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Resolving the Effects of Phenotype and Social
Background on Mate Selection
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Traditional studies of mate selection have not addressed the question of
how a marital correlation arises. The common assumption that assor­
tative mating is based on phenotype has not been properly tested. Social
background may be a major determinant of choice of spouse. We show
how the collection of data on monozygotic (MZ) and dizygotic (DZ) twin
pairs and their spouses, and estimation of all possible correlations be­
tween the twin pairs and their spouses, will allow these alternative hy­
potheses to be tested. Power simulations show that it will be feasible to
resolve the contributions of phenotype and social background to mate
selection for variables such as IQ, education, and attitudes for which the
marital correlatio n is moderately high.
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INTRODUCTION

The study of monczygotic (MZ) and dizygotic (DZ) twin pairs is the most
powerful method available for detecting genetic influences on human
variation (Eaves, 1970; Martin et ai., 1978). Recently proposed extensions
of the classical twin design, to include data on the parents of twins (Lytton,
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1977; Eaves et al., 1978), the offspring of MZ twins (Nance and Corey,
1976) or of MZ and DZ twins (Hayley and Last, 1981), and the spouses
of MZ and DZ twins (Eaves, 1979), permit us to advance beyond the
mere study of heritability. With such extended designs 'vve may determine
more precisely the "genetic architecture" of a trait (Dobzhansky, 1972;
Mather, 1966), its mode of environmental transmission (Cavalli-Sforza
and Feldman, 1973; Eaves, 1976a,b; Rao et al., 1976; Cloninger et al.,
1979), and the mechanism of mate selection for the trait (Eaves, 1973,1979;
Rao et al., 1979). These issues are closely related: incorrect and untested
assumptions about assortative mating, for example, will usually lead to
incorrect conclusions about genetic architecture and environmental trans­
mISSIon.

There is strong evidence of positive assortative mating, the tendency
for like to marry like, for behavioral traits such as IQ (Jensen, 1978;
Johnson et al., 1980), attitudes and beliefs (Eaves et al., 1978; Feingold,
1984), and, to a lesser extent, certain personality traits (Cattell and Nes­
selrode, 1967), and for related demographic variables such as educational
level (Warren, 1966), socioeconomic status (Centers, 1949), and religious
afIiliation (Thomas, 1951) . Unfortunately investigations of mate selection
have not progre ssed beyond the tabulation of marital correlations for a
list of variables. They have not sought to identify the causes of such
correlations.

It is widely assumed that marital correlations arise through positive
"phenotypic" assortative mating, i.e., that individuals prefer to marry or
are more likely to encounter each other because they have similar pheno­
types. This is the assumption which is implicit in most genetic analyses
of behavioral traits (Jinks and Fulker, 1970; Eaves, 1973 ; Eaves et af.,
1978; Loehlin, 1978; Rice et al., 1980). An alternative explanation is
possible. Any tendency for individuals from similar social backgrounds
to marry each other will also lead to a positive marital correlation.

Living in the same neighborhood and attending the same church,
school, or college will increase the probability that two people will marry.
If place of residence, education, or worship is purely determined by the
phenotypes of the spouses themselves, this may still be considered a case
of phenotypic assortative mating. If these and similar variables are di­
rectly determined, wholly or in part, by the phenotypes of the parents of
the spouses, a positive marital correlation will still be generated because
of the resemblance of the two sets of parents and of each set of parents
and their own offspring. Such an effect of social background on mate
selection will have rather different implications for genetic analysis from
those of positive phenotypic assortative mating (Heath and Eaves, 1984).
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Evidence for such an effect will also constitute important progress in our
understanding of the psychology of mate selection.

It is not possible to infer from an observed marital correlation whether
mate selection has been determined by the observed trait, some correlated
feature of the individual's phenotype (Rao et al., 1979; Cloninger, 1980),
or social background. Direct enquiry of the spouses themselves will not
be fruitful, since there is no necessary connection between the causes of
behavior and the causes to which such behavior is attributed. In this
paper we show how the collection of data on pairs of MZ and DZ twins
and their spouses, or pairs of siblings and their spouses, will allow the
resolution of the effects of phenotype and social background on mate
selection. Power simulations are reported which show the sample sizes
needed to resolve these effects.

A MIXED HOMOGAMY MODEL

Only a single model of · 'social homogamy" has been used in genetic
analysis (Rao et at., 1976,1979). This model has been more aptly described
as a model for assortative mating based on a correlated latent variable
(Cloninger, 1980). As we have shown elsewhere (Heath and Eaves, 1984),
the model implies that the marital correlation for an observed variable
arises because phenotype assortative mating is based on some other fea­
ture of the phenotypes of spouses, a feature which is determined by the
same genetic factors (. 'pleiotropy") or the same environmental factors
as the observed variable. We have therefore developed a new model to
represent the effects of both phenotype and social background on mate
selection.

In Fig. 1 we reproduce a path diagram (Wright, 1934,1968,1978) for
the resemblance of siblings and their parents and spouses under a mixed
homogamy model (Heath and Eaves, 1984). We assume that assortative
mating is based on a complex character such as place of residence, wor­
ship, or education, which is a function of the phenotype (e.g., IQ) of the
individual and of both parental phenotypes. Symbols and parameters used
in Fig. 1 are as follows: P-observed phenotype; PL-complex variable
on which mate selection is based; A, C, D, and E-additive genetic and
familial environmental values and dominance and random environmental
deviations which determine P; MO, FA, SO, DA, WI, and HU-sub­
scripts (underlined in Fig. 1 for greater clarity) identifying mother's, fa­
ther's, son's, daughter's, son's wife's, and daughter's husband's pheno­
types, etc.; I-path regression of PL on individual's phenotypic value
P; s-path regression of PL on maternal or paternal phenotypic value P;
j-L-primary marital correlation between the complex variables (e.g., ed-
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Fig. 1. Resemblance of siblings and their parents and spouses under mixed homogamy.

ucationallevels) of spouses; h, C, d, dnd e-path regressions of P on A,
C, D, and E; p-path regression of offspring familial environmental value
on maternal or paternal phenotypic value; a-genotype-environmental
correlation; u-correlation between phenotypic value of one spouse and
familial environmental value of second spouse; v-correlation between
additive genetic value of one spouse and phenotypic value of second
spouse; w-correlation between phenotypic values of spouses; x-cor­
relation between additive genetic values of spouses; y-correlation be­
tween additive genetic value of one spouse and familial environmental
value of second spouse; z-correlation between familial environmental
values of spouses; and w-path regression of P on PL. In this diagram
the path regressions of the complex phenotypes (PL) of the spouses on
those of the twins have been represented by a single-headed arrow. This
requires the use of reverse paths to derive expected correlations between
other variables in one spouse and variables in the twins or cotwin' s spouse
(Cloninger et al., 1979; Heath, 1983; Heath and Eaves, 1984). The same
diagram could be drawn using copaths (Cloninger, 1980), which would
obviate the need for reverse paths but still lead to the derivation of
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identical expected correlations. We have represented the phenotypes of
the parents, as well as their additive genetic (A) and familial environmental
(C) values, as ultimate variables. When both phenotype and social back­
ground contribute to mate selection, the correlation between the pheno­
types of spouses cannot be expressed as a simple linear function of the
correlations between their additive genetic and familial environmental
values, or vice versa. Residual variables which contribute to the variance
of a variable, but not to its covariance with other variables, have been
omitted from the diagram. We use rectangular ( J ~ ) two-headed
arrows to denote correlations between ultimate variables, rather than
following the traditional convention of curved two-headed arrows, since
this facilitates the interpretation of complex path diagrams.

We assume that assortative mating, genetic inheritance, and cultural
transmission remain constant from generation to generation, so that an
equilibrium state has been reached in which the phenotypic variances
and correlations between relatives do not change between generations.
We may therefore, without loss of generality, assume that all measured
and latent variables have been standardized to have zero mean and unit
variance. This permits us to use the rules of standardized path analysis
(Wright, 1934,1968,1978) to derive expected correlations between vari­
ables. Equilibrium expressions for the correlations w, v, u, x, y, Z, and
a will be as follows:

W ~W2,

V - ~W"Y ,

u - ~WE,

X - v 2 /w ,

y uv/w,

Z u 2 /w,

and

a = p(h + ae + v),

where w = f + hs(h + ac + v) + 2csp(1 + w), "y = f(h + ae) s(h
+ ac + v), and E = f(e + ah) + 2s(1 + w). Since all variables have
been standardized to have unit variance, the model implies inequality
constraints

f2 + 2s 2 (1 + w) + 4fs[1I2h(h + ac + v) + pe(l + w)] <:: 1

and

2p 2 (1 + w) <:: 1.

(1)
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Table I.

Relations hip

MZ twins
DZ twins/full sibs
MZ half-siblings

First cousins

Parent-offspring
MZ cognate uncle-nephew
Cognate uncle-nephew
Husband-wife
MZ twin-cotwin' s spouse
DZ twin-cotwin' s spouse
Spouses of MZ twin pairs
Spouses of DZ twin pairs
MZ affine uncle-nephew
Affine uncle-nephew

Heath and Eaves

Expected Correlations Between Relatives(l

Expected correlation

PMZ h2 + d2 + ('2 + 2hac
PDZ ~h2(1 + x) + kf + c2 + 2hac
±h2(l + 2J-L'Y2 + /-L2"(rr) + C2p2(PMZ + 2/-Lw'YJ +

/-L2TI(2) + hcp(h + ac + /-L'Y'YJ + /-L'YW +
/-L 2'YWTI )

kh2(l + X + 4/-L'Y~ + 2/-L2'l8) + C2p2(PDZ +
2J-Lwr3 + /-L28(2

) hcp[!h(l + x) + ac + /-L'Y~

+ /-L~w + /-L2'Yw8]
!h(h + ac + v) + cp (l + w)
~h(h + ac + /-L'Y'Y]) + CP(PMZ + /-Lw'Y])
±h[h(1 + x) + 2ac + 21-L'Y~] + CP(PDZ + f-Lwr3)
/-Lw

2

f-LW'YJ
/-Lr3w
/-L2ulTI
/-L2w2(3

~h(f-Lw'Y + /-L2TIw'Y) + cp(/-Lw'Y] + /-L2TI(2)
!h(J-Lw~ + f-L2(3W'Y) cp(/-LW~ + /-L2(3w2)

(I Where TI = f2(h 2 + d2 + c2 + 2hac) + 2s2(l + w) + 2fsh(h + ac + v) + 4fcsp(l +
w), T] f(h 2 + d2 + c2 + 2hac) + 2s[~h(h + ac + v) + cpO + w)], (3 = f2[!h 2(l +
x) +±d2 + c2 + 2hac] + 2s2(l + w) + 2}:'lh(h + ac + v) + 4fcsp(l + w), ~ = f[~h(l

+ x) + ac] + s(h + ac + v), r3 = fah 2(l x) + ±J2 + c2 + 2hac] + 2s[ih(h + ac +
v) + cp(l + w)], (j) = f + hs(h + ac + v) + 2csp(l + w), 'Y = f(h + ac) + s(h + ac
+ v), and E = fCc + ah) > + 2s(l + w).

The use of cons trained optimization methods (Greig, 1980) permits us to
ensure that these equality and inequality constraints are satisfied when
model fitting.

EXPECTED CORRELATIONS AND PREDICTIONS

Algebraic expressions for expected correlations between MZ and DZ
twin pairs and their spouses and offspring, under this mixed homogamy
model, are summarized in Table 1. These expectations should be multi­
plied by a coefficient of reliability, r, to allow for error of measurement
of P. If the complex character PL is a latent variable, as will usually be
the case, it will not be possible to obtain separate estimates of the pa­
rameters f, S, and ~. Instead we shall be compelled either to estimate
derived parameters f * = f ~ 1/2 and S * = s~ 1/2 or to assume that the
variable PL is completely determined by the individual's own and his
parental phenot ypes, so that Eq. (1) above becomes an equality con­
straint. In this paper we have followed the former course.
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Table n. Predictions Under Phenotypic vs. Social Homogamy(/

Social homogamy

(i) Pts = Pts' = Ps Ps'
(ii) Pss = Pss'
(iii) Pso = Pso'

Phenotypic homogamy (r = 1)

(iv) Pts = PtPs
(v) Pss = PtPs2 = PtsPs
(vi) Pts' = pt' Ps'
(vii) Pss' = Pt' ps'2 Pts' Ps'
(viii) Pso = PxoPs
(ix) Pso' = Pxo' Ps'

Phenotypic homogamy (r < 1)

a Pt, Ps, Pts, and pss-expected correlations between MZ twins, be­
tween husband and wife, between an MZ twin and his cotwin's
spouse, and between the spouses of pairs of MZ twins; pr', ps',
Pts', and Pss' -corresponding expected correlations for DZ twins
or siblings; pxo and Pxo' -expected correlation between the MZ
(DZ) twin and the cotwin's offspring; Pso and Pso' -expected cor­
relation between the spouse of an MZ (DZ) twin and the cotwin's
offspring.

The utility of data on pairs or twins or siblings and their spo~ses for
resolving the effects of phenotype and social background on mate selec­
tion can most easily be seen by deriving predictions (" scaling tests")
under the two special cases where f = 0 (social homogamy) and s = 0
(phenotypic assortative mating). Scaling tests for these and other models
of mate selection have been outlined elsewhere (Heath and Eaves, 1984).
Predictions for the phenotypic and social homogamy models are sum­
marized briefly in Table II and can be confirmed by simplifying the ex­
pected correlations in Table 1.

If mate selection is purely determined by social background if = 0),
then, as noted previously (Eaves, 1979), the expected correlation between
the spouses of pairs of MZ twins will be identical to the expected cor­
relation between the spouses of pairs of DZ twins (prediction ii in Table
II). Furthermore, the expected correlation between a twin and the co­
twin's spouse will be the same for both MZ and DZ twin pairs and will
be equal to the expected correlation between husband and wife (prediction
i). This second consequence of social homogamy for the correlation be­
tween twins and their spouses had not previously been recognized. We
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see below that it provides the most powerful test for detecting the influ­
ence of social background on mate selection.

If mate selection is purely determined by phenotype (s = 0), the
expected correlation between husband and wife will always be greater
than that between twin and cotwin's spouse, unless the phenotypic cor­
relation between twins is equal to unity! Under the phenotypic model
with no measurement error (r = 1), the expected correlation between
twin and cotwin' s spolisewill be equal to the product of the c'orresponding
expected twin and marital correlations (predictions iv and vi), and the
expected correlation between the spouses of twin pairs will be equal to
the product of the square of the marital correlation and the twin correlation
(predictions v and vii), for twin pairs of a given zygosity. When meas­
urement error is important (r < 1), predictions iv-vii will no longer apply,
but the ratio of the correlation between twin and cotwin' s spouse to the
correlation between twins and the ratio of the correlation between spouses
of twin pairs to the correlation between twin and cotwin' s spouse, should
both be equal to the true correlation between spouses (i.e., corrected for
unreliability of measurement; prediction x). The latter predictions will of
course also be satisfied in the case where r = 1.

If data on the spouses of MZ and DZ twins are supplemented by
data on their offspring, further tests of mechanisms of mate selection are
possible. Under pure social homogamy, the expected correlation between
the spouse of one twin and the offspring of the cotwin will be the same
for MZ and DZ twins (prediction iii).Under the phenotypic model (r =

1), the expected correlation between the spouse of one twin and the
cotwin's offspring should be equal to the product of the expected cor­
relations between husband and wife and between twin and cotwin' s off­
spring and, so, will generally be greater for MZ than for DZ kinships
(predictions viii and ix). Since the absolute values of these correlations
will often be quite small, these tests involving the offspring of twins will
individually be much less powerful than those using twins and their
spouses alone. Data on the offspring of the twins will, however, permit
a more complete resolution of genetic and environmental transmission
(Nance and Corey, 1976; Hayley and Last, 1981; Heath, 1983).

POWER STUDY-METHODS

From Tables I and II it is evident that data on pairs of MZ and DZ
twins and their spouses will be sufficient to resolve the contributions of
phenotype and social background to mate selection. It remains to be
established whether this goal can be achieved with realistic sample sizes.
To address this issue, we have conducted a series of power simulations,
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based on the work of Martin et al. (1978), whose original paper should
be consulted for full details of methodology.

Numerical values for the expected variances and covariances of twins
and their spouses were generated for a range of values of the parameters
of our mixed homogamy model, including the special cases of pure social
homogamy and pure phenotypic homogamy. For each twin zygosity a 4
x 4 covariance matrix was created, giving the variances and covariances
of first twin, second twin, first twin's spouse, and second twin's spouse.
All phenotypic variances were standardized to unity. Since we cannot
estimate the cultural transmission parameter P using only data on twins
and their spouses ~ this parameter was set to zero throughout this simu­
lation study. In the analyses reported here measurement error was also
ignored. In each case a total sample of 1000 twin pairs, each twin having
one spouse, was assumed, but the proportion of twin pairs in the sample
who were MZ was allowed to take values 0% (i.e., corresponding to the
case where only pairs of siblings and their spouses are studied), 33.3, 50,
or 66.7%.

Phenotypic and social homogamy models were fitted to the covari­
ance matrices generated under the hypothesis of mixed homogammy, and
phenotypic models were fitted to covariance matrices generated under
the hypothesis of social homogamy, and vice versa. Models were fitted
to the covariance matrices by maximum-likelihood covariance structure
analysis (Joreskog; 1978; Eaves et al., 1978; Young et al., 1980). This
involves minimizing the function (in standard matrix notation)

L = ~Ni[log IE i 1+ tr(S Ei- l
) - log I Si I - Pi],

where S i is the itb observed covariance matrix, E i is the corresponding
expected covariance matrix, calculated using current estimates of the free
parameters of the model, N i is the number of degrees of freedom on which
the matrix is based, and Pi is the order of the covariance matrix (4 in this
application). The minimum value of L obtained is distributed as chi­
square, with the number of degrees of freedom equal to [112 LP Jp i +
1)] - q, where q is the number of free model parameters estimated.
Minimization was performed using a commercially available procedure
for constrained optimization (E04UAF) using the augmented Lagrangian
function method (Numerical Algorithms Group, 1978). This allowed us
to ensure that the minimum obtained satisfied all equality and inequality
constraints implied by the model.

For each set of parameter values under a given true model, the
minimum chi-square value obtained by fitting a given false model was
recorded. This chi-square statistic assesses the overall goodness of fit of
the false model. -LL\. more powerful comparison of different models is pos-
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sible by likelihood-ratio test (10reskog, 1978). If L I is the chi-square value
obtained by fitting a simple model, and L 2 is the chi-square value obtained
by fitting a more complex model, then the likelihood ratio (L I - L 2 ) is
also distributed as chi-square, with the number of degrees of freedom
equal to the number of parameters of the more complex model whose
values must be fixed to yield the simpler model (Joreskog, 1978). To
compare alternative models by likelihood ratio test when neither one is
a special case of the other, we must also fit a more complex model which
includes both as special cases. If only one of the alternative models gives
a significantly worse fit than the complex model, the other model will be
preferred; otherwise both models will be rejected in favor of the complex
model (Joreskog, 1978).

When the more complex (mixed homogamy) model is fitted to our
simulated data, it will always give a perfect fit: the data were simulated
taking either the more complex model or one of the alternative phenotypic
or social homogamy models (which are special cases of the complex
model) as the true model. The chi-square value which is obtained by
fitting a false model will therefore be identical to the likelihood ratio for
testing that model against the complex model. Since the likelihood-ratio
statistic will be based on fewer degrees of freedom, it provides a far more
powerful test of the incorrect model.

From the likelihood-ratio statistic obtained by fitting a false model
to the simulated data, we may determine the number of sets of twin pairs
and their spouses which would be necessary to reject the false model by
likelihood-ratio test at a given significance level with a given probability,
if the population parameters are those used under the true model. The
minimum chi-sq uare value obtained under the false model is used as a
noncentrality parameter, A', with the number of degrees of freedom, k,
equal to the number of degrees of freedom for testing this model against
the true model. The number of complete sets of twin pairs and their
spouses required to reject the false model at the 5% significance level
with a probability of 95% is then estimated as

1000A
n p = -A-'-'

where A is the noncentrality parameter A(o.05,O.95,k) obtained from the table
of noncentral chi-square (Pearson and Hartley, 1972, Table 25).

In some cases when the true value of the parameter c was zero, the
estimated number of sets of twin pairs and their spouses necessary to
reject a false model of assortative mating which allowed for additive gene
rlction and familial environmental effects was greater than the number
required to reject a false model which allowed for additive gene action
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Table III. Number of Complete Families Required to Reject the False Social Homogamy
Model When the True Model Is Phenotypic

True parameter value 0/0 twin pairs monozygotic

h c f* pO 0 33.3 50 66.7

0.80 0.0 0.80 0.64 26 28 29 30
0.80 0.0 0.65 0.4225 79 86 90 94
0.70 0.0 0.80 0.64 21 22 22 22
0.70 0.0 0.65 0.4225 62 65 67 69
0.70 0.40 0.80 0.64 28 35 36 37
0.70 0.40 0.65 0.4225 90 111 115 119

a Observed marital correlation.

and purely random environmental effects. In all such cases the larger
estimate of the required sample size was recorded.

RESULTS OF POWER STUDY

Table III gives the estimated number of families (i.e., complete sets
of twin pairs and their spouses) required to reject a false social homogamy
model when mate selection is based on phenotype, for a range of values
of the parameters hand c, assuming values of the marital correlation of
0.65 and 0.4225. The former value is close to the values observed for
marital correlations for educational level (Heath et ai., 1984) and for
measures of religious and political attitudes (Feingold, 1984); the latter
value is close to that which is found for individual measures of IQ. The
sample size required to reject the hypothesis that mate selection is based
on social background varies directly with the proportion of twins in the
sample who are monozygotic, with the magnitude of the twin correlation,
and inversely with the magnitude of the marital correlation. For the range
of parameter values considered here, the resolution of phenotypic and
social homogamy is perfectly feasible.

Table IV summarizes the total number of families required to reject
a false phenotypic model when mate selection is in reality based on social
background. Only a restricted range of values of the parameters h, c, and
s* are considered. Once again it is apparent that the resolution of phen­
otypic and social homogamy is a practically, as well as theoretically,
achievable goal. Again, the necessary sample sizes vary directly with the
proportion of twins who are monozygotic and with the magnitude of the
twin correlations but inversely with the magnitude of the marital corre­
lation.
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Table IV. Number of Complete Families Required to Reject the False Phenotypic Model
When the True Model Is Social Homogamy

True parameter value % twin pairs monozygotic

h c s* pCl 0 33.3 50 66.7

0.80 0.0 0.60 0.36 87 93 96 100
0.70 0.0 0.6332 0.18 259 277 286 296
0.70 0.40 0.6332 0.18 321 342 354 366

CI Observed marital correlation.

Table V gi ves the number of sets of twin pairs and their spouses
required to reject pure phenotypic and pure social homogamy models
when mixed phenotypic and social homogamy is occurring. Only cases
where the obse rved marital correlation is of the order of 0.6-0.64, or
0.4225, are considered. The resolution of mixed phenotypic and social
homogamy is likely to be infeasible for smaller values of the observed
marital correlation, unless available sample sizes are unusually large. We
again observe that required sample sizes vary directly with the phenotypic
correlation between twins and inversely with the marital correlation.
Larger sample sizes are also required to reject the phenotypic model
when the proportion of MZ twin pairs in the sample is high. A more
complex relationship exists between the number of families required to
reject the hypothesis of pure social homogamy and the proportion of twin
pairs who are monozygotic: at low values of the marital correlation a high
proportion of MZ twin pairs is disadvantageous, but at high values it is
advantageous.

DISCUSSION

Eaves (1979) has suggested that data on the spouses of both MZ and
DZ twin pairs would be necessary to resolve the contributions of phen­
otype and social background to mate selection. From the scaling tests
given in Table II it is apparent that data on only pairs of siblings (or DZ
twins) and their spouses, or MZ twin pairs and their spouses, would be
sufficient to test the hypotheses of pure social homogamy or pure phen­
otypic homogamy. The results of our power study show that the resolution
of phenotypic and social homogamy depends largely upon the comparison
of the marital correlation and the correlation between twin and cotwin' s
spouse, rather than the comparison of the correlations between the
spouses of MZ and those of DZ twin pairs. Under most of the conditions
considered in this paper, data on pairs of siblings and their spouses will



Table V. Number of Complete Families Required to Reject the False Phenotypic and Social Homogamy Models When the True Model Is
Mixed Homogamy

True parameter values Phenotypic model, % twin pairs Social homogamy model, ~!O twin
monozygotic pairs monozygotic

h c f* s* p{/ 0 33.3 50 66.7 0 33.3 50 66.7

0.80 0.0 0.40 0.3434 0.64 87 92 95 98 75 73 72 71
0.70 0.0 0.40 0.4019 0.60 60 62 63 63 52 47 45 43
0.70 0.40 0.40 0.4019 0.60 70 71 72 73 115 108 105 103
0.80 0.0 0.35 0.3059 0.4225 323 362 386 413 223 233 240 248
0.70 0.0 0.35 0.3767 0.4225 201 212 219 226 160 156 154 152
0.70 0.40 0.35 0.3767 0.4225 250 264 273 281 340 341 349 358

{/ Observed marital correlation.
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provide a more powerful resolution than will data on pairs of MZ and DZ
twins and their spouses.

This finding is not difficult to understand. When the phenotypic cor­
relation between twins is unity, under phenotypic as well as under social
homogany, the expected correlation between a twin and his cotwin' s
spouse is identical to the expected correlation between husband and wife,
p. The larger the phenotypic correlation between twins, therefore, the
greater the difficulty of resolving phenotypic and social homogamy. In
all the cases which we have considered in our power calculations, we
have assumed that h > 0, so that the DZ twin correlation is less than that
between MZ twins. We would therefore expect the resolution of phen­
otypic and social homogamy to be easier the greater the proportion of
twins who areDZ in the sample. This is precisely the finding which has
emerged from our power calculations.

For the behavioral geneticist who is interested not only in mechanisms
of mate selection, but also in the resolution of cultural and biological
inheritance, collection of data on both MZ and DZ twin pairs and their
spouses will be the preferred design. Our power calculations show that
with such a design, the effects of phenotype and social background on
mate selection can be successfully resolved, at least for traits such as
social attitudes, IQ, educational level, and socioeconomic status, with
only moderately large sample sizes. The mixed homogamy model which
we have considered in this paper does not of course exhaust all possible
hypotheses about mate selection (see, e.g., Rao et al., 1979; Eaves and
Heath, 1981a,b; Heath and Eaves, 1984). To distinguish among all these
different models, further extension of the classical twin design, through
collection of additional data on the parents and parents-in-law of twins
(Heath and Eaves, 1984), will be necessary. Additional data on the off­
spring of MZ and DZ twins will permit a more complete resolution of the
effects of genetic and environmental transmission and, hence, a more
exact determination of the genetic and cultural consequence of mate
selection. However, collection of data on twin pairs and their spouses
will provide the most effective starting point for an investigation of mate
selection, just as the classical twin study provides the best first stage in
the investigation of the familial transmission of a trait.
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