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In polygenic systems genetic correlations and the factors and specific 
genetic variances from genetic correlation matrices are often interpreted 
in terms of  sets of  genes common or specific to variables. While these 
inferences may indeed be true, a genetic correlation is not always suf- 
ficient evidence for the inferences. In some cases two variables with all 
genes in common can have low genetic correlations, and systems with 
only a few genes in common can have high genetic correlations. The 
assumptions about genic effects in polygenic systems and their effects 
on a genetic correlation are explicated and discussed. It is suggested that 
a distinction be made between biological pleiotropism and statistical 
pleiotropism to promote more accurate communication about the genetic 
associations among traits. 
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INTRODUCTION 

Within the behavior genetic literature, one frequently reads statements 
relating genetic correlations or genetic factors to sets of loci. For example, 
it is not uncommon to hear or read that a large genetic correlation implies 
that two variables have a high proportion of loci in common, that low 
genetic correlations imply that different sets of loci underlie the two var- 
ibles, or that a general genetic factor with specific genetic variances sug- 
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gests a common set of genes for the latent factor and specific sets of genes 
for each variable. In models of development, specific genetic variance at, 
say, age 6 years is sometimes interpreted as uncovering a set of genes 
whose effects are first manifest at age 6 years and not before. These 
inferences may be correct. However, genetic correlations and genetic 
factors are not sufficient evidence to prove the inferences about "sets of 
loci." Many behavior geneticists realize this point, but it is not clear that 
all do. This paper is offered in order to clarify the meaning of genetic 
correlations under different assumptions about additive, polygenic gene 
action. 

A MODEL FOR GENETIC CORRELATIONS 

The model used to demonstrate the relationship between genetic cor- 
relations and sets of loci is the simple additive model most often used in 
introductory quantitative genetics (e.g., Falconer, 1981; Mather and 
Jinks, 1982). It expresses the genetic correlation in terms of genic effects. 

The model assumes two alleles per locus, Hardy-Weinberg-Castle 
equilibrium, linkage equilibrium, and only additive genic effects. Let p 
denote the frequency of one allele, and q = 1 - p, the frequency of the 
other allele. Let h denote the genic value of the heterozygote or, in dif- 
ferent words, the average phenotypic value for all heterozygotes in the 
population. Let a denote the additive deviation from the heterozygote. 
The genic value for one homozygote becomes h - a and the genic value 
for the other is h + a. If this locus is pleiotropic for two traits, the additive 
genic effect for the second trait can be parameterized as ha. Here, b need 
not have the same value for all loci nor for the same locus across a number 
of traits. Table I presents the notation used here for the genic effects of 
a single pleiotropic locus on two variables. The two variables may rep- 
resent two different traits or the same trait measured at different times. 

Table I. Model for the Genetic Effect of a Single Pleiotropic Locus in Hardy-Weinberg-  
Castle Equilibrium on Two Variables 

Genotype 

aa Aa AA 

Genotypic frequency 
Average genic value, variable I 
Deviation from mean, variable 1 
Average genic value, variable 2 
Deviation from mean, variable 2 

q2 2pq p2 

hi - a hl hi + a 
- 2 p a  (q - p)a 2qa 

h2 - ba hz h2 + ba 
- 2 p b a  (q - p)ba 2qba 



Inference About Genetic Correlations 331 

Some genes may contribute to variability in variable 1 but may not 
contribute to individual differences in variable 2, and some loci that affect 
variable 2 may not influence variability in trait 1. Instead of writing a for 
these loci, let their additive effects be denoted by, respectively, ul and 
Uz. And let f = 2pq to simplify notation. 

The contribution of a pleiotropic locus to the total genotypic variance 
of variable 1 is 

pZ(2qa)2 + 2pq[(q - p)a] 2 + qZ(-Zpa)2 = fa  2. 

The contribution of a unique locus is ful  2. The total genotypic variance 
is the sum of the contribution of all the pleiotropic loci plus the sum of 
all unique loci or, say, ~ fa  2 + ~ fUl 2. (Subscripts that might denote 
loci are ignored in the summation.) The total genetic variance of the sec- 
ond trait becomes ~ f (ba)  2 + ~ fbt2 2. 

The contribution of a pleiotropic locus to the genotypic covariance 
is 

pZ(2qa)(Zqba) + 2pq[(q - p)a][(q - p)ba] 
+ qZ( -2pa) ( -Zpba)  = fba z, 

so the total genetic covariance is ~ fba 2. The genetic correlation may 
then be written as 

~, fbaZ/N/(~, fa  z + ~ ful  z) (~, f (ba)  2 + ~ fuzZ). (1) 

The genetic correlation may now be viewed in the light of two different 
sets of assumptions or models. First, let each locus contribute equally to 
the total genetic variance variable and let allelic frequencies be identical 
across all loci. Loci are effectively equivalent to each other in this model. 
In Eq. (1), a becomes constant with ul = a, b becomes constant with Uz 
= ba, f becomes constant, and Eq. (1) reduces to a direct function of 
the number of common and unique loci: 

np/'~v/(np + nl) (np + /'/z), (2) 

where np is the number of pleiotropic loci, and nl and nz are the number 
of loci unique to, respectively, variables 1 and 2. Under these conditions, 
the genetic correlation is directly interpretable as an index of the pro- 
portion of loci that two variables have in common. 

Inference about sets of loci change when these assumptions are re- 
laxed. Let allelic frequencies vary and let genic effects differ from one 
locus to another. The same geneti 9 correlation can now arise in different 
ways. For example, consider the i case of a large number of pleiotropic 
loci, each of relatively small effect, and a small number of unique loci of 
large effect. This genetic system could give a genetic correlation similar 
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to a different genetic system in which there were only a few pleiotropic 
loci with large genic effects and a large number of unique loci of small 
effect. 

Another implication of unequal allelic effects and frequencies is that 
the genetic correlation need not be unity even though the same set of loci 
contributes to individual differences in both traits. To see how this occurs, 
let all u's = 0 so that all loci are pleiotropic to traits 1 and 2, and let the 
a 's be scaled so that the genetic variance for variable 1 = 1.0. Equation 
(1) reduces to 

f ba2 /N f~  f (ba)  2 (3) 

and will equal unity only under special conditions (e.g., when b is a scalar 
constant). Usually, the genetic correlation will be less than unity even 
when the same set o f  loci underlies both variables. When b is totally 
random with respect to a, it is even mathematically possible to have a 
genetic correlation equal to zero even though there are no loci unique to 
either variable. 

SIMULATIONS OF GENETIC CORRELATIONS 

Two sets of simulations were conducted to test the influence of un- 
equal allelic effects and frequencies on genetic correlations when there 
are in fact no loci unique to either trait. In both sets, the effects of 25 
loci on two variables were examined. Allelic frequencies were generated 
from a uniform distribution ranging from 0.01 to 0.99, the typical limits 
for a common polymorphism. Ten thousand sets of allelic frequencies 
were generated. 

For each set of allelic frequencies, two types of genic values were 
generated. Each type of genic values represented a model in which ge- 
notypes such as AA that contribute to high scores on variable 1 would 
always contribute to high scores on variable 2. Only the relative magnitude 
of the genic contributions differed between the two models. If the two 
variables were quantitative and verbal ability, both simulated models pre- 
dict that all alleles that increase quantitative ability will also increase 
verbal ability. Model 1 simulated a perfect rank-order correlation in genic 
effects on quantitative and verbal ability. That is, the allele that creates 
the greatest increase in quantitative ability is also that allele giving the 
largest increase in verbal ability. In model 2, the rank-order correlation 
is sampled from a distribution with mean = 0.0. That is, the allele that 
creates the greatest increase in quantitative ability will always increase 
verbal ability, but one cannot predict if it would be the largest increase 
in ~erbal ability. From analytical considerations of Eq. (1), model 1 should 
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always generate high genetic correlations. Model 2 should always give 
positive genetic correlations, but it is unclear exactly how high these 
correlations might be. z 

To understand the simulation of genic values, assume that the alleles 
were rank ordered from 1 to 25 by the magnitude of their effect upon a 
variable. The genic value for the j th locus was taken from an exponential 
density function, aj = )t exp( - )t j ) ,  where ~ is an arbitrary constant. Two 
values of X were generated, one for variable 1 and the other for variable 
2. To maintain the perfect rank-order correlation of model 1, the same 
ordering of the loci was maintained for variables 1 and 2. The exponential 
distribution introduced only nonlinearity of effects; that is, the rank-order 
correlation between aj and bj was always unity but the Pearson correlation 
need not be unity. To simulate model 2, the ordering of the loci's effects 
was random. 

The value of k was generated from a random uniform distribution 
ranging from 0.02 to 0.2225. With )~ = 0.02, allelic effects are almost 
identical from one locus to another; the genic effects decreased almost 
linearly with j,  locus 1 contributed 5% to the total genetic variance, and 
locus 25 contributed 3%. With X at its maximum of 0.2225, the polygenic 
system is similar to the mixed model (e.g., Elston and Stewart, 1971; 
Morton and MacClean, 1974) of a major locus with a substantial contri- 
bution from polygenic background. Here, genic effects decreased rapidly 
with j ,  the first locus contributed 20% to the total genetic variance, the 
total polygenic background contributed 80%, and the last locus contrib- 
uted 0.1%. 

To present data from the simulations, results were collapsed. Sim- 
ulated polygenic systems were classified into three types by the value of 
X. A )~ from 0.02 to 0.0875 generated polygenic systems that are arbitrarily 
termed "equal"  for the simulations. Systems generated by /t between 
0.0875 and 0.155 are termed "weighted," and those with k between 0.155 
and 0.2225 are called "mixed." For model 2, the genetic correlations were 
further subdivided into five groups on the basis of the Spearman rank- 
order correlation of allelic effects. The five groups were not rectangular 
because the actual Spearman correlations appeared normally distributed 
around a mean of 0; post hoc cutoffs were used in order to obtain at least 

2 The simulations allow allelic effects to vary only in magnitude,.not in sign. It is obvious 
that genetic correlations will be less than unity under differences in sign. In speaking of 
this issue, Falconer (1981, p. 281) states that when some alleles increase one character 
but decrease the other, then "pleiotropy does not necessarily imply a detectable corre- 
lation." Also, it is not clear whether allelic effects that differ in sign are of important 
biological relevance (excluding the direction of scale for a variable). Thus, the interesting 
issue for research arises when allelic effects do not differ in sign but differ in magnitude 
across traits. 
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Table II. 

Carey 

Mean Genetic Correlations as a Function of Type of Polygenic System and Rank- 
Order Correlation of Genie Effects ~ 

Model 2: Range of Spearman rank-order 
correlation 

Polygenic models for - 0.75 - 0.44 - 0.14 0.15 0.45 
two traits Model 1 -0.45 -0.15 0.14 0.44 0.75 

Equal, equal 99 80 84 88 90 93 
Equal, weighted 95 62 68 73 78 82 
Equal, mixed 86 50 55 61 67 73 
Weighted, weighted 99 44 52 61 70 79 
Weighted, mixed 98 32 41 51 62 74 
Mixed, mixed 99 24 32 43 56 68 

Total 
Mean 98 52 58 65 71 80 
Minimum 65 17 10 19 27 55 
Maximum 99 94 97 97 98 97 

a Results from 10000 Monte Carlo simulations of a 25-locus polygenic system. Decimal 
points omitted for the genetic correlations. 

100 simulations for the most extreme values of the rank order correlation. 
All correlations were first zeta transformed before deriving the mean. The 
mean zeta transforms were then transferred back to correlations for 
presentation. 

Table II gives the results of the simulations. Several points are ob- 
vious from consideration of the analytical derivations given above. With 
a perfect rank-order correlation for allelic effects (model 1), the genetic 
correlations are uniformly high when two genetic systems of the same 
type are compared. This occurs because b approaches a constant. Lower 
values are found with the most discrepant systems, a pairing of equal with 
mixed in this case. The distribution of correlations for all polygenic sys- 
tems under model 1 was strongly and negatively skewed. Thus, although 
means are high, correlations of lower magnitude occasionally occur. The 
results from model 1 strongly suggest that nonlinearity in allelic effects 
generally has only a trivial influence upon polygenic systems. Also, be- 
cause allelic frequencies can differ from one locus to another, the effect 
of differing allelic frequencies is unimportant when the rank order of allelic 
effects is unity. 

When the rank-order correlations are not unity (model 2), genetic 
correlations are a function of the two polygenic systems, the rank-order 
correlation, and interactions of system with rank-order effects. The ge- 
netic correlation always increases with an increasing rank-order corre- 
lation, reflecting again the fact the b becomes more correlated with a with 
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increasing rank-order correlation. When allelic effects are approximately 
equal for both traits, the genetic correlation generally remains high; the 
actual correlations for two "equal" polygenic systems range between 0.59 
and 0.98, with an overall mean of 0.88. However, at the opposite extreme, 
two mixed polygenic systems can generate relatively low genetic corre- 
lations; the correlations here average 0.44 and range from 0.10 to 0.89. 
Even at the highest value of Spearman's rho in model 2, the mixed-mixed 
system generated a genetic correlation of 0.56. This correlation explains 
31% of the total genetic variance even though the same loci contribute 
to all the genetic variance in both traits. 

The  similarity in the type of polygenic system no longer is associated 
with high genetic correlations in model 2. The two most discrepant po- 
lygenic systems (the equal with mixed) give higher correlations than the 
mixed with mixed. Thus, as the rank-order correlation departs from unity, 
the veridicality of assumptions about equal effects of alleles in polygenic 
systems becomes more critical for avoiding errors of inference about ge- 
netic correlations. 

DISCUSSION 

The analytical development and the simulations given above suggest 
that a low genetic correlation can arise even when the same genes are 
involved in two traits and when allelic effects do not simply vary in sign. 
But do they represent biologically relevant circumstances? 

It is obvious that when (1) genes lay down a biological structure and 
(2) anatomical and/or physiological structure is primarily responsible for 
individual differences in two or more measurable variables, then the ge- 
netic correlation will be high. This case was simulated by model 1 when 
the two polygenic systems are the same. And here it makes no difference 
whether alMic effects are the same or differ across loci. 

But what happens if the same set of loci affects two related biological 
structures that influence two different traits, say the concentration of 
dopamine receptors (DAR) in two different areas of the brain such as the 
basal ganglia and olfactory lobes? Here, a prediction about the genetic 
correlation is less clear. On the one hand, loci that have a large effect on 
DAR in one area may have an equally large effect in the second area. On 
the other hand, consider what might happen if natural selection begins to 
operate on both traits. Suppose that the optimum DAR concentrations 
are not positively and linearly related in both regions (e.g., one region is 
under directional selection, while the other is under stabilizing selection). 
Will evolution take the genes that are already there and alter regulatory 
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mechanisms that change allelic values to obtain the most adaptive DAR 
concentrations in both brain regions? 

Another circumstance where the simulations may be appropriate is 
during an active phase of development. Some loci may be very important 
during initial stages of development but become increasingly less impor- 
tant as the organism approaches maturity. Other loci that exert a major 
effect toward the end of development may have only a minor role during 
the initial phases. In this case, the same loci could operate during the 
whole developmental period, but the rank-order correlation for allelic 
effects would be negative. The simulations suggest marked caution in 
interpreting genetic correlations in this case. With a negative rank-order 
correlation, the genetic correlation depends greatly upon the type of un- 
derlying polygenic system--equal versus f ixed--and could actually ap- 
proach zero. Low genetic correlation across time periods could lead to 
the erroneous conclusion that specific loci are Coming into play at different 
points in development, when exactly the opposite is occurring. 

Finally, the model and simulations have ignored the influences of 
nonadditive allelic effects and linkage disequilibrium. Dominance and ep- 
istatic effects that differ across traits may also reduce a genetic corre- 
lation. Linkage disequilibrium can induce a genetic correlation even when 
there are no loci in common. If the simple additive model can produce 
such results, nonadditivity and linkage disequilibrium mean that the con- 
clusions must hold afortiori. 

Given that there is some biological relevance to the development 
herein, how can we reconcile these conclusions with statements such as 
those made by Falconer (1981, p 281): "the degree of correlation arising 
from pleiotropy expresses the extent to which two characters are influ- 
enced by the same genes"? It appears necessary to distinguish biological 
pleiotropism (in which the same genes physically underlie different traits) 
from statistical pleiotropism (in which allelic effects on one trait predict 
allelic effects on other characters). Falconer's statement applies to sta- 
tistical pleiotropism, not to biological pleiotropism. The distinction is cru- 
cial, especially for multivariate analysis. 

In the statistical sense, the genetic "factors" and specific genetic 
variances derived from multivariate analysis are hypothetical predictive 
constructs used to reproduce parsimoniously a genetic covariance matrix. 
Interpreting genetic factors in terms of biological pleiotropism may be 
problematic for several reasons. First, there is a logical problem. With 
more than two traits, the number of potential sets of pleiotropic genes 
exceeds the number of traits. For example, with four variables, there are 
11 possible sets--1 for all four variables, 4 for the variables taken three 
at a time, and 6 for all pairwise combinations. If a genetic factor defines 



Inference About Genetic Correlations 337 

a "set  of genes," then there will be more possible factors than variables! 
(An interesting question here is whether it is possible to characterize 
possible gene sets that satisfy, say, a single factor model.) 

Second, a broad general factor can emerge even when there is min- 
imal or no overlap in the genetical systems underlying each trait. For 
example, consider four traits with the following genetical system: traits 
1 and 2 have a certair~ proportion of loci in common, traits 1 and 3 have 
another set in common, traits 1 and 4 have yet another, etc. All pairwise 
genic sets could be taken even if there were no single locus pleiotropic 
to all four traits. This system could produce a matrix of genetic corre- 
lations in which the correlations are approximately equal. The first ei- 
genvalue of this matrix would be very large, and the first eigenvector 
would have approximately equal loadings from each trait. This broad 
general factor exists, yet there is not a single locus common to the three 
traits 3 

Third and probably most important, genetic factors that are weakly 
correlated could reflect similar biological systems with different allelic 
effects. The simulations (and some reflection on the examples given 
above) suggest that inference about sets of genes may be more valid when 
genetic correlations are high, the assumption of additivity is robust, and 
there is good reason to reject a major gene model. However, low genetic 
correlations do not preclude a common set of loci. 

To understand the relationship between biological and statistical 
pleiotropism, we must trace pathways from gene to character, a topic 
discussed by Wright (1967, Chap. 5), Mather and Jinks (1982, Chap. 2), 
and others. Until the time when such data are available, some genetic 
correlations should be interpreted in a statistical sense and terms such as 
"shared genetic variance" and"specific genetic variance" should be used 
to refer to statistical pleiotropism. Terms such as "sets ofloci in common" 
and "unique genes" best refer to biological pleiotropism. 
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