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Using LISREL to Analyze Genetic and 
Environmental Covariance Structure 
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A method is described in which the LISREL computer program is used 
for the genetic analysis o f  covariance structure. The method is illustrated 
with simulated and published twin data. 
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INTRODUCTION 

Martin and Eaves (1977) developed a method for the analysis of genotypic 
and environmental covariance structure based on the work of J6reskog 
(1973). Their method is a general approach to the analysis of covariance 
structure which allows simultaneous testing of hypotheses about the 
sources and structure of covariation. The method provides maximum- 
likelihood estimates of genetical and environmental factor loadings and 
specific variances. Martin and Eaves applied this method to twin data on 
cognitive abilities published by Loehlin and Vandenberg (1968). To obtain 
parameter estimates, standard errors of estimates, and chi-square tests, 
they implemented their method while using a minimization algorithm 
(EO4HAF) written by the Numerical Algorithms Group (1974). As their 
implementation--which is, in fact, a rather intricate affair--is not readily 
available, it would seem worthwhile to consider the possibility of handling 
their method by the LISREL computer program of J6reskog and S6rbom 
(1981). The latter program is easily accessible and is widely known. In 
this paper we first show how LISREL can be used for the genetic analysis 
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of covar iance structure 3 and then proceed with some examples. We il- 
lustrate the use of  L I S R E L  for  monozygot ic  (MZ) and dizygotic (DZ) 
twin data, but of course the method can be generalized to other  cases as 
well. We used L I S R E L  to replicate the analysis of twin data by Martin 
et al. (1981) on psychomotor  performance during alcohol intoxication. 
We also applied L I S R E L  to the data of  Loehlin and Vandenberg and 
found that L I S R E L  gave the same parameter  estimates as obtained by 
Martin and Eaves .  

USING L I S R E L  

In this section we start with a concise description of the general 
L I S R E L - V  model (J6reskog and S6rbom, 1981). As we use the model in 
a somewhat  nonstandard fashion, we at first refrain from substantial in- 
terpretat ions of  the various components  of  the model and stick to a pre- 
sentation that emphasizes a formal specification. Next ,  we consider the 
expressions for the expected  contributions of the common and specific 
genetical and environmental  factors to the matrices of  mean products  
between and within twin pairs (Martin and Eaves,  1977) and show how 
this set of  equations can be rewrit ten as a L I S R E L  model. The interpre- 
tation of  the various L I S R E L  expressions then follows directly from these 
equations. In the closing part of  this section, a completely worked ex- 
ample with simulated twin data is given. 

T H E  L I S T R E L - V  M O D E L  

Consider random vectors  0 '  = ['ql, "q2 . . . . .  "qm] and ~' = [~1, ~2, 
�9 �9 . ,  ~n] of  latent dependent  and independent  variables, respectively,  and 
the following system of  linear structural relations: 

where B ( m  x m)  and P(m x n) are coefficient matrices and ~'/ = (~',, ~'2, 
. . . .  ~'m] is a random vector of  residuals. The vectors xi and eta are not ob- 
served, but  instead the vectors  y '  = [y, ,  y2, . �9 �9 , yp] and x' = Ix1, x2, 
. . . .  Xq] are observed such that 

y = Ay'q + ~, 

x = A x { +  8, 

where epsilon and delta are vectors  of  errors of  measurement  in y and x, 

3 Only after submitting this paper did we learn that a similar approach has been suggested 
by Fulker e t  at.  (1983). 
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respectively. The matrices lambda-y (p • m) and lambda-x (q x n) are 
regression matrices of y on r~ and x on ~. ff(n • n) and ,I,(m • m) are covar- 
lance matrices of { and {, and O, and @~ are covariance matrices of ~ and 
8, respectively. The elements of Ay, Ax, B, F, dO, ~ ,  Ok, and O~ are are 
of three kinds: 

(1) fixed parameters that have been assigned given values, 
(2) constrained parameters that are unknown but equal to one or 

more other parameters, and 
(3) free parameters that are unknown and not constrained to be equal 

to any other parameters. 

LISREL ANALYSIS OF TWIN DATA 

The expected contributions of the common and specific genetical and 
environmental factors to the matrices of mean products between and 
within twin pairs can be written as follows (Martin and Eaves, 1977): 

�9 ~MZB = AA ~ + D 2 + H~H(1 + El 2 + 2(HzH~'2 + E22), 

EMzw = Hff/~l + ET 2, 

~DZB : 3( AA'  ~- D 2) q- HjH~ + El 2 + 2(H2Hl'2 4- E22), 

~DZW = �88 + O z) + HIH~I + E~ 2, 

where A represents the loadings of the variables on the additive genetic 
factors, H~ the loadings of the variables on the within-families environ- 
mental factors, and H2 the loadings of the variables on the between-fam- 
ilies environmental factors. D 2, E, 2, and E22 are diagonal matrices used 
to represent genetical and environmental influences specific to each ob- 
served variable. 

The expected covariance structures given by Martin and Eaves define 
a confirmatory factor analysis model. A path figure for this model, where 
circles represent latent variables and squares observed variables, is pre- 
sented in Fig. 1. In order to rewrite the expected covariance structures, 
a consideration of the LISREL submodel involving x variables only or, 
alternatively, the LISREL submodel involving y variables only would be 
sufficient. Clearly, one would prefer the LISREL submodel involving x 
variables only, as it is the more simple alternative. In this case s reduces 
to 

s = AxdoA'x + O~. 

We now can use lambda-x to represent the factor loadings on the common 
and specific factors and phi to represent the factor covariances. Let 

Ax = [A, H i , / t 2 ,  D, El, E2], 
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Fig. 1. LISREL confirmatory factor analy- 
sis model. Circles represent latent variables 
and squares represent observed variables. 

in which 

A =  

H1 = 

H 2 =  

D =  

E1 = 

E 2 =  

q x 1 and contains the q loadings on the common genetic 
factor,  
q x 1 and contains the q loadings on the within-families en- 
vironmental  factor,  
q • 1 and contains the q loadings on the between-families 
environmental  factor,  
dia q x q and contains the square roots of the specific genetic 
variances,  
dia q x q and contains the square roots of the specific E~ 
variances,  and 
dia q x q and contains the square roots of the specific E2 
variances.  

Lambda-x is (q x n), where n = 3(q + 1) when the full model spec- 
ified above is used. Phi is defined as a diagonal matrix (n x n) in which 
the first three diagonal elements contain the coefficients from the model 
specified above for, respectively,  the common genetic, common E~, and 
common E2 factors.  The other  diagonal elements contain the coefficients 
for the specific variances. 

To illustrate the above specifications, let x'  = [Xl, x2, x3], i.e., q = 
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3. The accommodation of the expected covariance structure is obtained 
by 4 

MZB: �9 = dia [ 1, 1, 2, 1, 1, I, l, l, 1, 2, 2, 2], 

M Z W : ~  = d ia l  0, 1,0, 0, 0, 0, l, 1, 1 , 0 , 0 , 0 ] ,  

DZB: �9 = d i a  [0.75, 1, 2, 0.75, 0.75, 0.75, 1, 1, 1, 2, 2, 2], 

DZW: q~ = dia [0.25, 1, 0, 0.25, 0.25, 0.25, 1, l, 1, 0, 0, 0], 

and lambda-x: 

I~l ~hl ~121 dl 0 0 ell 0 0 ezl 0 0-]  
Ax =- ~2 ' I]12 "1122 0 6/2 0 0 e12 0 0 e22 0 ~ . 

~3 "1113 '1123 0 0 d3 0 0 el3 0 0 e23 

The four equations Ex = A~ff~A'x + O~ can be fit simultaneously using a 
four-group design with the parameters to be estimated invariant across 
groups. Input matrices in LISREL for each group are the between- and 
within-pairs variance/covariance matrices from a multivariate analysis of 
variance. The number of observations (NO) equals the degrees of freedom 
associated with each matrix, i.e., NO equals the number of twin pairs 
minus one for the between matrices and the number of twin pairs for the 
within matrices. Since the between and the within matrices are statisti- 
cally independent, we can use the chi-square test of goodness of fit of the 
overall model based on four independently sampled groups. Each (q • 
q) input matrix provides q(q + 1)/2 unique statistics, hence the degrees 
of freedom for the chi-square test equal q(q + 1)/2 minus the number of 
parameters to be estimated. Note that the automatic starting values that 
are now available in LISREL-V and LISREL-VI cannot be used, since 
in general q < n, i.e., the number of xi factors will be greater than the 
number of observed x variables. However,  any identified model will con- 
verge upon the same solution with whatever starting values are used. 

EXAMPLE I 

For illustrative purposes, simulated (5 • 5) matrices of mean prod- 
ucts between and within pairs of MZ and DZ twins have been constructed 
(Appendix 1). The number of x variables (NX) is five, and since we are 
going to use the full model specified above, the number of xi factors (NK) 
is 3(5 + 1) = 18. For our first examples theta delta is fixed at zero. Phi 
(PH) is diagonal, fixed and lambda-x (LX) is full, fixed. Next, the appro- 

4 Genetic weights are the same as used by Martin and Eaves (1977). It is also possible to 
use 2, 0, 1.5, and 0.5 as genetic weights. The latter set of weights gives a direct estimate 
of �89 D,.. 
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priate elements in LX are freed and specified to be invariant across 
groups. LISREL parameter estimates and standard errors for this model 
are given in Table I. LISREL-V instructions for the problem run are given 
in Appendix 2. 

EXAMPLE II 

Martin et al. (1981) collected data on psychomotor performance in 
79 twin pairs. The twins were measured on one trial before alcohol intake 
and on three trials after alcohol intake. The authors give the mean product 
matrices between and within pairs for 21 MZ and 15 DZ female twin pairs. 
To analyze these data they first fitted a model with one common genetic 
and one common within-families environmental factor and any specific 
variance at each trial due to E1 influences. This model can be analyzed 
with LISREL-V as follows. Let A~ = [A, Hj, Eli, i.e., 

eo 0 0 
~1 "ql 0 el 0 

Ax = ~2 372 0 0 e2 ' 

~3 3]3 0 0 0 e3 

Table I. LISREL Parameter Estimates (Example I): A, H~ and H2 Represent Factor Load- 
ings and D, E~, and E2 Are Square Roots of the Specific Variances 

A D Hi E~ /'/2 E2 

LISREL estimates 

Xi 10.001 7.776 8.888 5.921 13.764 3.725 
)(2 12.660 8.520 8.015 7.948 14.174 5.268 
X3 14.961 7.005 7.026 8.003 7,042 4.928 
X4 12.992 5.882 6.006 8.153 6,933 6.536 
X5 10.006 9.296 4.961 6.062 7.009 4.749 

X3o 2 ~  1.69 

Standard errors 

XI 1.232 1.043 0.291 0.234 0.645 1.271 
X2 1.234 1.245 0.312 0.218 0.699 1.047 
X~ 0.905 1.542 0.298 0.205 0.667 0.884 
)(4 0.820 1.713 0.286 0.198 0.594 0.635 
X~ 0.707 0.734 0.223 0.154 0.478 0.634 
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The expec ted  covar iance  s t ructure  for  MZB,  etc. ,  can be obtained along 
the lines descr ibed previously .  

MZB:  

MZW:  

DZB: 

DZW: 

= dia [ 1, 1, 1, 1, I, 1]. 

= dia [ 0, 1, 1, 1, 1, 1]. 

= dia [0.75, 1, 1, 1, 1, 1]. 

cI) = dia [0.25, 1, 1, I, I, 1]. 

To run this analysis  with L I S R E L - V ,  one specifies NX = 4, N K  = 6, 
TD = ZE,  PH = DI,  FI,  and L X  = FU,  F1. L I S R E L  gave a chi-square 
o f  31.21 (df = 28, P = 0.31) for this model;  the chi-square obtained by 
Mart in  et al. was 33.27. 

In a second analysis  a second common  genetic factor  independent  
of  the first one was fit, with loadings on the last three trials (after alcohol) 
but not  on the first trial. The lambda-x and phi matrices now become 

Ax = [A1, i2 ,  H1, El i ,  i .e.,  

Ax 
r S~o - -  ~qo eo 0 0 O I  

= ]~lJ  8~1 "ql 0 el 0 0 J 1~12 ~)2z r]2 0 0 e2 0 
La,3 823 -q3 o o o e3 

MZB:  ~ = dia [ 1, l ,  I, l ,  l ,  1, I]. 

M Z W : ~  = d i a [  0, 0, I, 1, I, 1, 1]. 

DZB: @ = dia [0.75, 0.75, 1, l, 1, 1, 1]. 

DZW: ~ = dia [0.25, 0.25, 1, l ,  1, 1, 1]. 

Table II. L I S R E L  Est imates  (Example II) 

k i k 2 H1 E1 

To 20.250 - -  5.471 6,039 
T1 13.790 5.588 8.461 4.891 
T2 16.781 5.925 7.529 7.229 
T3 16.481 5.980 6.268 6.395 

~252 = 28.87 



244 

Table III. 

Boomsma and Molenaar 

Full D~E1Ez Model Fitted to the Loehlin and Vandenberg (1968) Data 
(Example III) 

A D HI E1 H2 E2 

N 50.917 
V 16.806 
S 31.001 
W 14.681 
R 14.461 

L1SREL estimates 

20.900 1.170 19.198 19.487 1.342 
17.099 10.222 7.798 26.693 0.428 
37.599 2.111 21.099 11.906 27.500 
22.900 6.569 12.700 12.475 0.425 

1.582 6.652 8.799 14.726 11.398 

X3o z = 32.65 

Estimates of Martin and Eaves (1977) 

N 50.897 20.972 1.159 19.216 19.463 1.761 
V 16.830 17.114 10.201 7.821 26.662 2 x 10 ~ 
S 31.027 37.647 2.123 21.094 11.918 27.504 
W 14.686 22.926 6.580 12.706 12.453 1 x 10 -5 
R 14.451 1.628 6.629 8.853 14.720 l 1.414 

X3o 2 = 33.0 

Lambda-x is thus 4 x 7 and phi is 7 x 7. LISREL parameters estimates 
and chi-square are given in Table II. The chi-square for this model ob- 
tained by Martin et al. was 30.82. 

EXAMPLE IIl 

For our third example we used twin data published by Loehlin and 
Vandenberg (1968) on five of Thurstone's Primary Mental Abilities (Num- 
ber, Verbal, Space, Word Fluency, and Reasoning). ~ 

Martin and Eaves fitted several models to these data. First, a D~E1 
model containing a common genetic factor, a within-families environ- 
mental factor, and specific genetic and specific within-families influences 
is considered. The accommodation to LISREL of this model is obtained 
by 

A~ = [A, Hi ,  D, El]. 

Second, an EIE2 model containing a within-families environmental factor, 

Note that in the DZW matrix rows 3 and 4 have been switched (Loehlin and Vandenberg, 
1968, p. 281). 
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a between-families environmental factor, and specific within- and between 
families environmental influences is fit: 

Ax = [H1, H2, El, E2]. 

Third, a DREIE2 model containing a common genetic factor, a common 
within-families environmental factor, and a common between-families en- 
vironmental factor, plus specific genetic, within-families, and between- 
families environmental influences is considered. This is the full model 
that was introduced above. 

We used LISREL to reanalyze these models and found that, in all 
cases, the LISREL parameter estimates were very close to the estimates 
obtained by Martin and Eaves. Table lII presents the LISREL parameter 
estimates for the full DREIE2 model and the estimates obtained by Martin 
and Eaves. 

To look at the possible effects of assortative mating, Martin and 
Eaves also fit the full DRElE2 model in which the common genetic factor 
A and the between-families environmental factor 1-12 have loadings which 
are constrained to be related by a scalar constant b: H2 = bA. In order 
to accommodate this constrained DRE l E2 model to LISREL, we introduce 
the following redefinition: 

Ax = [A, Hi, A, D, El, E2], 

expressing the constraint that the factor loadings on A are equal to those 
on 112. Up until now all elements in the matrix phi have been fixed at 
known coefficients from the twin model specified above. In contrast, 
element (3,3) in phi is now freed, whereby the equality of the factor load- 
ings of A and//2 as expressed by lambda-x is reduced to a proportionality. 
Note that 

EMZB : A A '  + D 2 + H~Hr + El 2 + 2(H2H(2 + E l ) ,  

~DZB : ~-(AA' + 0 2) + H I H ~ l  + E~ z + 2(H2H(2 + E22), 

that is, phi(3,3) = 2b. The LISREL estimate of b thus obtained was 0.6, 
which is close to the estimate of 0.7 obtained by Martin and Eaves. 

EXAMPLE IV 

In LISREL specific variances usually are represented by 0. How- 
ever, the model we have been using contains various specific variances, 
viz., D z, El 2, and E2 2, that compelled a different approach in which in 
each specific variance was conceived of as a distinct latent factor. Con- 
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Table IV. LISREL Estimates (Example IV) 

A D Hi El H2 E2 

Sl 
x~ 
x3 
x4 
X5 

10.042 7.051 9.003 6.000 14.011 3.992 
13.018 8.998 8.003 8.008 t3.998 5.032 
15.017 7.094 6.998 8.001 6.999 5.076 
13.017 7.074 6.000 8.003 7.001 6.053 
10.014 8.999 5.001 6.000 7.003 5.000 

Measurement errror variances 

TD1 TD2 TD3 TD4 TD5 
25.0 25.0 49.0 25.0 25.0 

X1852 = 0.23 

sequently,  O~ was fixed at zero. In contrast ,  we could have treated specific 
El variances differently by representing these in terms of  O~. This would 
have shown more clearly that E1 variances are confounded with mea- 
surement  error  variance. Notice that the assignment of any measurement  
error  variance present  to E, is inherent to the genetic model and not to 
the corresponding L I S R E L  model. Hence,  while treating specific El var- 
iances as we do, i.e., as being due to distinct latent factors, one still cannot 
use theta delta to obtain separate estimates of measurement  error variance 
without the invocation of additional structure, such as a repeated-meas- 
ures design. 

As a last example we simulated a repeated-measures twin design, in 
which five variables are measured twice. We now have four (10 x 10) 
observed covariance matrices (Appendix 3) and can estimate the variance 
associated with measurement  errors in any of the five variables in theta 
delta. For  this analysis the factor  loadings on the common and specific 
factors are constrained to be invariant over  testing sessions. That is, the 
first five loadings on the xi factors are equal to the second five factor 
loadings. Likewise,  the variances in theta delta are constrained to be equal 
over  testing sessions. This model can be defined as follows: NX = 10, 
N K  = 18, LX = FU,  FI, PH = DI, FI, and TD = DI, FI. Next ,  the 
appropriate elements in LX and TD are freed and specified to be invariant 
over  groups and testing sessions. L I S R E L  estimates of factor loadings 
and error  variances are given in Table IV. For  the third variable the total 
variance is 374.7 and the error  variance (TD3) is 49.0. This means that 
13.1% of  the total variance can be explained by measurement  error. 
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DISCUSSION 

The method of Martin and Eaves and the LISREL approach are equiv- 
alent. This is a pleasing state of affairs, as LISREL is easy of access and 
well-known, whence the genetic analysis of covariance structure might 
gain in impetus. In fact, the LISREL approach can be used whenever an 
explanation of observed covariance matrices, e.g., of relatives, in terms 
of genetic and environmental components is at stake. 

Our method is one of several approaches to use LISREL for the 
genetic analysis of covariance structure (Fulker et al., 1983; Cantor, 
1983). Fulker et  al. (1983), using an approach similar to that outlined here, 
employed LISREL confirmatory factor anat.ysis to examine the genetic 
and environmental covariance structure of data on income, occupation, 
and schooling. Cantor (1983) used the LISREL confirmatory factor an- 
alysis for the genetic analysis of ridge count data from the offspring of 
monozygotic twins. In her approach the theta matrix is used to estimate 

Appendix 1. Input Matrices (Example i) 

MZ between 

683.648 
588.149 819.467 
403.527 444.460 535.363 
375.741 410.954 335.323 486.632 
337.608 363.624 282.018 257.372 

MZ within 

114.054 
71.265 127.780 
62.397 56.472 113.704 
53.185 48.135 42.146 102.091 
44.052 39.869 34.908 29.755 

DZ between 

638.284 
556.119 758.444 
369.790 400.248 465.354 
339.667 366.791 284.565 437.188 
312.019 333.919 247.405 224.013 

DZ within 

154.429 
102.845 184.739 
100.080 103.196 180.921 
86.475 89.091 90.564 154.025 
69.260 71.162 72.193 62.291 

385.2t3 

61.120 

349.307 

108.606 
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Appendix 2, L1SREL Control Cards (Example I) 

Group 1. MZ between 

DA NG=4 NI=5 NO=999 MA=CM 
CM SY 
MO NX=5 NK= 18 PH=DI,FI LX=FU,FI TD=ZE 
ST 1.0 PH(1,1) PH(4,4) PH(5,5) PH(6,6) PH(7,7) PH(8,8) 
ST 1.0 PH(2,2) PH(9,9) PH(10,10) PH (11,11) PH(12,12) PH(13,13) 
ST 2.0 PH(3,3) PH(14,14) PH(15,15) PH(16,16) PH(17,17) PH(18,18) 
FR LX(I,I) EX(2,1) LX(3,1) LX(4,1) LX(5,1) 
FR LX(1,2) LX(2,2) LX(3,2) LX(4,2) LX(5,2) 
FR LX(1,3) LX(2,3) LX(3,3) LX(4,3) LX(5,3) 
FR LX(I,4) LX(2,5) LX(3,6) LX(4,7) LX(5,8) 
FR LX(1,9) LX(2,10) LX(3,11) LX(4,12) LX(5,13) 
FR LX(1,14) LX(2,15) LX(3,16) LX(4,17) LX(5,18) 
ST 20 ALL 
OU SE NS TO 

Group 2. MZ within 

DA NO = 1000 
CM SY 
MO NX=5 NK=18 PH=PS LX-1N TD=ZE 
ST 0.0 PH(1,1) PH(4,4) PH(5,5) PH(6,6) PH(7,7) PH(8,8) 
ST 1.0 PH(2,2) PH(9,9) PH(10,10) PH(11,1 I) PH(12,12) PH(13,13) 
ST 0.0 PH(3,3) PH(14,14) PH(15,15) PH(16,16) PH(17,17) PH(18,18) 
OU TO 

Group 3. DZ between 

DA NO = 999 
CM SY 
MO NX=5 NK=18 PH=PS LX=IN TD=ZE 
ST 0.75 PH(1,1) PH(4,4) PH(5,5) PH(6,6) PH(7,7) PH(8,8) 
ST 1.0 PH(2,2) PH(9,9) PH(10,10) PH(11,11) PH(12,12) PH(13,13) 
ST 2.0 PH(3,3) PH(14,14) PH(15,15) PH(16,16) PH(17,17) PH(18,18) 
OU TO 

Group 4. DZ within 

DA NO = 1000 
CM SY 
MO NX=5 NK= 18 PH=PS LK=IN TD=ZE 
ST 0.25 PH(1,1) PH(4,4) PH(5,5) PH(6,6) PH(7,7) PH(8,8) 
ST 1.0 PH(2,2) PH(9,9) PH(10,10) PH(I 1,11) PH(12,12) PH(13,13) 
ST 0.0 PH(3,3) PH(14,14) PH(15,15) PH(16,16) PH(17,17) PH(18,18) 
OU TO 
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Appendix 3, Input Matrices (Example IV) 

MZ between 

715.00 
594.00 845.00 
409.00 447.00 584.00 
380.00 413.00 335.00 513.00 
341.00 366.00 283.00 258.00 4t5.00 
690.00 594.00 409.00 380.00 341.00 715.00 
594.00 820.00 4~7.00 413.00 366.00 594.00 845.00 
409.00 447.00 535.00 335.00 283.00 409.00 447.00 584.00 
380.00 413.00 335.00 488.00 258.00 380.00 413.00 335.00 513.00 
341.00 366.00 283.00 258.00 390.00 341.00 366.00 283.00 258.00 415.00 

MZ within 

142.00 
72.00 153.00 
63.00 56.00 162.00 
54.00 48.00 42.00 125.00 
45.00 40.00 35.00 30,00 86.00 

117.00 72.00 63.00 54.00 45.00 142.00 
72.00 128 .00  56.00 48.00 40.00 72.00 153.00 
63.00 56.00 113 .00  42.00 35.00 63.00 56.00 !62.00 
54.00 48.00 42.00 100 .00  30.00 54.00 48.00 42.00 125.00 
45.00 40.00 35.00 30.00 61.00 45.00 40.00 35.00 30.00 86.00 

DZ between 

677.75 
561.50 782.50 
371.50 398.25 515.50 
347.50 370.75 286.25 458.50 
316.00 333.50 245.50 225.50 369.75 
652.75 561.50 371.50 347.50 316.00 677.75 
561.50 757.50 398.25 370.75 333.50 561.50 782.50 
371.50 398.25 466.50 286.25 245.50 371.50 398.25 515.50 
347.50 370.75 286.25 433.50 225.50 347.50 370.75 286.25 458.50 
316.00 333.50 245.50 225.50 344.75 316.00 333.50 245.50 225.50 369.75 

DZ within 

179.25 
104.50 215.50 
100.50 104.75 230.50 
86.50 90.25 90.75 179.50 
70.00 72.50 72.50 62.50 131.25 

154.25 104.50 100 .50  86.50 70.00 179.25 
104.50 190.50 104 .75  90.25 72.50 104.50 215.50 
100.50 104.75 181 .50  90.75 72.50 100.50 104.75 230.50 
86.50 90.25 90.75 154 .50  62.50 86.50 90.25 90.75 179.50 
70.00 72.50 72.50 62.50 106.25 70.00 72.50 72.50 62.50 131.25 
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residual variances that cannot be accounted for by the postulated factors. 
These specific residual variances necessarily represent E1 influences and 
thus are confounded with other specific variances, if present. Specific 
variances, however, can be represented as distinct latent factors as in our 
examples. As a consequence, in studies in which information on the test- 
retest reliabilities of the measures is available, the theta matrix can be 
used as the matrix of variances of measurement errors. 

The LISREL approach not only is equivalent to the method used by 
Martin and Eaves, but also can be used to explore more elaborate models. 
For instance, in a longitudinal analysis it is possible to obtain functional 
relationships between genetic and/or environmental covariance structures 
at consecutive time points. A particular simple example would be a pro- 
portional relationship between factor loadings within or between consec- 
utive occasions. In fact, we have invoked such a within-occasion pro- 
portional relationship in our example in which the A and the H2 factor 
loadings were related by a scalar constant b. One other feature of LISREL 
is the option to test the assumption of unequal means for the latent factors. 
This might be useful in the analysis of parent-offspring data where parents 
and children may have different means on certain variables, in the analysis 
of sex differences, or again, in a longitudinal analysis. 
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