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Genetic studies are under way for many 
complex traits, spurred by the recent 
feasibility of whole genome scans. Clear 
guidelines for the interpretation of linkage 
results are needed to avoid a flood of false 
positive claims. At the same time, an overly 
cautious approach runs the risk of causing 
true hints of linkage to be missed. We 
address this problem by proposing specific 
standards designed to maintain rigor while 
also promoting communication. 

for the future of our field. To reach our goal, geneticists 
must  chart a prudent  course between Scylla and 
Charybdis. 

Adopting too lax a standard  guarantees a burgeon- 
ing literature of false positive linkage claims, each with 
its own gene symbol (ASTH56, ASTH57, ...).Scientific 
disciplines erode their credibility when a substantial 
proportion  of  claims  cannot   be  replicated -even 
more so when the claims reach not only the profes- 
sional journals but also the evening news. Psychiatric 
genetics provides a cautionary tale, in which a spate of 
non-replicable  fmdings in the mid-1980s undermined 
support  for such  studies2-7•   It is thus  essential that 
there be a sufficiently stringent standard that linkage is 
claimed only when there is a high likelihood that the 
assertion will stand the test of time. 

On the other  hand, adopting  too high a hurdle for 
     reporting  results runs  the  risk that  the nascent field 

will be stillborn. Initial genetic analyses may fall short 
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Genetic dissection of complex traits is becoming cen- 
tral to mammalian genetic analysis. In the fifteen years 
since it was recognized that genetic inheritance can be 
traced with naturally occurring  DNA sequence varia- 
tion 1, the identification of genes responsible for simple 
mendelian traits has become a straightforward, if still 
demanding, task. Over 500 such genes have been 
mapped   to   specific  chromosomal   regions   in   the 
human  and more than 60 have been cloned based on 
their position. These breakthroughs  are steadily 
reshaping biological and medical thinking. Yet, many 
of the most important medical conditions-includ- 
ing heart disease, hypertension, diabetes, asthma, 
schizophrenia,  and  manic  depression -show  much 
murkier  inheritance  patterns.  The  geneticists'  chal- 
lenge is now to tease apart the multifactorial causes of 
these diseases. 

In principle, the solution is clear. Genetic mapping 
of  any  trait -simple  or  complex -boils  down  to 
finding  those  chromosomal  regions  that  tend  to  be 
shared among affected relatives and tend to differ 
between affecteds and  unaffecteds. Conceptually, this 
amounts to a three-step recipe: scan the entire genome 
with a dense collection of genetic markers; calculate an 
appropriate  linkage statistic  S(x)  at  each  position  x 
along the genome; and identify the regions in which 
the statistic S shows a significant deviation from what 
would be expected under independent assortment. 

Yet, these deceptively simple instructions  conceal a 
thorny question: since the statistic S(x) fluctuates sub- 
stantially just by chance across an entire genome scan, 
what constitutes  a 'significant' deviation? What stan- 
dard should be required for declaring linkage? 

Although biologists often greet statistical issues with 
glazed-eyed indifference, we believe that the resolution 
of this particular question has important consequences 

of the strict threshold  for statistical significance, but 
may nonetheless point to important  regions deserving 
intensive investigation. Without channels by which 
investigators can report such tentative hints of linkage, 
the discovery of disease genes may be delayed in an 
overzealous attempt to avoid all error. 

Striking the right balance requires both a mathemat- 
ical understanding  of how often positive results will 
occur  just by chance and a value judgment about  the 
relative costs of false positives and false negatives. Our 
goal here is to provide an accessible treatment  of the 
first subject and to offer a concrete proposal regarding 
the second. 
 
Statisticalsignificance in genome-wide scans 
In searching for disease genes, it is important  to distin- 
guish between pointwise  significance levels and 
genome-wide significance levels. The pointwise  (also 
called  nominal)  significance level is the  probability 
that one would encounter  such an extreme deviation 
at a specific locus just by chance. The genome-wide sig- 
nificance level is the probability that one would 
encounter  a deviation  somewhere in a whole genome 
scan. The former concerns a single test of the null 
hypothesis  of  no  linkage; the  latter  involves fishing 
over a large number of tests to find the most significant 
result. 

Consider the following idealized sib pair study. An 
investigator collects n pairs of affected sibs, genotypes 
them using a perfect genetic map that is fully informa- 
tive at every point  in the genome, and calculates the 
average proportion 1t(x) of alleles shared identical-by- 
descent at each location x in the genome. Geneticists 
traditionally  report the results at each location in one 
of three essentially equivalent ways: a Z-score, a lod 
score, or a P value. The Z-score is the number of stan- 
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Box 1 Going to extremes 
How often will a linkage statistic S(x) exceed a specified threshold T by chance In a whole genome scan? The mathematical theory of large 
deviations provides an answer, which is applicable to a wide variety of experimental designs and statistics. The answer is given by a simple formula 
involving four quantities: the pointwise significance level of T; the size of the genome; the rate of fluctuation of the statistic; and the threshold T itself . 

The result is simplest to state for a normally distributed statistic, a Z-score. The number of regions in which the statistic Z exceeds a relatively 
large level T in a whole genome scan has a Poisson distribution with mean: 

J.I{T)  = [C + 2pGT2) a(T) (1) 
and the genome-wide significance level of exceeding T is a'(T)  = 1--i!""l'(l) (which is = J.I{T), when this quantity is small)8.9.35. The quanti1ies in the equation 
ara defined as follows: (i) the expression a(T) denotes the pointwise significance level of exceeding level T; Oilthe constants C and G denote, respective- 
ly, the number of chromosomes and the genome length measured in Morgans (C = 23 and G = 33 for the human); (iii) the constant p measures how 
rapidly the statistic S(x) fluctuates, which reflects the total crossing over rate between the genotypes being comparad.+ The threshold for suggestive 
linkage is found by solving J.I{T)  = 1 and for significant linkage by solving J.I{T) = 0.05. It is worth noting that the factor [C + 2pGT2)-the equivalent of the 
standard Bonferroni correction for multiple testing -measures the effective number of tests carried out in seerching the entire genome. 

The result can also be applied to lod scores, since X= (21og 10) lod follows a chi-squared  distribution (with the number of degrees of freedom 
depending on the number of additional parameters maximized in rhe hypothesis to be tested as opposed to in the null hypothesis)' . The pointwise sig- 
nificance level is thus determined from the appropriate chi-squared table, and the factor [C + 2pGF) is replaced by [C + 2pGX). 

Table 1 shows the resulting thresholds for a variety of situations, including the following: 
• Allele-sharing methods in affected relative pairs. For straightforward affected relative pair analysis, the appropriate value of p is given in Table 1 for 

studies involving a fixed type of relative pair36. For studies involving a mixture of relative types, one should use the weighted average of p for the different 
relative types (or simply note that the thresholds for typical relative pairs are all roughly in the range of 1o-'3-5 x 1Q-4 for suggestive linkages and 5 x 
1o-s-1!J"i for significant linkages). 

In principle, the same thresholds apply to the more complex APM analysis, which similarly involves a normally distributed statistic based on pairwise 
comparisons  among a mixture of affected relatives. In practice, some APM analyses involve a relatively small number of families and so caution is 
required in applying thresholds based on asymptotic assumptions of large sample size. 

• QTL mapping in experimental crosses. The lod score involves 1 d.f. in the case of a backcross or an intercross in which a single parameter is 
esti- 

mated (purely recessive, dominant or additive model) and 2 d.f. in the case of an intercross in which two parameters are estimated (both additive and 
dominance components). The appropriate values of p are given in Table 1. 

 
' In mathematiCal terms,p Is related to the autocorrelation functoon of S(x):p = -C'(0)/2, wheta C'(O) is the derivative at 0 (taken as the limfrom above) of the autocorrelation 
functoon C(x) = E[S(O)S(x)VE[S2(0)}. 
'In the case of human linkage analysis X Is asymptotlcally distributed as a 1/2:112 mixture of a chl-squated and a point masa at zetO. This Is due to the one-sided nature of the 
test, the!Is, the slgnificance level determined from a chl-squate<l table has to be dlvkled by 2.In QTL mapping In experimental croee., the teat Is usually two-sided since loci 
from either strain can affect the phenotype. 

 
dard deviations by which 7t(x) exceeds its null expecta- 
tion of 0.50; it follows a normal distribution  when n is 
large. The lod score (or MLS-Maximum Lod Score, 
the lod score maximized over a set of parameters)  is 
the log-likelihood ratio of the data under the hypothe- 
sis that the allele sharing proportion has the observed 
value 7t(x) as compared to the hypothesis that there is 
no excess sharing; the distribution  of this statistic is 
related to a chi-squared  distribution  when  n is large. 
The P value reflects the pointwise chance of observing 
a deviation as high as 7t(x) under independent  assort- 
ment. 

Suppose, for example, that a study of 100 sib pairs 
reveals an allele sharing proportion of 61% somewhere 
in the genome. This result corresponds to a Z-score of 
3.1, a lod score of2.1, and a nominal Pvalue  ofO.OOl. 
Should  one  be impressed  by this finding? It clearly 
depends on how often such deviations would arise by 
chance in a whole genome search. 

The mathematical  theory of large deviations  holds 
the answer, as was pointed out a few years ago8•9•  The 
expected number  of chromosomal  regions in which a 
linkage statistic exceeds a threshold Tis given by a sim- 
ple formula I.I.(T), explained in Box 1. In fact, the num- 

Fig. 1 shows the results in graphical form. Focusing 
on P values, we expect regions significant at P = 0.05 to 
occur about two dozen times by chance (that is, at least 
once  on  most  chromosomes);   P= 0.01  about   7-8 
times; P = 0.001 slightly more  than  once; P = 0.0001 
about 0.2 times; and P = 0.00002 about 0.05 times. In 
other words, there is a 5% chance of randomly finding 
a region with a P value as extreme as 2 x 10-5• To keep 
the chance of encountering  a false positive at no more 
than 5%, one must therefore impose a threshold of Z 
4.1, lod3.6 or P     = 2 x 10-5•  With any less stringent 

ber of such regions approximately follows a Poisson 0  3  4 LODscore 

distribution  with mean I.I.(T), and the chance of find- 
ing at  least one  such  region  is thus  1-e-ll(TJ = I.I.(T) 
when I.I.(T) is small. The approximation  becomes 
asymptotically exact when the number  of sib pairs is 
large and the threshold T is high. In fact, it is accurate 
enough  for  practical  purposes  provided  that  n is at 
least 50. (It is worth noting that, while lod score analy- 
sis of a small number oflarge families can be quite sen- 
sitive   to    changes   in    a   few   key   data    points, 
non-parametric statistics based on a large number  of 
small families tend quickly to normal distributions and 
tend to be robust.) 

r"'"'""        fhiiiifililiij&iiiiljiillli 

10·1     10-2      11r3      11r4  1o·S  p-value 
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Z-score 
 
Fig. 1 Number of false positives expected in a whole genome 
scan for a given threshold of lod score, Z score or pointwise P 
value. Solid line represents asymptotic expectation for a perfect 
genetic map, based on the theory described in the Box 1. Sym- 
bols represent results for 100 sib pairs obtained from 100,000 
simulations using genetic maps. with markers spaced every 0.1 
eM (circles), every 1 eM (squares), and every 10 eM (triangles). 
The genome is assumed to consist  of 23 chromosomes, with 
total length 3450 eM. Note the close correspondence between 
the asymptotic theory ana the 0.1 eM simulation. The dotted line 
Indicates the 5% genome-wide significance level. 
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Box 2 A simulated genome scan 
To illustrate  the random  fluctuations  expected  in a whole- 
genome scan, we generated simulated genotypes assuming 
independent  assortment  throughout  the  genome -that  is, 
that there are no trait-causing loci. All positive scores in such 
data necessarily represent random fluctuations, not true link- 
ages. Fig. 2 shows the result of a typical (unselected) simulat- 
ed genome scan, In which 100  sib pairs and parents were 
'genotyped' for markers having heterozygosity of 0.8 and 
average spacing of 3 eM. A total of 22 regions reached the 
nominal significance of 0.05, while 6 reached nominal signifi- 
cance of 0.005; these numbers can be compared with dense- 
map expectations of 31  and 7, respectively. A single region 
on chromosome 14 reached the status of suggestive linkage, 
as expected, while no region showed  significant  linkage. If 
these results had occul1'8d In a real  dataset, an investigator 
would likely call attention to the possibility of linked genes on 
chromosome 14 and to the p..-ce of a peak near the HLA 
region of chromosome 6p. The example thus illustrates that 
false positives can cluster, occur in candidate  regions, and 
otherwise mimic true loci. 

Some investigators have advocated  pursuing  all regions 
with nominal significance of P = 0.05, by attempting to 'repli- 
cate' the significance level in a second data set. To illustrate 
the perils of this approach, we applied it by generating a sec- 
ond set of random, simulated data. Of the 22 regions with P = 
0.05 in the first set, four regions produced similar significance 
levels in the second data set as well. Fortuitously, these 
included the small peak near HLA and the larger peak on 
chromosome 14. The example illustrates that when low sig- 
nificance thresholds are used, many regions will be followed 
up and spurious 'replication' can occur by chance. 

Applying the standards proposed here avoids these prob- 
lems. No significant linkages are found in the first, the sec- 
ond, or the combined dataset. 

 
 

threshold, there  is a  substantial chance (> 5%)  of 
reporting false linkages. To illustrate the  point, we 
describe a simulated whole-genome scan in Box 2. 

The standard may seem harsh at first glance, but it 
accords well with historical practice. The traditional 
threshold oflod 3 for classical two-point linkage stud- 
ies  of  simple  mendelian  traits  corresponds  to  an 
asymptotic pointwise significance level of P = 10-4  (ref. 
10), for a genome-wide significance level of about 9%. 
In fact, the lod score threshold need only to be raised 
to 3.3, corresponding to P = 5 x w-5,  to achieve the 
recommended genome-wide signif- 
icance level of 5%. 

It is worth noting that there is a 
widespread misconception     in 
human genetics that a lod score of 3 
is equivalent to a significance level 
of only P = 10-3•  This error is root- 
edina confusion about the mean- 
ing of lod scores and P values. Lod 
scores concern the  ratio of two 
probabilities, while P values refer to 
a single absolute probability. Specif- 
ically,  lod = 3   means   that   the 
observed data is 103-fold more like- 
ly to arise under a specified hypoth- 
esis of linkage than under the null 
hypothesis of independent assort- 
ment. By contrast, P = w-3 means 
that the probability of encountering 
as large a lod score as observed is 
IQ-3 under the null hypothesis. One 

dard statistical tables, taking into account the one- 
sided nature of the test, to confirm that a lod score of 
2.1 corresponds to P = 10-3,  while a lod score of 3.0 
corresponds to the more extreme P = 10-4. 
 
Are whole-genome thresholds overty stringent? 
Some geneticists might  object to  imposing such a 
stringent standard for declaring linkage. Certain argu- 
ments have been advanced in the hopes of gaining spe- 
cial dispensation. It is worth considering them in turn. 

• "My study only looked at a few markers (or a few 
chromosomal regions), so it's not fair to impose a thresh- 
old based on a whole genome search."  The extreme 
example of this argument would be a geneticist who 
finds a weakly positive score with the first marker and 
seeks to  employ the  pointwise significance level- 
asserting that  only- a single hypothesis has actually 
been tested. The fallacy is that the investigator would 
not have abandoned the search if the first marker had 
been negative, but would have persevered until a posi- 
tive result was obtained or  the entire  genome was 
examined. Having assembled a large patient collection, 
the geneticist is committed to a whole genome search. 
It makes no  sense to  employ a different threshold 
depending on  whether the  inevitable false positive 
fluctuations happen to occur earlier rather than later 
in the search. 

• "My study only involved a genome scan with markers 
every 10 eM, so it's not fair to impose a threshold  based 
on an infinitely dense genetic map." Again, the analysis 
does not stop with the sparse map. Initial hints oflink- 
age with a single marker are immediately pursued by 
using multipoint methods and by peppering the region 
with a dense collection of markers. In any region that 
matters, geneticists rapidly extract the complete inher- 
itance   information -with   the   explicit  hope   of 
increasing the linkage score. 

A hierarchical search -in  which one performs a 
genome scan with a sparse map and then follows up 
'interesting' regions with a denser map-is an effi- 
cient study design11•  12, but the resulting false posi- 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

.002      t 

.02 

can convert a lod score to a chi- 
squared statistic by multiplying by 
2(log,10) = 4.6 and then use stan- 

 
Fig. 2 Simulated  genome  scan with no trait loci segregating. Chromosomal size is 
proportional to genetic  length, taken from ref. 33. Multipoint lod scores were com- 
puted as described34. 
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tive rate is essentially the same as if a dense map had 
been used througb.ftut the genome (D. Siegmund, 
personal communica'tion). This is because the false 
positives are almost invariably included among the 
regions chosen for follow-up. 

The dense-map threshold turns out not to be that 
draconian.  If one performed  only single point analy- 
sis with  an  evenly spaced map, the  thresholds  for a 
genome-wide significance level of 5o/o  would  not  be 
dramatically different: the lod score thresholds would 
decrease by -20% for a 10 eM map; -15%  for a 5 eM 
map; -10% for a 2 eM map; and -7o/o for a 1 eM map 
(Fig. 1 shows first and last cases). Moreover, these 
thresholds would be appropriate only if one did not use 
multipoint  analysis or  a denser  map to obtain  more 
information. To our thinking, it is better to extract the 
full inheritance information and find the best P value. 

In the modern world, it is fair to assume that highly 
motivated investigators squeeze as much information 
as possible from the available family material and their 
results should thus be measured against the corre- 
sponding threshold for a dense genome scan. (Some 
backsliding might be countenanced if strong prior evi- 
dence exists to restrict the search to a region; possible 
cases include a.true single-point test of a highly relevant 
candidate gene, a test of the HLA region for an autoim- 
mune disease, and an X-chromosome scan for a trait 
with convincing prior evidence of sex linkage.) 

Notwithstanding  our  desire to avoid spurious link- 
ages, we must always remember  that  regions that fall 
short of statistical significance may nonetheless be cor- 
rect. Unfortunately, there is no way to distinguish 
between small peaks that represent weak true positives 
and peaks of the same height arising from random fluc- 
tuations, assuming that all inheritance information has 
been extracted. It would be irresponsible  to consign 
such potentially valuable hints to the dustbin  of labo- 
ratory history. What then is to be done? 

 
Proposed standards 
Back in the days when linkage studies of even the sim- 
plest trait required heroic efforts and good fortune, the 
human genetics community adopted standards to pro- 

mote both rigor and communication. Lod scores of 3 
were required  to  declare linkage in official chromo- 
some committee  reports,  but  weaker evidence could 
still be shared in more informal vehicles such as the 
McKusick Newsletter, a predecessor to the modern 
Mendelian Inheritance in Man13• 

Clear thinking about complex traits would be served 
by reviving such an approach. Specifically, we propose 
the following classification based on the number of 
times that one would expect to see a result at random 
in a dense, complete genome scan: 

• Suggestive linkage-statistical evidence that would 
be expected to occur one time at random in a genome 
scan. 

• Significant linkage -statistical evidence expected 
to occur 0.05 times in a genome scan (that  is, with 
probability 5o/o). 

•  Highly significant  linkage-statistical  evidence 
expected to occur 0.001 times in a genome scan. 

• Confirmed linkage-significant linkage from one 
or a combination of initial studies that has subsequent- 
ly been confirmed in a further sample, preferably by an 
independent  group of investigators. For confirmation, 
a  nominal  P value of 0.01 should  be required  (see 
below); 

In the case of sib pair studies, the first three cate- 
gories would correspond  to pointwise significance lev- 
els of 7 x 10-4, 2 x 10-5, and 3 x 10-7 and lod scores of 
2.2, 3.6, and 5.4. The corresponding P values for other 
study designs differ somewhat (Box 1, Table 1). 

Suggestive linkage results will often be wrong, but 
they  are  worth  reporting -if  accompanied  by  an 
appropriate  warning label about their tenuous nature. 
Investigators  concerned   about   coming   up  empty- 
handed  in a genome scan can take comfort from the 
fact that they can expect, by definition, to find about 
one suggestive linkage for every trait studied. On the 
other  hand,  journal  editors  must  weigh how  much 
attention  to accord such results. At the least, specialty 
journals should actively support  the reporting of sug- 
gestive linkages in some format.  Indeed,  it is worth 
reporting  all regions  with a nominal  P value of P = 
0.05 encountered in a complete genome scan, but with- 

out any claims oflinkage. 
Table 1 Thresholds for mapping lociundertylng complex traits Because suggestive linkages are so 

speculative,  they   should   not   be 
Mapping method  crossover  suggestive linkage 

rate p  PvalueQod) 

lod score analysis in human  1  1.7 X 1Q-3 (1.9) 
Allele-sharing methods in human 

significant linkage 
P value (lod) 
 

4.9 X 1Q-5 (3.3) 

assigned gene names lest medical 
genetics be overrun   with  illusory 
loci. Geneticists should enter into a 
non-proliferation  pact,      under 

sibs and half-sibs  2 7.4 X 1Q-4 (2.2) 2.2 X 1Q-5 (3.6) which genes symbols are  reserved
 

grandparent-grandchild                  1                     1.7x1o-'!(1.9) 
uncle-nephew                                 5/2                  5.6 X 1Q-4 (2.3) 
first cousin                                      8/3                  5.2 X 1Q-4 (2.3) 
first cousin, once removed              20/7                4.8 X 1Q-4 (2.4) 
second cousin                                16/5                4.2 X 1Q-4 (2.4) 

QTL mapping in mouse or rat 

4.9 x 1o-5 (3.3) 
1.8 X 1Q-5 (3.7) 
1.6 X 1Q-5 (3.7) 
1.5 X 1Q-5 (3.8) 
1.3 X 10-5 (3.8) 

 
for significant linkages. Indeed, tra- 
ditional usage has been to assign 
gene names only to confirmed link- 
ages.  The  appropriate   nomencla- 
ture committees should take up this 

Backcross (1 d.f.) 1 3.4 X  1Q-3 (1.9) 1.0 X 1Q-4 (3.3) issue  and  develop  specific guide- Intercross (1 d.f., additive)               1                     3.4 X 1Q-3 (1.9) 
Intercross (1 d.f., recessive)            4/3                  2.4 X 1Q-3 (2.0) 
Intercross (1 d.f., dominant)            4/3                  2.4 X 1Q-3 (2.0) 
Intercross (2 d.f.)                             1.5                   1.6 X 1Q-3 (2.8) 

1.0 X 1Q-4 (3.3) 
7.2 X  1Q-4 (3.4) 
7.2 X 1Q-4 (3.4) 
5.2 X 1Q-5 (4.3) 

 

lines. 
It is worth pointing out that even 

significant linkages will turn out to 
Sib pair analysis involves no dominance component, and thus each sib pair is equivalent to two half-sib 
pairs. Lod score thresholds for the possible triangle method for sib pairs37 may be computed by similar 
methods (D. Siegmund, personal communication); these thresholds are 2.6 for suggestive and 4.0 for signifi- 
cant linkage. Genome size Is assumed to be 3300 eM for the human and 1600 eM for the mouse and the 
rat. A typographical error appeared in the table of ref.38, which listed the significant P value for half-sib and 
sib pairs as 3 x 1Q-5. The correct P value Is 2.2 x 10-5, as shown above. 

be false positives So/o  of the  time, 
that  is, once in  20 genome  scans. 
Because of the bias that only posi- 
tive results tend to get reported, the 
observed false positive rate will be 
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higher in the published literature. While individual 
investigators cannot do anything about this problem, it 
offers an additional rationale for conservative stan- 
dards. 

Thomson 14  recently proposed  criteria  for  putative 
linkage that turn out to be essentially equivalent to our 
standard for suggestive linkage. Unfortunately, these 
criteria have been widely misinterpreted  as implying 
genome-wide significance, despite Thomson's dear 
statement  to  the  contrary.  In ,fact,  Thomson  (pers. 
comm.) endorses the standards proposed above. 

 
Replications and extensions 
Linkage results must be replicated to be credible. We 
suggest that the term "replication study" should be 
reserved for situations in which significant linkage has 
already been obtained in an initial study (or combina- 
tion of studies). Weaker findings do not merit the same 
standing  as prior  hypotheses. For example, there will 
be many regions with a nominal P value of 0.05 and 
some will appear  to be 'replicated' in a second study 
just by chance (Box 2). We prefer the term "extension 
study" for the process of testing of additional families 
in the hope of first reaching the genome-wide signifi- 
cance level. Once significant linkage is found,  it is 
appropriate to speak of 'replicating' the result. 

Because replication  involves testing  an  established 
prior hypothesis, the multiple testing problem associat- 
ed with genome-wide search does not apply. Nonethe- 
less, some caution is still required. The initial 
localization for a linkage is typically spread over a broad 
region of about 20 eM. Because one is searching over an 
interval, there is a multiple testing problem writ small: 
the chance of finding a P value of 0.05 somewhere within 
a 20 eM interval is greater than 5%. It turns out that a 
pointwise P value of"' 0.01 is needed for an interval- 
wide significance level of  5%.  Accordingly, P = 0.01 
should be required to declare confirmation at the 5% 
level. Note that this correction is equivalent to a multi- 
ple testing (or Bonferroni) correction for 5 markers. 

Failure to replicate does not  necessarily disprove a 
hypothesis. Linkages will often  involve weak effects, 
which may turn  out  to be weaker in a second study. 
Indeed, there is a subtle but systematic reason for this: 
positive linkage results are somewhat  biased because 
they include those weak effects that  random  fluctua- 
tions helped push above threshold, but exclude slightly 
stronger effects that random fluctuations happened to 
push below threshold. Initial positive reports will thus 
tend to overestimate effects, while subsequent  studies 
will regress to the true value (see also ref. 15). Replica- 
tion studies should always state their power to detect 
the ptoposed ·effect with the given sample size. Nega- 
tive results are meaningful only if the power is high. 
Regrettably, many reports neglect this issue entirely. 

When several replication studies are carried out, the 
resul$  may conflict -with  some  studies  replicating 
the ot·'iginal findings and others failing to do so. This 
may reflect population  heterogeneity, diagnostic dif- 
feren<:es, or   simply  statistical   fluctuation.   Careful 
meta-analysis  of  all studies  may be  useful to  assess 
whether the overall evidence for linkage is convincing. 

Suggestive linkages should be pursued in extension 
studies, in which old and new datasets are combined 
to see whether  a significance evidence of linkage can 

be  found.  To combine  results  among  studies,  it  is 
always best to pool the  raw data  and  re-analyze the 
entire dataset. Lod scores can be added across studies, 
but   only  when  they  are  computed   by  the  same 
method,  with  the  same  set  of markers,  and  at  the 
same  map  position.  Other  meta-analysis  techniques 
exist 16. 

Statistical aficionados may recognize that extension 
studies  involve a subtle  multiple-testing  problem  of 
their own, because a significant result in any of the 
individual  datasets or  the combined  dataset  is often 
taken as evidence oflinkage. A modest multiple-testing 
correction   to   the   genome-wide   significance  level 
should therefore be used in extension studies; the 
appropriate  correction depends on study design. Of 
course, any combined analysis should include all stud- 
ies -both  positive and  negative -to  avoid biasing 
the results. If the combined  analysis yields significant 
linkage, it is then appropriate  to undertake a replica- 
tion study. 
 
Pursuing hunches 
Formal  procedures  are  useful  for  standardizing  the 
general acceptance of linkage claims. Still, gene hunters 
should not be inhibited from pursuing all hints and 
hunches, including: following up all regions with 
pointwise  P values of 0.05 (even though  many  will 
prove to be illusory); being encouraged if they find 
substantially  more  suggestive linkages than  the  one 
expected by chance (even though  real loci cannot  be 
distinguished from false positives); and using epidemi- 
ological arguments  to infer the existence of loci with 
small effects (even though  such inferences are highly 
model-dependent). It will, however, be worth having 
rigorous evidence in hand before undertaking posi- 
tional cloning to avoid the unpleasant prospect of 
chasing a phantom locus. 

Hints of linkage are usually followed by testing for 
linkage in larger datasets. Some true susceptibility loci, 
however, may never show significant linkage because 
they confer a very small increased risk and have com- 
mon  alleles. The proof that such loci are involved in 
disease aetiology must come from other data. Linkage 
disequilibrium can offer a powerful complement to 
traditional linkage studies. For loci having small effects 
but relatively few alleles in a population,  tests of link- 
age disequilibrium  can be much  more sensitive than 
tests of linkage. A good example is IDDM2, the insulin 
gene, for which strong evidence of linkage disequilibri- 
um is obtained in many datasets that fail to show link- 
age17,18. 

Linkage disequilibrium can be used in an explorato- 
ry fashion to  pursue  suggestive (or  weaker) linkages 
(for example, ref. 19). Appropriate correction for mul- 
tiple testing is essential in such applications -because 
multiple regions and many different haplotypes are 
tested  for  disease  association.  This  topic  has  not 
received adequate attention  and is an important area 
for future statistical research. Finally, we note that link- 
age disequilibrium studies should use family-based 
controls whenever possible to avoid false positive find- 
ings due to population stratification20-22. 
 
Other models and difficulties 
The  basic principles  above apply to  any analysis of 
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complex  traits -whether  by linkage analysis, allele- 
sharing methods, or quantitative trait mapping in 
experimental  crosses (Box 1). The pointwise P values 
vary somewhat according to the method, but they are 
typically in the range of 10-3-10-4 for suggestive and 
10-4-10-5  for significant linkage. 

Nettlesome problems remain, however. Investigators 
often try out multiple diagnostic schemes for defining 
affectation status, as well as multiple models of inheri- 
tance for linkage analysis. Similarly, studies of quanti- 
tative  traits  may  examine  a  large  number  of 
phenotypes. Datasets are frequently stratified using 
additional  criteria, for example HLA genotype. What 

the same group subsequently reported that a region on 
chromosome  2 that fell far short of suggestive linkage 
(P= 0.01) showed evidence of linkage disequilibrium 
in some populations19•   If widely confirmed  (see, for 
example, ref. 26), this would underscore the value of 
linkage  disequilibrium   studies  for  identification  of 
weak susceptibility loci. 

A major contribution of these studies is that they 
demonstrate that there are no other loci with major 
effects comparable  to  HLA. The  authors  recognized 
this fact, but provided a valuable spur to further inves- 
tigation by identifying the most promising regions for 
further study. 

statistical price should be exacted for such fishing over The IDDM story remains a work in progress27 28 •  It 
multiple  models? If the models are statistically inde- 
pendent,  the observed P values should  be multiplied 
by the number of models (which is known as the Bon- 
ferroni correction). This prescription  is too conserva- 
tive in the case of closely related models (such as 
correlated phenotypes),  but there is no general guid- 
ance for how to proceed other  than simulation. Even 
simulation poses a challenge, in that millions of simu- 
lations are needed  to accurately estimate P values in 
the range of 10-5• Techniques such as importance sam- 
pling can make simulations much more feasible23, and 
they should be performed whenever possible. 

An additional difficulty is that false positive rates can 
be much higher than estimated if model parameters 
(such as gene frequency)  are misspecified, if sample 
size is small, and if other assumptions  of statistical 
independence are violated. A careful consideration  of 
all these factors is beyond the scope of this commen- 
tary, but they offer an additional reason for caution in 
interpreting linkage results. 

 
Examples of complex trait analyses 
IDDM. Recent genome  scans for  insulin  dependent 
diabetes mellitus (IDDM)  illustrate the issues well. 
Davies and colleagues24 used markers at an average 
spacing of 10 eM to survey the genome in 96 sib pairs, 
and then followed up some regions with lod1 (P = 
0.05) in two further collections with 102 and 84 sib 
pairs. Sib pairs were analysed together, and also divid- 
ed according to HLA sharing. In the initial screen, only 
HLA met the standard for significant linkage, with lod 
==  8. Two further  regions, on chromosomes Sq and X, 
showed suggestive linkage. A total of 20 regions had 
lod1, which is not significantly greater than would 
be expected by chance. 

TWo regions that fell somewhat short of the criterion 
for  suggestive linkage  were chosen  for  followup. A 
region  on  chromosome   11q  (named   IDDM4 near 
FGF) had a P value of O.Dl  in the combined  dataset, 
but showed suggestive linkage in sib pairs sharing 1 or 
0 alleles at HLA. In fact, an independent  study found a 
nearly significant linkage in this region, but only in the 
subset of sibs in which both carried HLA-DR325• 
Although the two studies were not jointly analyzed, it 
is likely the combined  data  would  reveal significant 
linkage -indicating  that  this locus is probably real. 
The   second   region   on   chromosome   6q   (named 
IDDMS) fell short  of suggestive linkage in the com- 
bined dataset; it remains unclear whether  there is in 
fact a susceptibility locus in this region. Interestingly, 

will probably require joint analyses of multiple datasets 
to sort  out  which of the hints of linkage are real. In 
general, it would be valuable if data from published 
genome scans were routinely deposited in an accessible 
form to facilitate such work. 
 
Schizophrenia. Evidence for a susceptibility locus on 
chromosome 6p in a large collection of pedigrees from 
Ireland was reported by Wang et a/.29 in a recent issue 
and Straub et a/.30 in the current issue of this journal. 
The lod scores in these papers came extremely close to 
the standard for signficant linkage (corresponding to 
genome-wide   significance · levels  in   the   range   of 
0.05-0.10).  The authors  carefully stress the need for 
replication. 

Happily, two independent  datasets reported  in this 
issue by Moises et a/.31  and Schwab et al.32 appear to 
provide   such   evidence -each   showing   suggestive 
(and nearly significant) linkages in roughly the same 
region. Although a joint analysis has not yet been 
undertaken,  it is dear  that chromosome  6p meets the 
standard     for    significant-and,    probably,    con- 
firmed -linkage. 
 
Conclusion 
The study of complex traits promises to be among the 
most important and challenging areas of mammalian 
genetics. As with any endeavor, the field will be shaped 
by the standards adopted by its practitioners. The tra- 
ditional threshold of lod 3 has provided a rigorous 
standard that must be met to declare linkage for a sim- 
ple Mendelian trait; it corresponds to a genome-wide 
false positive rate in the neighborhood of 5%. The pro- 
posed standard  for significant linkage simply extends 
this same logic to the situation  of complex traits; the 
required  P values accord  well with  the  practice  in 
human  genetics over the  past  three  decades. At the 
same time, the category of suggestive linkage should 
facilitate reporting  of tantalizing  but  unproven  find- 
ings.  By adopting   clear  rules  for  communication, 
human  geneticists will be well prepared for the 
avalanche of information about to descend. 
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