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We	report	a	genome-wide	association	study	for	melanoma	
that	was	conducted	by	the	GenoMEL	Consortium.	Our	
discovery	phase	included	2,981	individuals	with	melanoma	
and	1,982	study-specific	control	individuals	of	European	
ancestry,	as	well	as	an	additional	6,426	control	subjects	from	
French	or	British	populations,	all	of	whom	were	genotyped	
for	317,000	or	610,000	single-nucleotide	polymorphisms	
(SNPs).	Our	analysis	replicated	previously	known	melanoma	
susceptibility	loci.	Seven	new	regions	with	at	least	one	SNP	
with	P	<	10−5	and	further	local	imputed	or	genotyped		
support	were	selected	for	replication	using	two	other		
genome-wide	studies	(from	Australia	and	Texas,	USA).	
Additional	replication	came	from	case-control	series	from		
the	UK	and	The	Netherlands.	Variants	at	three	of	the	seven		
loci	replicated	at	P	<	10−3:	an	SNP	in	ATM	(rs1801516,		
overall	P	=	3.4	×	10−9),	an	SNP	in	MX2	(rs45430,	P	=	2.9	×	
10−9)	and	an	SNP	adjacent	to	CASP8	(rs13016963,	P	=	8.6	×		
10−10).	A	fourth	locus	near	CCND1	remains	of	potential	
interest,	showing	suggestive	but	inconclusive	evidence	
of	replication	(rs1485993,	overall	P	=	4.6	×	10−7	under	a	
fixed-effects	model	and	P	=	1.2	×	10−3	under	a	random-
effects	model).	These	newly	associated	variants	showed	no	
association	with	nevus	or	pigmentation	phenotypes	in	a		
large	British	case-control	series.

Cutaneous melanoma is predominantly a disease of fair-skinned 
individuals. Risk factors include family history1, certain pigmen-
tation phenotypes (notably the presence of fair skin, blue or green 
eyes, blond or red hair, sun sensitivity or an inability to tan2–5) and 
increased numbers of melanocytic nevi6,7. We previously reported 
phase 1 of a genome-wide association study (GWAS) of melanoma 
based on the Illumina 317k array8. Data from this study reinforced 
the importance of genetically determined melanoma-associated 
phenotypes by identifying the major common genetic determinants 
of risk in the populations considered: the MC1R locus (associated 
with red hair, freckling and sun sensitivity)4,5,9,10, tyrosinase (TYR) 
gene variants that encode skin color11 and a region near CDKN2A 
and MTAP that is associated with number of melanocytic nevi8,12. 
Furthermore, we confirmed the importance of a haplotype spanning 
the agouti signaling protein (ASIP) locus11,13 and a second locus at 
22q13 determining nevus count variation, which was identified by a 
GWAS of nevus count12.

Both phase 1 and phase 2 of this study were carried out by the 
GenoMEL Consortium, a collaboration focusing on genetic suscep-
tibility to melanoma. The study used samples collected by GenoMEL 
participants across populations of European ancestry living at different 
latitudes. In total, 14 GenoMEL groups contributed DNA samples from 
individuals with melanoma and control individuals of European (or 
Israeli) ancestry (Supplementary Table 1). Phase 1 was based on 1,650 
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subjects with melanoma from Australian and European populations 
chosen because they had a phenotype argued to enrich for genetic sus-
ceptibility (early onset, multiple primary melanomas or modest family 
history of melanoma). In phase 2, a further 1,523 individuals with 
melanoma (1,211 of whom are genetically enriched: 532 with a family 
history, 277 with multiple primaries but no family history and 402 with 
early disease onset but no multiple primaries or family history) and 
1,112 control individuals were genotyped using the denser Illumina 
610k array (Supplementary Note). To optimize power, we combined 
the data from the two phases and performed an overall analysis. The 
Australian data used in phase 1 were dropped from the combined 
phase 1 and phase 2 analysis because these samples are included in 
the Australian GWAS that formed one of the replication studies. After 
quality control was applied to SNPs and samples (Supplementary 
Note), including principal-component analysis (PCA) to identify 
samples of non-European ancestry (Supplementary Fig. 1), the 
analysis used 2,804 subjects with melanoma (2,692 European and 
112 Israeli individuals) and 1,835 control subjects from GenoMEL 
studies and 5,783 control subjects from France and the UK Wellcome 
Trust Case-Control Consortium (WTCCC). A trend test, stratified by 
geographical region, was applied to each SNP (Fig. 1; and see Online 
Methods). Little evidence was found of population stratification  
(λ = 1.06, Supplementary Note).

Strong evidence was found for previously identified loci 
(Supplementary Figs. 2, 3 and Supplementary Table 2)8,11–18 and 
for another pigmentation gene, SLC45A2, already reported to be asso-
ciated with melanoma risk15. The protein encoded by SLC45A2 is 
involved in melanosome maturation and pigmentation. The rs35390 
SNP identified here is associated with melanoma15 and with variation 
in hair color15,19, in accordance with the observed pattern of known 
melanoma pigmentation risk factors2–5.

We also confirmed a role for the rs401681 SNP in the region of 
TERT and CLPTM1L, which has also previously been shown to modify 
melanoma risk18 (Supplementary Figs. 2, 3 and Supplementary 
Table 2)8,11–16,20. The confirmation of this SNP association follows 
reported associations of variants at this locus with risk of basal cell 

carcinomas, hematological malignancies and cancer of the bladder, 
cervix, lung, pancreas and prostate18,21. It was originally reported that 
the pattern of risk for melanoma was in the opposite direction to that 
for other cancers18, and we confirm this observation.

Seven further regions showed evidence of association with 
melanoma susceptibility (Table 1 and Supplementary Table 3). We 
sought replication in two other GWAS for the SNPs with the strong-
est evidence, preferentially considering SNPs common to all arrays. 
In regions with no SNP common to all platforms, we selected for 
follow-up both our top genotyped SNPs and the most significant 
imputed SNPs that had been genotyped in the replication studies. 
Further, these SNPs were genotyped in a replication sample set from 
the UK and The Netherlands (1,579 individuals with melanoma 
and 2,036 control subjects in total, Supplementary Note). The evi-
dence from both the hypothesis-generating and replication data sets 
are provided (Table 1). Of these seven regions, three (on chromo-
somes 2 (rs13016963), 11 (rs1801516) and 21 (rs45430)) showed  
strong evidence of replication (P < 10−3), three (on chromosomes 2  
(rs10932444), 12 (rs7139314) and 13 (rs9515125)) showed no  
evidence of replication, and one (on chromosome 11 (rs1485993)) 
showed marginal evidence of replication. Three of the loci showed 
overall combined evidence of association at P < 5 × 10−8, as indicated 
by fixed-effects meta-analysis.

The CASP8 region (chromosome 2) contains a number of SNPs 
showing evidence of association with melanoma risk; because 
of a lack of overlap in the SNPs across arrays, we report multiple  
SNPs that were either genotyped or imputed across platforms, 
all of which show evidence of association (Fig. 2, Table 1 and 
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Regions identified by this study
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Figure 1 Manhattan plot of results of Cochran-Armitage (CA) trend test 
stratified by geographic region with −log10 P values shown. The solid 
horizontal line indicates a P value of 10−5. Markers within 50 kb of an 
SNP associated with melanoma are marked in black for those identified in 
a previous GWAS and replicated here, and in red for those first identified 
in the current study. The y axis is truncated at P = 10−15, although three 
SNPs in the MC1R region have stronger P values up to 2.7 × 10−27,  
as signified by the box and arrow.

table 1 summary of results from this study for the four regions showing evidence of replication

SNP Chromosome Position Allele MAF

GenoMEL genome-wide
Replication samples  

(genotyped + imputed)

Genome-wide plus  
replication samples  

(genotyped + imputed) Candidate 
geneOR P value OR (95% CI) P value OR (95% CI) P value

rs13016963 2 201852173 A 0.37 1.18 5.68 × 10−7 1.11 (1.06, 1.18) 9.2 × 10−5 1.14 (1.09, 1.19) 8.6 × 10−10 CASP8
rs1485993 11 69071595 A 0.37 1.19 4.15 × 10−7 1.07 (1.01, 1.13) 0.017 1.11 (1.04, 1.18)a 0.0012 CCND1
rs1801516 11 107680672 A 0.13 0.79 4.80 × 10−7 0.87 (0.81, 0.94) 3.4 × 10−4 0.84 (0.79, 0.89) 3.4 × 10−9 ATM
rs45430 21 41667951 G 0.39 0.85 5.60 × 10−7 0.91 (0.86, 0.96) 4.2 × 10−4 0.88 (0.85, 0.92) 2.9 × 10−9 MX2

Each SNP under consideration, their position (in bp) and minor allele frequency (MAF); the per-allele OR (based on the minor allele) and P value are given for this GWAS, for the 
meta-analysis of the replication data sets (from the Houston GWAS, the Australian GWAS, and the UK and The Netherlands replication samples) and for the combined genome-
wide and replication analyses. The Houston GWAS and the Australian study both used a different array from the current study for at least some samples; therefore, some of their 
results presented here include imputed data. Further genotyping was conducted in the UK and The Netherlands replication samples for SNPs with positive support from the GWAS 
replication data. All meta-analyses are based on a fixed-effects model with the exception of those for CCND1, in which random-effects analysis was used because of the observed 
heterogeneity. See supplementary table 3 for an extended version of this table.
aRandom-effects analysis used.



©
 2

01
1 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.
©

 2
01

1 
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

1110	 VOLUME 43 | NUMBER 11 | NOVEMBER 2011 Nature GeNetics

l e t t e r s

Supplementary Table 3). The strongest evidence of association for a 
single SNP is from rs700635 (P = 2.4 × 10−9, odds ratio (OR) = 1.15 
overall). All the SNPs are in the region of the CASP8 gene, which 
encodes a member of a family of proteases. These proteins have a 
critical role in the control of cell proliferation and induce apoptotic 
cell death, which make them candidate cancer susceptibility genes. 
A recent meta-analysis22 of three polymorphisms in CASP8 found 
that individuals with one or more copies of the variant encoding a 
D302H substitution have a decreased risk of multiple types of cancer. 
In this study, the variant encoding D302H could be imputed, but it 
showed only marginal evidence of association (P = 0.05), suggesting 
that this is not a variant associated with melanoma. The evidence for 
melanoma risk was consistent across populations (Fig. 3).

The rs1801516 SNP in ATM (chromosome 11) (Fig. 2, Table 1 
and Supplementary Table 3) is a missense mutation (c.5557 > A,  
encoding a D1853N substitution) in a gene that encodes a protein that 
repairs double-strand DNA breaks. An association has been postu-
lated between ATM and a number of cancer types23. For melanoma, 
the A allele is protective (P = 3.4 × 10−9, OR = 0.84 overall).  

Overall, the evidence for melanoma is consistent across populations 
and case type, with no evidence of heterogeneity (Fig. 3).

The third replicated region around MX2 (chromosome 21) showed 
consistent effect sizes across the replication data sets (Fig. 2, Table 1  
and Supplementary Table 3) and across populations (Fig. 3). The 
SNP that was pursued in the replication study is rs45430 (P = 2.9 × 
10−9, OR = 0.88 overall), which is intronic to MX2 and has not previ-
ously been associated with cancer susceptibility.

A fourth region, adjacent to CCND1 (chromosome 11), a proto-
oncogene that is a key regulator of cell cycle progression, showed 
consistent effect sizes across all the replication sets (Table 1, 
Supplementary Fig. 4 and Supplementary Table 3), with best overall 
replication P values of 0.011 for rs11263498 and 0.017 for rs1485993. 
However, the replication sets produced a notably smaller OR (for 
example, for rs11263498, 1.08) than the discovery set (1.19) (pro-
portion of variation due to heterogeneity (I 2) = 0.507). This finding 
is potentially the result of the well known ‘winner’s curse’ effect24 
that causes the initial discovery set to overestimate the OR, leading 
in turn to a discrepancy between the overall P value based on fixed-

effects and random-effects meta-analysis  
(P = 1.7 × 10−7 and P = 0.00046, respectively, 
for rs11263498). Thus, although we have 
strong support for an involvement of this 
region in melanoma, the evidence cannot be 
considered conclusive (see Supplementary 
Note for further details). However, further 
support comes from the interim analysis of a 
recently completed melanoma GWAS of 494 
individuals with melanoma and 5,628 control 
individuals from the Nurses’ Health Study 
and Health Professionals Follow-up Study 
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using LocusZoom27.
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(OR = 1.18 for rs1485993, P = 0.014, unpublished data). This locus 
therefore remains a strong candidate, being well known in melanoma 
carcinogenesis25.

In phase 1 of the study, all melanoma susceptibility loci identified 
were associated with either skin pigmentation or nevus count varia-
tion8. For study subjects from Leeds, UK, detailed nevus count and 
pigmentation information has been obtained for individuals with 
melanoma and control individuals26. The association between nevus 
count, pigmentation and all SNPs associated with melanoma are 
shown (Table 2). (Note that not all SNPs show convincing evidence 
of melanoma association within the Leeds case-control samples,  
reflecting limited power.) As expected, MC1R, SLC45A2, IRF4  
and TYR are confirmed to be associated with pigmentation, and the 
rs4911442 SNP on chromosome 20 shows strong association with 
pigmentation, providing further support for ASIP as a candidate 
gene at this locus and implicating probable linkage disequilibrium 
(LD) with variants within an ASIP regulatory region. SNPs in the 
region of CDKN2A/MTAP and PLA2G6 are associated with nevus 
variation. The CLPTM1L SNP is found in the region of TERT and 
CLPTM1L and is also associated with nevus count variation, sug-
gesting its effect on melanoma risk modification may be via this 
mechanism. We previously showed that IRF4 had a complex rela-
tionship with nevus count and melanoma risk14, and there are sug-
gestions for SNPs in the CASP8 region of a relationship between 
genotype and nevus count in control individuals; among individuals 
with melanoma, the association is not apparent (Table 2). Finally, 
the SNPs in the ATM and MX2 regions show no association with 
either nevus count or pigmentation, suggesting alternative, unknown 
mechanisms, although these variants require evaluation in other 
populations (Supplementary Note).

Overall, we report three loci newly associated with melanoma 
risk, which achieve an overall significance level of 5 × 10−8 based on 
fixed-effects meta-analysis, and a potential fourth locus. The power 
to detect SNPs with effect sizes similar to those estimated from 
the replication studies is low, and we see many more SNPs in new 
regions (from across the genome) reaching P values between 10−4 
and 10−5 than expected (68 with minor allele frequency (MAF) > 
0.05 compared with an expected 46), suggesting that there may be  

many other genetic regions with a similar effect on melanoma risk 
(Supplementary Note). Currently, 11 loci have been identified (Table 2),  
with the suggestion that 5 of these regions act through the pigmenta-
tion phenotype and at least 3 through the nevus phenotype, reflect-
ing the major phenotype-associated risk factors for melanoma.  
Of note, at least two of the newly identified loci appear to influence 
risk through a new mechanism, opening up potential new directions 
for melanoma research.

URLs. GenoMEL, http://www.genomel.org/; Epidemiological study 
on the Genetics and Environment of Asthma (EGEA), http://cesp.vjf.
inserm.fr/egeanet/; Wellcome Trust Case Control Consortium, http://
www.wtccc.org.uk/; QUANTO 1.1, http://hydra.usc.edu/gxe.

METhOdS
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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table 2 summary of results for nevus count, pigmentation and melanoma analyses from the leeds case-control samples examining the 
11 sNPs replicated for melanoma association in this or previous studies

Chromosomal 
region

Candidate  
gene SNP MAF

Percentage of  
variation in log nevus 

count explained by SNP

Percentage of variation 
in pigmentation  

explained by SNP
Per-allele OR  

(95% CI) for risk  
of melanoma

OR (95% CI) for  
risk of melanoma  
with one copy of  

minor allele

OR (95% CI) for 
risk of melanoma 
with two copies of 

minor alleler2 P r2 P

2q33-q34 CASP8 rs13016963 0.33 0.21 0.083a 0.05 0.33 1.25 (1.07, 1.46) 1.26 (1.01, 1.56) 1.56 (1.11, 2.18)

5p15.33 TERT-CLPTM1L rs401681 0.46 0.50 0.0070 0.13 0.11 1.08 (0.93, 1.25) 1.15 (0.90, 1.47) 1.15 (0.85, 1.55)

5p13.2 SLC45A2 rs16891982 0.03 0.02 0.62 1.33 1.9 × 10−6 0.72 (0.44, 1.18) 0.78 (0.47, 1.30) NA

6p25-p23 IRF4 rs12203592 0.24 0.21 0.084 2.76 5.6 × 10−12 0.80 (0.67, 0.95) 0.72 (0.58, 0.91) 0.81 (0.49, 1.35)

9p21 CDKN2A/MTAP rs7023329 0.49 0.29 0.047 0.02 0.55 0.86 (0.73, 1.00) 0.62 (0.47, 0.82) 0.73 (0.53, 1.01)

11q14-q21 TYR rs1393350 0.27 0.00 0.95 1.07 2.0 × 10−5 1.34 (1.14, 1.58) 1.19 (0.96, 1.49) 2.12 (1.41, 3.19)

11q22-q23 ATM rs1801516 0.14 0.07 0.33 0.00 0.95 0.88 (0.71, 1.09) 0.93 (0.73, 1.19) 0.59 (0.29, 1.21)

16q24.3 MC1R rs258322 0.10 0.00 0.81 4.00 9.0 × 10−17 1.83 (1.44, 2.32) 1.71 (1.33, 2.22) 7.14 (1.70, 29.98)

20q11.2-q12 ASIP rs4911442 0.13 0.07 0.34 0.93 8.2 × 10−5 1.35 (1.08, 1.68) 1.32 (1.03, 1.69) 2.06 (0.85, 5.00)

21q22.3 MX2 rs45430 0.38 0.00 0.80 0.05 0.32 0.90 (0.77, 1.05) 0.97 (0.77, 1.22) 0.77 (0.56, 1.07)

22q13.1 PLA2G6 rs6001027 0.37 0.39 0.018 0.12 0.16 0.78 (0.66, 0.91) 0.79 (0.63, 0.90) 0.60 (0.42, 0.84)

Total 2.33 9.83

Results are shown for the proportion and significance of log nevus count variation explained by each SNP, adjusted for age and sex among subjects with melanoma and control 
subjects (adjusted for case-control status), the proportion and significance of case-control adjusted pigmentation variation score explained by each SNP, where the score is calcu-
lated from factor analysis of six correlated pigmentation phenotypes (Online Methods), and the association with melanoma risk (both as per-allele OR with 95% CI and by genotype 
(compared to a baseline of the homozygote for the common allele)). Bold type indicates P values <0.05.
aP = 0.004 for controls only.

http://www.genomel.org/
http://cesp.vjf.inserm.fr/egeanet/
http://cesp.vjf.inserm.fr/egeanet/
http://www.wtccc.org.uk/
http://www.wtccc.org.uk/
http://hydra.usc.edu/gxe
http://www.nature.com/naturegenetics/
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ONLINE	METhOdS
Statistical analysis. Subject recruitment. Approval for these studies was 
obtained for each recruiting center. Informed consent was obtained from  
all participants.

PCA and population stratification. To identify individuals of non-European 
ancestry, SNPs were thinned to reduce LD and combined with the HapMap 
data on 1,207 individuals of wide-ranging ancestry. PCA was applied to these 
data using EIGENSTRAT28,29, the first two principal components (PCs) 
clearly separating the HapMap data into distinct clusters according to ances-
try (Supplementary Fig. 1a).

The remaining samples from individuals of European ancestry were ana-
lyzed similarly. Despite the fact that PCA makes no use of the geographical 
origin of the samples, plotting the first two PCs clearly grouped the samples by 
the center from which they were collected, with little overlap between centers 
(Supplementary Fig. 1b). This demonstrated that the majority of individuals 
were ancestrally from the regions where they were collected, and a few were 
clearly outliers from elsewhere in Europe. The third and fourth PCs seemed 
to separate out the samples from Israel and Poland (Supplementary Fig. 1c). 
Although the analysis with the HapMap data had showed these individuals to 
be of European descent, PCA indicated that these two groups were to some 
extent outliers from the majority of the GenoMEL samples.

Association analysis. The primary analysis was a Cochran-Armitage (CA) 
trend test, stratified by region (as defined in the Supplementary Note). 
Further analyses were applied to the most significantly associated SNPs to 
assist in interpretation of results: a stratified CA trend test excluding samples  
from Polish and Israeli individuals, a stratified CA trend test stratifying by 
region and study phase, and a logistic regression analysis adjusted for region 
and the first four PCs. The effect of these further adjustments on the results 
was modest (Supplementary Note) and may be attributable to a reduc-
tion in sample size, suggesting no problem with stratification. Equivalent  
1-degree-of-freedom stratified trend tests were carried out for the X chromo-
some; males were treated as equivalent to homozygous females, and a vari-
ance estimate was used that allows for the different variance of male and  
female contributions30.

Subgroup analyses of samples from the different subtypes of melanoma 
relative to all control subjects were also conducted for the most strongly asso-
ciated SNPs.

Replication analysis. Regions were chosen for replication if a SNP had a P < 10−5  
from the primary association analysis, with at least one other SNP within  
500 kb having P < 10−4. All such regions were also imputed. (See Supplementary 
Note for details of imputation and replication analysis.)

The results of the stratified analysis are reported (Table 1 and Supplementary 
Table 3). Replication P values are listed separately for each of the three repli-
cation panels. None of the regions showed significant heterogeneity between 
studies and none had I2 large enough to cause concern: it has been suggested 
that values below 31% are of “little concern” and those above 56% should 
induce “considerable caution”31. However, the CCND1 locus showed moder-
ate heterogeneity (Supplementary Table 3). Thus, for the sake of caution, we 
applied a random-effects model to the meta-analysis of CCND1 for all data 

combined and a fixed-effects model to the remaining meta-analyses. Here, 
the method of DerSimonian and Laird32 was applied to estimate the between 
studies variance, t̂2. An overall random-effects estimate was then calculated 
using the weights ̂ /( ˆ )t n t1 2

i + , where νi is the variance of the estimated effect. 
t̂2 = 0.0 for the fixed-effects analyses.

Analysis of nevus and pigmentation phenotype. For one SNP in each of 
the replicated regions, we examined the relationship between that SNP and 
nevus count and pigmentation (Table 2). Nevus and pigmentation pheno-
type data were available for 980 individuals with melanoma and 499 control 
individuals from the Leeds case-control study26,33; pigmentation data were 
available for additional individuals from the Leeds melanoma cohort study34, 
giving at total of 1,458 subjects with melanoma and 499 control subjects. For 
each SNP, logged age- and sex-adjusted total nevus count was regressed on 
the number of risk alleles, adjusting for case-control status. A sun-sensitivity  
score was calculated for all subjects based on a factor analysis of six pig-
mentation variables (hair color, eye color, self-reported freckling as a child, 
propensity to burn, ability to tan and skin color on the inside upper arm)32. 
This score was similarly regressed on number of risk alleles and adjusted for 
case-control status. Power calculations for this analysis were carried out using 
Quanto35. Based on the total available sample of individuals with melanoma 
and controls, the study had 49% power to detect the effect of a gene explaining 
0.25% of the variation in nevus count at a 5% significance level; there was 78% 
power to detect an effect explaining 0.5% of the variation and 97% power to 
detect an effect explaining 1% of the variation. Note that these percentages of 
variation correspond to a steeper slope in nevus count for a rarer SNP, such 
as rs1801516 in ATM, than for a more common SNP, such as rs401681 in 
the TERT-CLPTM1L locus. For the pigmentation analysis, in which a larger 
number of individuals were included, the corresponding powers are 60%, 
88% and 99%, respectively. It is thus not possible to rule out a small effect on 
these phenotypes of the newly discovered melanoma SNPs, but a substantial 
effect (similar to the effect of the SNPs in CLPTM1L on pigmentation) is very 
unlikely to have been missed.
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