vomiting or feeling nausea

d2a Photophobia Enhanced sensitivity to light

d2b Phonophobia Enhanced sensitivity to sounds

Aura Aura Have visual problems such as light shower, blurring,

blind spot or double vision
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j = 1, 2,...,J and k = 1, 2,...,K. Within each variable j, kkjl C 0

and, the sum of kkjl across all levels, is equal to one. The joint

likelihood of GoM is

PrðY jk; gÞ ¼
YN

i¼1

YJ

j¼1

YLj

l¼1

X

k

gikkkjl

 !yijl

ð3Þ

Equation 3 is maximized by iterative optimization with

respect to one set of parameters while keeping the other set

of parameters constant. This iterative procedure is referred

to as the missing information principle. The details of the

parameter estimation procedure are in Manton et al.

(1994).

GoM can deal with missing values in two different

ways, depending on the nature of the missing values. When

the missing data are generated by a random mechanism

which is independent of model parameters, missing data

can be treated as unobserved and independent observations.

In this case, yijl for a missing observation is set to be 0 for

l = 1, ...,Lj and is consequently excluded in the computa-

tion of the likelihood. When the missing data are due to a

non-random process, such that certain items have a higher

rate of missing data on a specific latent class, GoM deals

with this problem by increasing the dimension of the

measurement spaces by adding an extra category called

‘‘missing’’ for each variable in the model. In this study, in

light of no information to the contrary, we assume the

missing value is due to random causes.

The above models were tested using the Akaike infor-

mation criterion (AIC, Akaike 1974), Bayesian information

criterion (BIC, Schwarz 1978) and log-likelihood values

for each value of K. AIC and BIC strike a balance between

goodness of fit and model complexity, thus avoiding both

over-fitting and under-fitting. Models with lower AIC and

BIC values are preferred. Log-likelihood measures model

fit but not complexity, and thus must be used cautiously to

avoid over-fitting.

Phenotype conversion

In this study, the maximum number of components tested

in the LCA and GoM analyses is 6 [max(K) = 6]. The

optimum number of components for LCA is determined by

the Bayesian information criteria (BIC) (Schwarz 1978)

whereas the likelihood ratio test is used to determine the

optimum number of components in GoM. Because both

models yield only multinomial estimates, an intermediate

step is added to obtain a continuous phenotypic measure.

When the optimum value of K is 2, the membership score

for the ‘‘affected’’ component (the component with more

and stronger symptoms, such as pik = affected of LCA and

gik = affected of GoM) is taken to be representative of the

trait value. Currently, genome-wide linkage analysis is

limited to either a continuous or a dichotomous trait value,

and is not designed for multiple clusters. Therefore, in the

past, when the optimum number of clusters in the model

exceeded two, the phenotype was determined by a

threshold value (Nyholt et al. 2004, 2005; Ligthart et al.

2006). To avoid the difficulty in determining an appropriate

threshold, we implemented the following method to con-

vert multinomial values to continuous values bounded

between 0 and 1.

When the optimum number of components in a model

exceeds 2, we used the following equation to estimate each

individual trait value. Since this trait value aims to capture

the presence of the symptom, we set l to 2:

Phenotypic traiti ¼
Xk¼K

k¼1

Pj¼J
j¼1 kkj2

J
� gik

where gik is membership score for individual i having

partial membership of cluster k and J is the total number of

manifest variables.

The use of a single, continuous-valued summary of

phenotype such as this is not appropriate if two or more

distinct disorders were producing the observed symp-

toms. We note that in the analysis of the migraine data,

the clusters can be ordered sequentially such that the

probability of experiencing each of the ten symptoms

decreases monotonically. This is highly suggestive of a

single underlying determinant of severity. The justifica-

tion is less clear for the GoM model, because the clusters

cannot be ordered in the same way. Nevertheless, the

GoM clusters can be ordered such that the endorsement

probabilities decrease monotonically for eight of the ten

symptoms. Moreover, as we discuss below, there is

reason to believe (on the basis of information criteria)

that the LCA clustering is the more appropriate data

model.

Grade of membership-Fanny

Unlike the two model-based approaches described above,

Fanny forms clusters based on the dissimilarity between

subjects, such that where subjects resemble each other they

tend to be clustered into the same group. Dissimilarity

between two objects can be calculated in various ways.

Due to the type of variables in the migraine dataset, the

dissimilarity matrix is calculated using a contingency table.

Considering two objects, i and j, and the contingency table

of i and j for variable p as shown in Table 5, the dissimi-

larity between i and j is estimated as

dði; jÞ ¼ bþ c

aþ bþ cþ d
:

Let uik denote the strength of membership of object i to

cluster k; uik� 0;
PK

k¼1 uik ¼ 1: uik is analogus (but not

Hum Genet (2009) 125:591–604 595
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equal) to gik and pik above. The objective of Fanny clus-

tering is to iteratively minimize:

XK

k¼1

Pn
i;j¼1 u2

iku2
jkdði; jÞ

2
Pn

i¼1 u2
jk

:

Unlike LCA and GoM, Fanny does not provide a measure

of how many clusters best fit the data; the user must choose

the value of K. We therefore followed the approach utilized

in previous Fanny-based genetic studies (Kaabi and Elston

2003; Kaabi et al. 2006) and fixed the number of clusters in

the model to two. Whether this is appropriate or not

would depend on the underlying architecture of the trait

(symptomatology) under investigation. As a result, the

phenotypic value of the individual subject was simply the

score, ui2, for the membership of the affected group.

The Fanny algorithm procedure is implemented by the

Fanny function of the contributed package cluster (Maechler

and Hubert 2008) of the R (R Development Core Team

2006) statistical package.

Genetic data

The genotypic data are from a collection of four smaller

genome-wide linkage scans performed for studies at the

Queensland Institute of Medical Research (QIMR). Geno-

typing for four scans was undertaken at Gemini Genomics

with 426 microsatellite markers, Sequana Therapeutic with

519 markers, the Center of Mammalian Genetics at the

Marshfield Clinic Research Foundation with 776 markers

and the University of Leiden with 435 markers. The

recruitment of participants for genotyping was based on

individuals involved in phenotype collection. The details of

DNA collection, genotyping methods and data are provided

in Zhu et al. (2004) and Cornes et al. (2005).

Graphic representation of relationships (GRR) (Abecasis

et al. 2001) and RELPAIR (Epstein et al. 2000; Duren

et al. 2003) were applied for the examination of the pedi-

gree structure and identification of inconsistencies between

the genotypic data and self-reported pedigree relationships.

Potential pedigree misspecification, incorrect zygosity

labelling of twins and potential sample mix-up were

identified and investigated; the problematic individuals or

families were removed from further analysis. The SIB-

PAIR program by Duffy (2002) was then implemented for

identifying and cleaning the Mendelian inconsistencies in

the genotype data.

After combining all four scans, there were 485 markers

which were typed in two or more scans. Therefore to

ensure the consistency of genotypic information for these

458 markers, the duplicated markers are included sepa-

rately on the genetic map for the combined scan, which is

separated by a small distance of 0.001cM. The consistency

of the genotypes of these 458 markers was checked using

various methods described in Cornes et al. (2005). Markers

with genotypic data inconsistent between different genome

scans were excluded and unlikely genotypes were identi-

fied by MERLIN (Abecasis et al. 2002) and omitted from

further analysis. Potential map errors were identified by

GENEHUNTER (Kruglyak et al. 1996) and MENDEL

(Lange et al. 1988). Map positions were in Kosambi cM,

which is estimated using locally weighted linear regression

from the National Center for Biotechnology Information

(NCBI) Build 34.3 physical map positions, as well as

published deCODE and Marshfield genetic map positions

(Kong et al. 2004). Where the results suggested inconsis-

tencies between genetic map distance and recombination

fraction, the primer sequences for all markers in the region

were BLASTed against the entire human genome sequence

(http://www.ensembl.org, NCBI build 34.3). The genetic

map was then revised to include the updated physical

positions of all markers in the problematic regions. The

revised map and the original genotype data were cleaned of

unlikely genotypes using MERLIN and map errors were

resolved using GENEHUNTER.

The final cleaned data contains 1,770 unique markers.

The main intermarker distance for all sib-pairs in the

samples was 7.1cM, calculated for each sib-pair and ana-

lyzed across all sib-pairs. The combined genome scan

included 4,148 individuals from 919 families, which

included 143 MZ and 776 DZ twin pairs.

Heritability

Heritability of the continuous phenotype values was esti-

mated with the ACE model. The ACE model assumes the

phenotype variation is due to the additive genetic effect

(A), shared environment effect (C) and random environ-

ment effect (E). The heritability is then the proportion of

the total variance which is due to the additive genetic

effect. The analysis was carried out using Mx (Neale et al.

1997) which performs maximum likelihood estimation of

the variance components.

Linkage analysis

A non-parametric quantitative trait linkage analysis was

carried out using Merlin-qtl, developed under the general

framework of Kong and Cox (1997) and Whittemore and

Halpern (1994). The membership score of the three models

Table 5 The contingency table of object i and j

i n j 1 0

1 a b

0 c d
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(gik of LCA and GoM and uik of Fanny) was treated as a

quantitative trait.

Results

The results of clustering and linkage analyses performed

separately for the older and younger cohorts lack the power

to identify any significant loci. Moreover, the analysis of

the older cohort itself is not representative of the true

migraine population due to lack of three symptom

responses. However, by combining two cohorts, we

obtained a representative sample and power to identify

disorder-related loci, hence we restrict our subsequent

results to the combined data set.

Table 6 provides goodness of fit statistics for the choice

of k in the two model based approaches, LCA and GoM.

For LCA, there is little improvement in AIC or BIC as K

increases above four, where there is a local minimum in

BIC (Table 6). We therefore selected K = 4 as the best

compromise between model fit and complexity. For GoM,

both AIC and BIC indicate that the best model has K = 2,

but even this best-scoring GoM model is substantially

worse than any of the LCA models. The reason for this is

that although GoM models have better fit (that is, higher

log-likelihood), they achieve this at the cost of including

additional parameters, namely the membership scores gik.

In light of this, we based goodness of fit assessment on the

log-likelihood ratios and noting that the largest reductions

in log-likelihood occur as K increases to four, we again

chose the four clusters GoM model.

Even though four clusters were chosen for both GoM and

LCA, the characteristics of the clusters differ between these

phenotyping approaches. Figure 1 shows the characteristics

of each LCA cluster. Each bar shows the probability of

having the symptom, given a full membership to cluster k.

For instance, the probability of having ‘‘aura’’ for a member

in cluster 1 is 0.90. There is a progressive reduction of

endorsement probability for all symptoms when cluster 2 is

compared to cluster 1, when cluster 3 is compared to cluster

2 and when cluster 4 is compared to cluster 3. The only

departure from this pattern is the slight increase in the

probability of a positive response to the question ‘‘have you

had more than 5 episodes of headaches in your life time?’’

when cluster 3 is compared to cluster 2. The clusters are

thus in a natural order, suggesting, as mentioned earlier, that

migraine phenotypes can be organised on a linear scale of

severity.

This linear pattern is not apparent for the GoM clusters.

It is apparent that cluster 1 has the highest endorsement

probabilities for all symptoms and cluster 4 has the lowest.

However, although cluster 2 has equal or higher endorse-

ment probabilities than cluster 3 for most symptoms,

this situation is reversed for the symptoms ‘‘ C5 episodes’’

and ‘‘moderate/severe’’ (Fig. 2).

The profile plot showing the characteristics of the Fanny

clusters is depicted in Fig. 3. There is a large difference in

the endorsement probabilities of the two clusters, and more

than 55% of individuals in cluster 2 have all symptoms

listed in Table 4. Individuals in cluster 2 are not exempt

from all symptoms; a small proportion in this cluster had

the first five symptoms of Table 4 during their headache

episode. Since there are only two clusters in this analysis,

cluster 1 can be referred to as the ‘‘Affected’’ class and

cluster 2 as the ‘‘Unaffected’’ class.

Of the total 13,062 individuals, 14% were assigned to

cluster 1, 21% to cluster 2, and 10 and 55% were in cluster

Table 6 The log-likelihood value, AIC and BIC values of LCA and

GoM models with different number of clusters

Model Number of

cluster (K)

Log-likelihood AIC BIC

LCA 2 -38752.642 77549.28 77713.79

3 -36677.701 73423.4 73677.63

4 -36456.261 73004.52 73348.49

5 -36401.638 72948.79 73382.48

6 -36333.290 72806.58 73330

GoM 2 -28616.94 109561.9 305202

3 -22696.07 123884.1 417344.6

4 -20978.36 146612.7 527892.4

5 -20322.00 171464.0 660564.8

6 -18838.39 194660.8 781581.8
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Fig. 1 The characteristics of the four clusters under LCA K = 4

model. X-axis corresponds to the items listed in Table 4 and the y-axis

is the probability of displaying the symptom given full membership to

cluster k
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3 and 4, respectively, according to LCA (Table 7). In

contrast to LCA, a slightly higher proportion of the popu-

lation were classified into the two extreme clusters of GoM

with 22% falling into cluster 1 and 60% into cluster 4.

Under the Fanny clustering method, around 40% of the

population are classified into cluster 1 and 60% are in

cluster 2 (Table 7).

After phenotype conversion, all three models agreed that

a large proportion of the subjects in this study have a very

small probability of having had migrainous headaches

(Fig. 4). However, we observed some variations in the tail

end of the histograms. According to GoM, there is an even

distribution in the individuals with scores between 0 and 1,

with a slightly higher proportion having scores closer to 1.

This is different from the results obtained using Fanny and

LCA, in which only a very small number of people had a

phenotypic score between 0 and 0.4. However, unlike the

tail end of the Fanny histogram which shows a slight

increase in score distribution, the LCA histogram shows

small peaks at 0.5 and 0.7. The maximum trait scores

estimated in LCA and GoM approach 1, whereas the

maximum trait score using Fanny is 0.86.

At the individual level, LCA and Fanny gave similar

phenotypic estimates. Figure 5 contains scatter plots

showing the predicted scores of individuals under the dif-

ferent methods. LCA and Fanny show very similar

predicted scores when the score is larger than 0.4.

Although Fanny tends to give higher phenotypic scores to

individuals with a score lower than 0.4, generally there is a

strong correlation between LCA and Fanny phenotypic

scores (correlation = 0.99). In contrast, although the cor-

relation is still high (correlation = 0.85), there is a notable

discrepancy between LCA and GoM predicted scores. This

is also observed in the comparison of phenotypic scores

obtained using the Fanny and GoM approaches.

Table 8 contains the heritability estimates when using

the phenotypic scores of the three models where A indi-

cates the variation due to genetic variation, C is the

variation due to the shared environmental effects and E is

the effect due to non-shared environmental effects. The

range of heritability is between 0.36 and 0.46. The highest

heritability occurs when using the phenotype derived from

the GoM model, which is 0.46 with a 95% confidence

interval of 0.43–0.49. This indicates, if the assumptions for

the ACE model hold, that 46% of total variation is due to

genetic variation, none of the variation is due to shared

environment effects and nearly 54% is due to the random

environmental effects.
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Fig. 2 The characteristics of the four clusters under GoM K = 4

model. X-axis corresponds to the items listed in Table 4 and the y-axis

is the probability of displaying the symptom given full membership to

cluster k
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Fig. 3 The characteristics of the four clusters under Fanny K = 2

model. X-axis corresponds to the items listed in Table 4 and the y-axis

is the proportion of individuals having the symptom given cluster k

Table 7 The weight of each cluster under different phenotyping

analysis

Model No. of

clusters

Class 1

(Affected)

Class 2 Class 3 Class 4

(less affected)

LCA 4 0.136 0.206 0.103 0.554

GoM 4 0.215 0.076 0.105 0.604

Fanny 2 0.405 0.590 – –

For LCA and GoM, the optimum number of clusters is 4 whereas the

cluster size is 2 for Fanny

– Not applicable
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The heritability estimates obtained using LCA and Fanny

phenotypes are close: respectively, 37 and 36%. The vari-

ation due to shared environmental effects is consistent

between these two approaches, and is in line with that

obtained for the GoM approach. The non-shared environ-

mental effects for these two approaches are 63 and 64%.

Merlin-qtl multipoint LOD scores using the three dif-

ferent phenotypic measures were calculated at 1-cM

increments; see Fig. 6. The black solid line is the LOD

score corresponding to the LCA phenotype; the red dashed

line corresponds to GoM and the green dotted line corre-

sponds to Fanny. The LOD scores based on LCA and
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distribution of the phenotypic

scores estimated under LCA,
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Fanny show very similar patterns with several regions on

chromosome 7 having LOD scores over 3. The highest

LOD scores are on chromosome 7 at the 136 cM region

(LCA LOD=3.7; Fanny LOD=4.12) followed by chromo-

some 7 at the 133 cM region. (LCA LOD = 3.28, Fanny

LOD = 3.47). The third highest LOD score is also found in

chromosome 7 at 127cM (LCA LOD = 2.72, Fanny

LCA = 3.05). Although the LOD score signals are not as

high as in chromosome 7, the genomewide linkage analysis

shows possible evidence of linkage on chromosomes 2

and 1 in LCA and Fanny traits. Markers D28364 G,

GATA194A05 and D2S1391, which are between 187 and

188 cM of chromosome 2, have a LOD score of 1.89 based

on the LCA traits and 2.25 for the Fanny traits; and marker

ATA73A08 (156cM) on chromosome 1 shows a small

peak.

In contrast, the LOD scores based on the GoM pheno-

types show a very different pattern. The highest LOD score

of the GOM trait is on Chromosome 2 between 210 cM

(LOD = 3.10); followed by chromosome 2 at the 206 cM

region (LOD = 2.81). Some signals are detected on chro-

mosome 1 and 7; marker AGAT119 M (153 cM) on

chromosome 1 has a LOD score of 2.59 and marker

ATA55A05 M (127cM) on chromosome 7 has a LOD score

of 2.51.

Discussion

Genetic research of diseases with a complex etiology firstly

requires the identification of phenotypes which capture the

underlying phenotypic and genetic variance. In this study,

the aim was to investigate the effects of different clustering

methods on the output of genetic analyses using a previously

described (Nyholt et al. 2005) and subsequently updated

migraine dataset. We tested three commonly used statistical

clustering phenotyping methods: LCA, GoM and Fanny. Of

these, the first two are model-based approaches, whereas

Fanny is based on partitioning of a dissimilarity matrix. Our

results show that with the same symptom response data,

different phenotype clusters are derived and as a conse-

quence different genetic loci are implicated via linkage.

The heritability estimated here with three different

migraine phenotypic traits is within the range of previously

published findings (Mulder et al. 2003). Mulder et al.

(2003) show that the heritability of MA and MO varies for

different populations. For the Australian population, pre-

viously published results indicate the heritability varies as

different phenotyping methods are applied (Nyholt et al.

2004); this is supported by our findings. The ACE model

fitting indicated the greater genetic contribution to

migraine using GoM, followed by LCA and Fanny, which

are 46, 37 and 36%, respectively. Some of these estimates

are higher than the heritability for the IHS criteria defined

phenotype published in Nyholt et al. (2004, 2005). We also

noted that differences in heritability can occur within a

model. For instance, using the same LCA model, the h2 of

the converted continuous trait is slightly lower than the h2

of the dichotomous trait in Nyholt et al. (2004, 2005). We

failed to identify the shared environmental effects for these

phenotypic traits, as also occurred in Nyholt et al. (2004).

Nyholt et al. (2004) found that when additive genetic

effects are present, the power to detect the shared envi-

ronmental effects is low.

The difference between the continuous trait values

derived from the LCA and GoM models is mainly due to

Table 8 The migrainous headache heritability estimates from the

ACE model, where A is the variation due to genetic variation and C is

the variability due to environmental effect

Model BIC Components Mean Lower CI Upper CI

LCA -48352.60 A 0.3710 0.3365 0.4007

C 0.0000 0.0000 0.0000

E 0.6290 0.5993 0.6569

GoM -48429.35 A 0.4625 0.4308 0.4905

C 0.0000 0.0000 0.0000

E 0.5375 0.5095 0.5665

Fanny -48079.38 A 0.3592 0.3266 0.3877

C 0.0000 0.0000 0.0000

E 0.6408 0.6104 0.6720
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Fig. 6 Results of MERLIN-qtl genomewide linkage analysis using

traits derived from different statistical clustering methods. The solid
black line is the LOD score of traits derived from LCA, red dashed
line is the LOD score of trait from GoM and green dotted line is LOD

score of Fanny traits. The dotted vertical lines indicate the boundaries

between chromosomes
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the different clustering structure. Although the number of

clusters in both models are the same, the characteristics of

clusters are very different. The clusters of the GoM model

differ in symptom composition but the clusters of the LCA

model are different in the probability of having all ten

symptoms.

The two model-based clustering methods implicated

different genetic loci. However, based on the GoM phe-

notype, linkage was obtained to a locus near marker

D2S2944 on chromosome 2 and to loci on chromosomes 1

and 7. Conversely, the two most unlike clustering methods,

LCA and Fanny, not only produced linkage at the same

positions but also gave the same ranking to those positions.

The linkage analysis of LCA- and Fanny-based traits had

highest LOD scores at Chr7q33 and Chr7q32.3 regions,

respectively.

Although the markers with the highest LOD scores in

the LCA and Fanny phenotype analyses are not implicated

in the GoM linkage results, the genetic analysis of GoM

produced linkage to other possible markers on chromosome

1 and 7. Marker AGAT119M of chromosome 7 has the

fifth highest LOD score for the GoM trait, and the third

highest LOD score ranking of the LCA and Fanny traits. In

contrast, although linkage analysis of LCA and Fanny traits

did not provide strong evidence for linkage to marker

AGAT119M on chromosome 1 (LOD scores less than 2),

there is still some evidence of linkage.

Although the LOD scores for some loci are less than 3,

our analysis was able to replicate some previously identi-

fied regions. The small peak on chromosome 1 of LCA and

Fanny traits is within 2cM of the familial hemiplegic

migraine (FHM) type 2 ATP1A2 gene (De Fusco et al.

2003; Vanmolkot et al. 2003). The small peak in chro-

mosome 2 is also within a small distance of the SCN1A

FHM3 gene found by another study (Dichgans et al. 2005).

Another important marker is GGAT1A4, which is located

on the chr 10q22.3–10q23.1 region. Our genome-wide

linkage results indicated a suggestive linkage in this region.

This is encouraging because the same region has been

identified previously by Anttila et al. (2008, 2006) and

Nyholt et al. (2005). Unlike much other research, Anttila

et al. (2008) adopted three different methods to phenotype

the migraine patients of the Australian and Finnish popu-

lations; this includes the less stringent form of IHS defined

MA, LCA and trait-component analysis. Note the pheno-

typic traits derived from their LCA is calculated using a

different algorithm from the one used here and Anttila

et al. (2008) implement the same algorithm as the one

described in Nyholt et al. (2004). We will later explain the

difference between these two approaches and discuss the

effects of these algorithms on linkage analysis. Previously

detected loci, chr 6p12.2–p21.1 and 8q21 (Nyholt et al.

2005), are also detected here with suggestive linkage when

the trait values are derived from LCA and Fanny.

Some previously identified loci were not detected here;

this includes 4q21 (Björnsson et al. 2003), 4q24 (Wessman

et al. 2002; Anttila et al. 2006; Lea et al. 2005), 4q21–q31

(Anttila et al. 2006), 5q21 Nyholt et al. (2005), 8q21

(Anttila et al. 2008; Nyholt et al. 2005), 14q21–q23

(Soragna et al. 2003; Anttila et al. 2008), 15q11–q13

(Anttila et al. 2006), 17q13 (Anttila et al. 2006), 18q12

(Björnsson et al. 2003; Wessman et al. 2002; Anttila et al.

2008). Here are some possible causes of this difference.

Firstly, the common form of migraine, according to IHS

cirteria, is an ensemble of multiple symptoms; each

symptom may be caused by specific loci and these loci

contribute to susceptibility to migraine (Nyholt et al. 2005;

Anttila et al. 2006; Lea et al. 2005). For the formation of

common migraine, genes may need to act synergistically.

One drawback of single-locus linkage analysis is that it is

not able to detect epistasis effects, which commonly

present in a complex disease. Therefore, the development

of genome wide association studies in conjunction with

statistical tools for detecting epistasis effects is more suit-

able for detecting the genetic architecture of migraine.

Another possible cause for not replicating previously

detected loci is the variation of phenotyping methods

adopted in other studies. Our results indicate that different

phenotyping methods can result in different loci being

identified in linkage analysis; hence it is not surprising that

some previously prominent genes go undetected here. We

do not advocate our findings as superior to others, or vice

versa, but they do demonstrate the need to base linkage

analysis on different trait values derived from various

methods to ensure the validity of the conclusion. This is

especially true for diseases with complex etiology.

Differences in the results of genetic analyses can occur

not only between models, but also within a model. Nyholt

et al. (2004, 2005) applied LCA to migraine survey data

and identified four subgroups of migraine/severe head-

aches. Individuals classified into clusters 2 and 3 were

treated as ‘‘affected’’ and given a trait value of 1 and

conversely individuals in the other two clusters were given

a trait value of 0. The authors then conducted a regression

using MERLIN and found the highest LOD scores on

chromosomes 5, 10, 8, 1 and 6. Although the current results

cannot be readily compared to those present in Nyholt

et al. (2005), due to differences in available phenotype data

and modelling approach, we replicated their procedure and

generally we found lower LOD scores but in similar

positions to those identified by Nyholt et al. (2005). The

main difference between the approaches used by Nyholt

et al. (2005) and those in the current paper is that the

former employed discrete cluster membership as an
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‘‘affection’’ trait, whereas the current results utilized a

continuous phenotypic score related to cluster membership.

To investigate further the effect of different clustering

approaches on within-model effects, we separately tested

the LCA and GoM models with predefined values of K.

When K = 2, the results of the genetic analysis based on

both the LCA and GoM are different from those obtained

when K = 4. Within a GoM phenotyping analysis, when K

is 2, the highest LOD score is 2.29 at D1S484 on chro-

mosome 2, which is 53 cM from the loci identified using

the optimum GoM model. The within-model effect is more

apparent for the LCA phenotypes, where not only the

linkage position changed, but the highest LOD score

reduced from 3.70 to 2.03. This demonstrates the influence

of the number of clusters on the model-based clustering

approaches.

The likelihood ratio test statistics and BIC used in the

present analysis for model selection are common parsi-

mony criteria but are not ideal for mixture models (Marin

et al. 2005). More sophisticated methods, such as boot-

strapping (McLachlan et al. 1999) or reversible jump

Markov chain Monte Carlo methods (RJMCMC) (Rich-

ardson and Green 1997), may be more effective in

searching for the optimum number of clusters in a finite

sample space. The work by Berkhof et al. (2003) provides

a framework for using Bayes factors for component

selection in mixture models.

Despite the fact that LCA and GoM are both forms of

mixture models, they are quite different in practice. In

GoM, the membership scores of individuals are estimated

as model parameters, so the number of parameters in

the model increases dramatically with the sample size. The

increase in number of parameters not only slows down the

computation of the model, but it also has an effect on

the determination of the optimum number of components,

where the criteria for model selection are based on a

parsimony measure.

Another drawback of GoM, which is also shared by

LCA, is in the algorithm for parameter estimation. Both of

these methods are implemented using an iterative algo-

rithm, such as EM, to find maximum likelihood estimates.

These procedures may only find the local maximum as the

model becomes complex (Linzer and Lewis 2007).

Therefore, to ensure the achievement of a global maxi-

mum, re-estimation of the model parameters with multiple

starting points is recommended. As is common in such

cases, it is difficult to provide guidance as to how many

starting points should be used, but one rule of thumb is to

repeat the optimization until each observed local maximum

is attained from more than one starting point.

The large number of parameters involved in the GoM

model can also result in instability of the estimation of

membership score, gik. Manton et al. (1994) has suggest

various modifications to improve consistency: in particular,

by assuming gik for individual i is a realization of a random

vector, with a distribution function.

Although the Fanny algorithm is relatively simpler and

computationally easier, there are some limitations associ-

ated with this approach. Firstly, the Fanny algorithm

clusters data without taking into account any structure in

the data. It is therefore essential to have two extreme

response patterns in the data, ideally individuals with all

symptoms, and individuals without all symptoms with

heavy weights on both patterns.

Clustering using the Fanny algorithm is highly depen-

dent on the dataset and consequently the clustering

structure often changes when extra data are included in the

analysis. Unless the sample is representative of the popu-

lation, the phenotypic measures determined from a small

sample may be biased. Another limitation of the Fanny

algorithm is that as sample size and the number of ques-

tions increases, the computational requirements for the

dissimilarity matrices also increase.

Of all three models, LCA is most computationally

efficient, but it is not fully exempt from the effects of

increasing parameter dimension. Computational time also

increases rapidly with the number of latent classes (K),

manifest variables (J) and levels within each manifest

variable (Lj). When the number of parameters exceeds

the number of samples, or one fewer than the total

number of cells in the cross-classification table of mani-

fest variables, the LCA will not be identifiable (Linzer

and Lewis 2007).

This study is based on the assumption that the

migrainous population is composed of multiple subgroups.

But it remains uncertain that the population that suffers

from migrainous headaches is unidimensional. Therefore,

models such as latent trait analysis may exhibit better

performance than any clustering based statistical methods.

In this paper, we adopted the somewhat innovative

practice of converting cluster memberships to continuous

phenotype scores. We regard this practice as preferable to

the arbitrary imposition of a threshold, which effectively

separates individuals into cases and controls. However, we

urge caution in the use and interpretation of such pheno-

type scores. In particular, the practice assumes that the

disease can be satisfactorily modeled as the result of a

single, unidimensional, continuous determinant of severity.

One should therefore investigate whether the clusters can

be placed in a natural order of monotonically decreasing

severity, as we have done here. We suggest further research

into the relative merits of using continuous phenotype

scores as opposed to thresholds.

In conclusion, different phenotyping methods have dif-

ferent properties; not knowing the true phenotypic structure

of the population, phenotyping methods can therefore only
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provide approximations to the trait. To minimise the

impact of phenotypic uncertainties, we suggest the fol-

lowing alternative approaches:

1. Phenotype integration Run multiple phenotyping

methods and integrate the results of different methods

to produce a single phenotype. Then perform linkage

analysis on this integrated phenotype.

2. Eliminate ambiguous cases Eliminate cases with

phenotypes that differ for different phenotyping meth-

ods, thus limiting subsequent analysis to those

individuals for which all methods produce essentially

the same classification.

3. Multiple linkage analysis Run multiple linkage ana-

lysis on the phenotypic classifications derived from

different models, using different clustering techniques

and different numbers of classes. Then combine the

results of these multiple analyses with a voting

mechanism.

Such approaches may facilitate more stable estimation

of genetic linkage for diseases with complex etiology. We

recommend further research into the relative success of

such approaches.
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