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Multifactorial Inheritance with Cultural Transmission and
Assortative Mating. I. Description and Basic Properties of the

Unitary Models

JOHN RICE,' C. ROBERT Ci ONINGER, AND THEODORE REICH

The familial transmission of complex developmental traits often appears to be
influenced by the variation of many discrete genetic and environmental factors [1]. The
transmission of such traits may be described and quantified by multifactorial models in
which many factors of small effect play a role. Different formulations of polygenic or
multifactorial models of continuous phenotypes or threshold characters have been
described by several authors since the seminal work of Fisher [2] and are reviewed
elsewhere [3, 4]. Although some formulations allow for additive environmental
contributions, differences between polygenic and cultural inheritance have received
little attention.

Environmental effects may sometimes simulate genetic transmission [5], but other
patterns may also occur [6, 7]. Cavalli-Sforza and Feldman [6] noted that cultural
inheritance may be effected directly by social learning and modeling or by parents
teaching their offspring certain customs and preferences about diet, environment, and
other activities. They emphasize the plasticity of genotypes in response to the
environment and deal explicitly with the effect of parental phenotypes on the
development of the same phenotype in the offspring. Cavalli-Sforza and Feldman
recognize that other genetic and environmental factors besides the phenotype of the
parent may influence the development of a child, but their model only deals with direct
phenotype-to-phenotype effects.

In contrast, Morton [8] and Rao et al. [9, 10] describe linear models of familial
resemblance which are primarily concerned with family members reared contem-
poraneously. Their models allow for environmental effects common to children reared
together ("common environment") which may increase phenotypic resemblance.
Their original model [9] also allows for a correlation between midparent-genotype and
common environment but does not allow for direct cultural transmission from parent to
offspring. Their later model [10] allows for some types of nongenetic transmission
between generations at equilibrium, but the properties of such models have not been
systematically described.
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MULTIFACTORIAL INHERITANCE

To further our understanding of the transmission of complex developmental traits
like height, weight, blood pressure, diabetes, hypercholesterolemia, intelligence, and
psychiatric phenotypes, more comprehensive models are needed in which the effect of
both polygenic and cultural inheritance are specified in pedigrees extended over several
generations. In addition, the effects of nonrandom mating must be taken into account
since such traits often show strong assortative mating [ I I - 13].

In 1918, Fisher presented an extensive treatment of assortative mating for polygenic
traits. An annotated account of Fisher's paper has been presented by Moran and Smith
[14], and many of his results have been derived using a more elementary method by
Crow and Felsenstein [ 15]. These treatments are only valid for polygenic traits without
cultural transmission. Therefore, the extension of the multifactorial model to include
cultural transmission requires a generalization of Fisher's treatment of assortative
mating.

In this paper we will describe a general model of multifactorial inheritance with
cultural transmission and assortative mating. For clarity we will distinguish among the
polygenic model in which there is no cultural transmission, the cultukurl model in which
there is no genetic transmission, and other multifu(to/ial models in which both genetic
and cultural transmission are possible. We allow for threshold effects, common
environment, maternal and paternal effects, and assortative mating without selection.
We follow the distinctions among assortative mating, selective mating, and inbreeding
described by Lewontin et al. [16]. The effects of selective mating on the polygenic
model have been considered by Wilson [17]. and Wilson's critique of Fisher's model
of assortative mating has been criticized elsewhere [18]. In our model and that of
Fisher, gene frequencies do not change with assortative mating by definition. In
addition, we assume that the overall frequencies of cultural factors relevant to the
development of a trait do not change, rather only the distribution of these events
between and within families is changed. A positive phenotypic correlation between
mates induces a positive correlation between the transmissible cultural factors of the
mates as well as between the genes relevant to the trait. This leads to an increase in the
variance of the trait in the population which depends on the extent to which cultural
factors are inherited.
We are concerned with both the cultural and the genetic factors which influence the

transmission of a trait from parent to offspring since a priori assumptions about their
relative contributions may obscure rather than enhance our understanding. It is
necessary to provide a model which allows for both types of transmission simultane-
ously, rather than assume for convenience that cultural factors are negligible.
However, for many traits there is insufficient data to estimate both heritability and the
effect of cultural inheritance. Accordingly, we introduce the unitirv model which does
not try to further partition the transmissible variance, but which does allow for
hypothesis testing and for approximate estimation of the combined importance of
genetic and cultural factors.

DESCRIPTION OF THE MODEL S

The following assumptions define the general multifactorial model and are more
general than many prior formulations of this model: ( 1) A quantitative character P may
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be partitioned as P = A + B + E, where A and B denote all the effects of genetic and
cultural factors transmitted from parent to offspring, respectively, and E denotes all
other effects which are usually random environmental influences, with the covariance
(A,E) and covariance (B,E) equal to 0. (2) The transmissible factors act additively and
each has small effect relative to the total phenotypic variance. (3) There are many
transmissible factors so that P may be assumed to be normally distributed. We assume,
further, that the joint distribution of A, B, and E is a trivariate normal. (4) In order to
allow for both biological inheritance through DNA and cultural inheritance, no a priori
assumptions are made about transmission probabilities or heritability.

In order to allow for assortative mating based on direct phenotypic preferences as in
Fisher's first model ([14], page 50), we introduce two additional assumptions: (5)
Assortative mating is recurrent (i.e., occurs every generation) and is based directly on
phenotypic preferences. (6) The phenotypic correlation between mates is of constant
magnitude through generations.
The causal system of transmission from parent to offspring for the general

multifactorial model will be explicated in detail in the second paper in this series 119].
Briefly, the path coefficient from the additive genetic value (A) of a parent to the
additive genetic value (A) of his offspring is 1/2 since the parent contributes precisely
1/2 of his genes. The path coefficient from the transmissible cultural value (B) of a
parent to (B) of his offspring is denoted by 13 and will be discussed in detail below. The
primary correlation m between the parental phenotypes induces correlations between
the A and B of the parents. In addition, even if A and B within the same individual are
uncorrelated in a random mating population, a nonzero correlation w is present at
equilibrium if assortative mating occurs. This formulation of the multifactorial model
is described by four parameters: h2 = V4IVp, b2 = VBIVP, (3, and m, where V denotes
the variance of the subscripted variable. Other parameters may be introduced to
describe phenomena such as a common environment of rearing or a primary
gene-culture covariance.
The correlations between relatives in terms of the parameters of the model can be

determined by the use of path analysis [20-22] to provide a system of nonlinear
equations for parameter estimation. To assess the effect of assortative mating on a
random mating population, it is first necessary to compute the changes in variance of A
and B which result from the assortative mating. The parameters at equilibrium can then
be related to the random mating parameters, and the equilibrium correlations to the
random mating ones. It is then possible to partition the equilibrium variance to
determine the proportion attributable to assortative mating.
We will treat three submodels of the general model in what follows, and defer the

analysis of the full model to a companion paper. The first submodel is the cultural
model, which results if VA = 0. The second is the usual polygenic model which results
ifVB = 0. The third is termed the pseudopolygenic model and results when (3 = 1/2 in
the general model. Each of the three models is characterized as unitary since
transmission is determined by a single variable (viz. B, A, or T = A + B). Each of
these models is in turn a special case of the unitarv model which is defined below. In
addition to their own usefulness, the development of these models is requisite for the
general treatment.
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MULTIFACTORIAL INHERITANCE

DESCRIPTION OF THE CULTURAL MODEL

In the cultural model, we assume that V., = 0, so that P = B + E with cov(B,E) = 0.
In a random mating population, the path coefficient /3 is equal to the correlation coeffi-
cient between the B of a parent and the B of his offspring. Once assortative mating
occurs, the variance is increased in successive generations until equilibrium is reached.
In the multiple regression equation of an offspring on his parents, it is assumed that the
partial regression coefficient s' is unaffected by assortative mating:

BP = 'BB (.-1)I+ 3'B (F)n, + f I'',", (1)

whereM denotes the mother, F denotes the father, F'n is the residual term correspond-
ing to fluctuation about midparent cultural value, and f'n is the partial regression coeffi-
cient for F'n It is shown later that in an equilibrium population the regression
coefficient 3' and the path coefficient /3 are equal. We use a prime (') here to em-
phasize that these are the concrete (unstandardized) variables related by regression
coefficients rather than path coefficients, although we assume, for convenience, that all
variables have zero mean. The corresponding path equation is given by

B11+1 = /3n B(A)1 + /311B(F)n + f,, F,, (1.1)

where

3= , B and f,, - S iF'n(TB'Rn+1 C'+

Consider the path diagram displayed in figure 1 where n denotes the generation
number, in the phenotypic correlation between mates, and rBBn the correlation between
the cultural transmissible factors of mates in generation n. For simplicity, uncorrelated
residual terms are not shown since they do not contribute to familial resemblance.
Although we assume that in is recurrent and of constant magnitude through genera-
tions, I'BB, depends on n because the ratio of the variance of transmissible factors VB,, to
the total phenotypic variance Vp,, changes with recurrent assortative mating until
equilibrium is reached. Specifically, from figure 1, the correlation between the
transmissible factors is /'BB, = nmb,,2.
Assumptions 5 and 6 may be changed if the correlation between mates is not based

directly on the phenotype. Fisher's treatment of the relationship between in (Fisher's pi)
and rBB (the nongenetic analogue to Fisher's A) is valid even for cultural transmission.
Only the case of direct phenotypic preference will be presented here, but other patterns
are easily elaborated [19].

Changes in Varicance Due to Assortative Mating
By taking the covariance of the right hand side of equation (1) with itself, and

recalling that COV(B',,+I, B',,+,) = VB',,+,, we have

VB#I+1 = /312 VB'(1)n, + 312 VB1(F)n + 2/3'2rB'B',, B'(.1J)n, CB'(F)II +f',VFn (2)

Consider first a random mating population at equilibrium denoted here as generation
o, with VB',,+, = VB'( 11X,, = VAF,},, = VB'O and with COV(B(,.1,, B(,,,,) = 0. Equation (2)
reduces to

621



m
Pn Pn

bnj jbn
flt rBBn

Pan=/2U BS + ,g'-l~
Pn +1
Bn +1

bn+l

FIG. 1.-Parental determination of an offspring's phenotype for the cultural model. The generation
number of the parents and the offspring are denoted by n and n + 1, respectively. The double-headed arrow
indicates the correlation induced by the primary correlation m.

VB-,= 23"''Vil, +f'', VF', (2. 1)

so thatf 'I(r,, = (1 - 2 j3,2)1 . (2.2)

Now suppose that assortative mating occurs and affects only the variance of
transmissible factors (assumption 7). and specifically that Vf,,,, = V,,, andf,,' = f,'
for all n, so that fn'oF, = f0o(F'o. From equation (1) and (2.2), the change in the
variance of transmissible factors from recurrent assortative mating is seen to follow the
recursion relation

VB' + I = 2/132 (1 + IrfnB',B) VB',n + (1 - 2/312) VB' . (3)

Under recurrent assortative mating for a multifactorial trait, equilibrium is defined by
the generations where VB,,, = VB,,+, = VB,. Quantities not indexed by generations are
assumed to be at equilibrium under assortative mating, and quantities subscripted by o
refer to their random mating values. At equilibrium, equation (3) yields

I- 2/312V -= I - 2/312 (1 + I'B') VBR¼,. (3.1)

When the assortative mating population is at equilibrium, the path coefficient /3 from
the B of a parent to the B of his offspring is /3 = /3' (JTB,)/(C(BR) = /3'. In the random
mating population, /3,, = /3' (Bo)l((/rB,,) = 3'. and we have the remarkable fact that
the path coefficient /3 is the same under both equilibrium conditions and equals the
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MULTIFACTORIAL INHERITANCE

P IN' P4 m
B ROB

P P
FIG. 2. -Path diagram depicting parent-offspring and sibling-sibling correlations at equilibrium for the

cultural model.

partial regression coefficient 13'. This is analogous to the fact that the path coefficient
between the genic values of parent and offspring is 1/2 in an equilibrium population,
whether it is mating randomly or assortatively ([22], p. 268). Since /3' = /3 and rBfB? =
rmB, there will be no confusion in returning to the convention of representing both
standardized and unstandardized quantities by the same symbol without the use of
cumbersome primes.
The change in variance of transmissible factors, AVB,, depends on the sign of the

correlation between mates, increasing if the correlation is positive and decreasing if the
correlation is negative. This may be seen from equation (3. 1) or (3.2), noting that (1 +
rBn) is always positive:

AVB VB 1 32(rB ) (3.2)

Given that assortative mating only changes the variance of transmissible factors
(assumption 7), and specifically that VE = VE, = V*:", the phenotypic variance at
equilibrium is seen to depend on /3, rmn, and VUp,:

VP = Vi + VE = VUP + AVB = VP,) + 2[32rBBVB ) (4)1 -2t32 (I + rBB)

Relationship between Parameters under Random and Assortative Mating
The path diagram in figure 2 depicts the relationship between mates, parent-offspring

pairs, and siblings at equilibrium. Residual terms are omitted since they do not
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contribute to familial resemblance. By path analysis, it can be shown that at
equilibrium under assortative mating,

B = lfl), (5)

where b V= VB

=/3j-(1 + in) b2, (6)

where -,),, = parent-offspring correlation, and

r,() = 2/32 (I + I-BB) b2, (7)

where r,, = correlation of two sibs each reared by the same parents. Under random
mating, in = 0 and equations (6) and (7) reduce to

'/)(*= f3/1,2 (6.1)

and

,,*' 2/32/,). (7.1)

Equation (6) may be rearranged to give a useful expression for the proportion of the
total variance due to cultural factors:

=J )() (8)

13(1 + in)
From equations (5) and (8), the correlation between transmissible factors of mates is

I'B= MIO+m)(9)

Further, from straightforward applications of equations (3) through (9), the random
mating parameters r,(,*, red*, and VP, are given by
1* - (1 + m)r,)(( - 2/32) - 2/3mr,2 (10)
I.]) - ( I + M)2 (1 - 2/32) -2nij0

r ,,,,* = 2/3r,,,*, and (11)

I[1 - +2in72' _I VP1. (12)

These equations may in turn be solved for the assortative mating parameters at
equilibrium, yielding

I 2 - I - 2/32) l - 22 - 8nrp,* (/3 -rp(*)]}
r = (1 + rn) 4r (/3- .0 (13)

r
-2=3r [I + mr )]1and (14)
1O +mn [ 3( +rn)J
VP (I~~- 2/32) (1I + rn)2 1V).(15)

[ (I (1 +-n)2- 2mr,,,
If r),,,* = /3, the expressions given in equations (13) to (15) simplify, and the
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MULTIFACTORIAL INHERITANCE
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FIG. 3.-Relationship between ,8 and b02 in a random mating population for the indicated parent-offspring
correlations.

parameters assume their maximal value:
rp,( = 3(1 + m), (13.1)

rQ( = 2,((1 + m), and (14.1)

VP =~ I -232(l82 V. (15.1)

From equation (6.1), it can be seen that b, = I when rp,* = /3, so that rBBn = m for
all n. Thus, the largest increases in parameter values will occur when ,/, m, and b02 are
high.

Properties of/

The relationship between [3 and b2 is illustrated in terms of random mating
parameters in figure 3 and in terms of assortative mating parameters in figure 4. The
correlation m is fixed at .4, and the random mating values of if are shown for various
values of rp,) in a population at equilibrium. Equation (10) is first used to calculate r,0*
from /3, rp, and m = .4, and then b2 is found by dividing this value of rp,0* by /3.
Figures 3 and 4 demonstrate that for the cultural model the phenotypic parent-offspring
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FIG. 4. -Relationship between f3 and b02 in a population with m = 0.4 for the indicated parent-offspring
correlations.

correlation may be a poor indicator of the importance of transmissible factors. If /3 is
small, then rp,, may be small with b2 large, and if /8 is large, then rp(, may be large with
b2 small. Indeed, the effectiveness of a parent as a teacher or model for social learning
is a crucial consideration in the assessment of familial factors.

Although /3 is not fixed at 1/2 as is the path coefficient for the polygenic model, other
considerations restrict the range of 3 and the correlation between parents and offspring.

In order for the value of the parent-offspring correlation in equation ( 13) to be real,
the term under the radical must not be negative; that is, (1 - 2,32) [1 - 2,2 -8mrO*
(,3 - rp,,*)] . Therefore, solving for the roots of /, an upper bound for 1,31 is given
by

1/31 - 2mIrp,,* + [1/2 + 4mIrpo*I (1 + m)] . (16)
A tedious computation shows that equation (16) is also equivalent to the constraints
that

Irp,,, -- 2( 1 + m) rp,,*1 6

or
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MULTIFACTORIAL INHERITANCE

The requirement that the phenotypic and cultural variance reach a finite equilibrium
point also places constraints on the magnitude of 1. Rearranging equation (3.1), we
observe that

VBo 1 - 2/32(1 + mb2) (17)

Noting that the ratio of VB, to VB becomes small and that b approaches 1 as VB
increases, we obtain the bound that

11<< (18)

In the random mating population we must have 1131 l/V27so that values of 1/81 greater
than those given by either equations (16) or (18) or l/\,I2are not possible. As /3
approaches this latter bound, the phenotypic variance approaches infinity. Thus, at the
upper bound with /3 = l/V2(1 + m) and b2 = 1, the parent-offspring correlation,
obtained from equation (13.1) would be [(I + mn)/2]i, a value much larger than those
usually observed in practice. Also, if selection pressure prevented too large an increase
in the phenotypic variance, it could reduce /3 in succeeding generations. With cultural
inheritance /3 might vary from generation to generation as well as from family to
family. Accordingly, if families with high /3 were selected against, /8 would decrease.

The Approach to Equilibrium

The approach to equilibrium under recurrent assortative mating depends on the
magnitudes of /3 and m and is usually quite rapid for both cultural and biological
inheritance. Equation (3) can be used to determine the number of generations required
to reach equilibrium as shown in figure 5. In figure 5 the parameters m and rp, are fixed
at .4 and .5, respectively, and equilibrium variances were chosen to be 1.0. The
phenotypic variance through succeeding generations is plotted for various values of /3
with n = 0 denoting the random mating generation. Even with /3 < 1/2, equilibrium is
closely approached within a few generations. Accordingly, assumption 6 (that the
phenotypic correlation between mates is constant through generations) is not particu-
larly restrictive.

Maternal and Paternal Effects

In the presence of cultural inheritance, /3 need not be the same for each parent. In
many contemporary cultures the mother tends to have a greater responsibility in child
rearing so that the correlation between transmissible factors may be greater between
mother and child than between father and child. In some traits, such as birth weight,
uterine environment may play a mediating role in the transmission of the trait and
separate correlations between mother and child (rMo) and between father and child (rbo)
are needed. Accordingly, let /M and /F denote the mother-child and father-child path
coefficient between transmissible factors, respectively.

Equation (1) then becomes

Bn+1 =/3MB(M)n + /3B(F)ni + (1 - /M2 - F2)2 (BoFo F., (19)
so that
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n

FIG. 5. -Approach to equilibrium through 10 generations expressed in terms of percentage of the final
equilibrium value of the population variance. m is fixed at .4, rp0 is fixed at .5, and (3 varies from .45 for the
top curve to .55 for the bottom one.

VB 1 - (PM2 + 13F2 + 2f3MJ3FrBB) (20)

and

VP VP0 + (P8M2 +PAF2)0OB VBo-(1
1 - (PM2 + 13F2 + 2PMJ3FrBB) (21)

In the random mating population, the father-offspring correlation rFp* is equal to
/3Fbo2, and the mother-offspring correlation is f3Mbo2 . Other formulae may be easily
modified by substituting (PM + PF) for 2, (PM2 + PF2) for 2/82, and (PM2 + OF2 +

2PMPFrBB) for 2/32(1 + rBB). Additional extensions in which / depends on both the sex

of the parent and the sex of the child, as suggested by some for juvenile delinquency
[23], are easily elaborated.

THE POLYGENIC MODEL

The special case of the general multifactorial model in which all transmissible
factors are additive genes is termed the polygenic model. In this case, the above
derivations are valid with /8 fixed at 1/2 and B replaced by A.
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MULTIFACTORIAL INHERITANCE

In this setting, the regression of an offspring on his parents which is given in
equation (1) becomes

A11+1 = V12An + 112A4 + 2 (orA° / 0S)S, (22)

where S is the segregation from mid-parent genotype. Similarly, setting /3 = 1/2 in
equations (3. 1) and (4), the variances under assortative mating at equilibrium are

VA= 1 i (23)

and

VP = VPO + 1 rA VA,, (24)

These expressions agree with equations (4.8.11) and (4.9.6) of Crow and Kimura [24]
with a large number of effective genes. Their derivation depends heavily upon the
assumption of polygenic inheritance, whereas in the preceding derivation, the only
genetic assumption required is that the path coefficient from A of a parent to A of his
offspring is 1/2.

THE PSEUDOPOLYGENIC MODEL

Now consider the special case of the general model with ,3 = 1/2. Equations (1) and
(22) may be combined to yield

Qn+I = 1/2Qn + 1/2Qn + ½/2 ro00F' (25)
where F' has variance 1, and Qi is given by Q, = A i + B,. The earlier arguments may
be again applied to show

VG I V/'Q , and (26)1-rrQQ

Vp =Vp,,+ 1 rQ QO (27)

where

q2 = VQ ,and (28)

rQQ =mq2 (29)
In the general case we could define

T0+± =An+1 + Bn+1 (30)
= 1/2(M)n + /2A(F)n + 13B(,)n,, + /3B(F)n +f'F. (30.1)

but for /3 + 1/2, the analogue of equation (25) does not hold, so that genetic and
cultural factors must be considered separately [19]. The case when ,3 = 1/2 is termed
the pseudopolygenic model since all correlations between relatives in intact families
(except the correlation between monozygotic twins) may be expressed in terms of m
and q2. As a result, b2 and h2 cannot be estimated separately unless separation data are
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present. Since the pseudopolygenic model mimics genetic inheritance in intact
families, the a priori assumption of a polygenic model is untestable. Techniques, such
as those for the resolution of heterogeneity described by Reich et al. [25-27], which
are valid for the pseudopolygenic model, are therefore desirable.

THE UNITARY MODEL

To analyze each of the above models in a uniform way, we introduce a new model,
the unitary model, where we assume P = T + E, and that the regression of an offspring
on his parents is given by

Tn+1 = TT(M)n + TT(F)n + \| 1 - 22 (ofTo/orF.) F (31)

so that

VT (1 - 2r2)VT( and (32)
1 2r2 (I + rTT)

vP v~~e I- 272 (I1 + r7 T)'
where
2 = VT and (34)

VP

rTT =mt2. (35)

Submodels of the unitary model include: (1) T = 3, T = B (the cultural model); (2) T =
1/2, T = A (the polygenic model); and (3) T = 1/2, T = A + B ( the pseudopolygenic
model).
We have:

rpo = Tr(1 + m) t2, (36)

roo = 2T2(1 + rTT)t2 (37)

r* (1 + m)rpo (1 - 2r2)- 2rmrpo2 (38)
(1 + m)2 (1 - 2r2)-22mrpo2

r00* = 2rrpo*, (39)

VPO = [] - I + M)2 (I-2T2) V, (40)

1- 2r2 - {( -2T2) [1 22T - 8mrpo*(T- ro*)]} ) 4
PO ~~~~~4m(r - rpo*)

- 2rr0 [I + mr ] and (42)

VP [ (I- 2r2)(I +m )21V2m. (43)[I(1 2-2) (I + M)2 - 2mrp 2J
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MULTIFACTORIAL INHERITANCE

EXTENSIONS OF THE UNITARY MODEL

Common Environment

It follows from equations (36) and (37) that if r is equal to 1/2 (as in the polygenic or
pseudopolygenic model) or is less than 1/2 (as may occur with cultural inheritance),
then full sibling pairs cannot be more similar than parent-offspring pairs. However, r0o
is often observed to be greater than r ,,. From the polygenic model the increased
similarity of full sibs is often attributed to the effects of dominance deviation [24] since
this increases r0,o and not rpO. However, Morton [8] describes the notion of dominance
deviation for polygenes as "farfetched" and cites data showing that dominance
decreases with small gene effect. Many early investigators did not allow for the
resemblance between sibs to be due in part to the similarity of their shared environment
and large dominance effects were postulated (e.g., in 1918 Fisher estimated the
dominance variance for height as 25%). In studying environmentally influenced traits
in humans where environments cannot be experimentally randomized, the effect of
common or shared environmental influences cannot be ignored. Rao et al. [28] found
correlations for height and weight to decline from .572 and .547 for dizygous twins to
.127 and .120 for other full sibs born 20 years apart and noted a steady decline related
to age differences. Genetic factors cannot explain such effects, whereas common
environment does seem to offer a plausible explanation for this. Some formulations
incorporate a variable "common environment" with a path to each sibling [8, 9, 22].
We introduce a similar but slightly more flexible model which minimizes the number of
assumptions involved.

In the path diagram depicted in figure 6, we introduce a correlation c between the
relevant environmental influences to which siblings are exposed. Several possible paths
which could induce such a correlation are indicated by dotted paths but only the
correlation c is retained. The nature of the correlation is ambiguous in this formulation,
but it is seldom practical to obtain the data necessary to distinguish between the
alternative interpretations unless c and e are large. It should be noted that this
formulation also implies that there is no change in variance due to environmental
factors with assortative mating, so that c remains unchanged, although the standardized
regression coefficient e decreases as Vp increases with assortative mating.

In the random mating populations the correlation between full siblings is

r00* = 2r2t02 + ceo2, (44)

so that

C = [r00-27(I + (I +m)) l +m] e2

It should be noted that c may differ in different groups such as monozygous twins,
dizygous twins, and full sibs. Furthermore, being reared apart does not assure that c =
0. Estimates of c may be made directly by use of an index of the relevant environment
as suggested by Morton and Rao et al. [8-10], or estimated using observed
correlations between relatives.
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FIG. 6. -Path diagram depicting sibling-sibling correlation when a correlation between nontransmissible
environmental values is present. Dashed lines = possible sources of the correlation between the E's.

Threshold Characters
The multifactorial model for threshold characters has been described by Crittenden

[29], Falconer [30], Reich et al. [25-27], and Curnow and Smith [4]. Here it is
assumed that the manifestation of a dichotomous trait is determined by a normally
distributed variable X, termed the liability to develop the trait, withX = T + E; that is,
transmission of liability from parent to offspring is described by the unitary model. It is
further assumed that affectational status is determined by a threshold so that an
individual is "affected" (i.e., manifests a trait, if his score on X is above the threshold
and "unaffected" otherwise).
The correlations between individuals are then the correlations between the underly-

ing liability scaleX and may be estimated by the tetrachoric correlation coefficient [25,
26]. The normal deviate XP of the threshold may be estimated from the population
prevalence Kp.
The random mating correlations may be obtained from equations (38) and (39), and

the random mating prevalence may be obtained from the change in variance given by
equation (40). Letting Xp* denote the normal deviate for the random mating prevalence
K,)* we have

[ (I1- 2r2) (1 +M)2- (46)

The value ofK ,* can then be obtained from the complementary distribution function of
the unit normal random variable evaluated at X ,.
The increase in population prevalence due to assortative mating is illustrated in
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figure 7 with K,* equal to 1% and m equal to .4. The maximum value of r is given by
equation (16) for r,0* less than .2988 and by equation (18) for r,,* greater than .2988.
In the latter case, the curves approach the asymptote determined by equation (18)
corresponding to an infinite increase in the variance. Figure 7 shows that the increase in
Kp is small for small T, increases monotonically with T, and can be quite substantial for
moderately large T. In the case of the polygenic or pseudopolygenic models T is .5.

RESEMBLANCE BETWEEN OTHER RELATIVES

Information about first-degree relatives and mates in one population is insufficient to
estimate r. Accordingly, information about multiple classes of relatives or heterogene-
ous populations is needed in order to estimate the parameters of the unitary model.
Estimation of T and the correlation between relatives will be described for the ancestors
and descendants of parents-offspring (vertical relatives) and of full sibs (full collateral
relatives).
Vertical Relatives

The path diagram for the grandparent-grandchild correlation r90 is shown in figure 8.
The correlation is

r90 = 72(I + m) (1 + rTT)t2. (47)
In general, the correlation between ancestors and descendants of parent-offspring pairs
after n additional generations is given by the formula

rtAd= (rp),r"-l (1 + rTT)?#-l = Tr'(l + m) (1 + rTT)h-lt2

0.06

(48)

0.04

0.02p

0 0.2 0.4 0.6
1,

FIG. 7. -Increase in the population prevalence Kp in terms of T for a threshold character with a random
mating prevalence of 1%, m = .4 and the indicated values of rpO*.
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FIG. 8. -Path diagram depicting grandparent-grandchild correlation.

where rvi = ro, rV2 = rgo, rv3 is the great-grandparent correlation, etc. Note that if T is
negative, values of the trait will oscillate, and for a dichotomous trait, may appear to
"skip generations."

Recalling equations (35) and (36), rearrangement of equation (48) gives a useful
general expression for T when n > 1,

rv___ 1/n1-i1 mr,,0
T r 1 1 m (49)

Full Collateral Relatives
Similar formulae may be developed for descendants of full sibs. The path diagram

for first-cousins and for uncles (aunts) and nephews (nieces) allowing for the common
environment of the siblings is shown in figure 9. The correlation between uncle (aunt)
and nephew (niece) is

rat = rUIN=A2r3(l + r7TT)2t2 + ce2mr t2, (50)

and the correlation between first-cousins is

r = 2r4(l + r7T)3t2 + ce2m2'r2t4. (51)

The contribution of common environment to the resemblance of descendants of full
sibs may require some comment. The effect of environmental factors E are not
transmissible by definition; nongenetic factors which are transmitted between genera-
tions are included in T. However, the correlation between the home environments of
sibs induces a greater correlation between the transmissible values of the mates of a
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FIG. 9. -Path diagram depicting the first-cousin and uncle-nephew correlation.

pair of sibs than would be present otherwise. This increased resemblance is of course
transmitted, as shown in figure 9, and is so specified in the formulae here. Regardless,
the influence is small except when c, e, m, X, and t are all high. When common
environment is negligible, the correlation between collateral relatives in intact families
is given in general as

r = 2rTn+ (1 + rT)Vnt2 (52)

where n is the degree of genetic relationship so that n = I for full sibs, 2 for uncle
(aunt) and nephew (niece), 3 for first cousins or great uncle/nephew, etc. From
equation (52), an estimate of X similar to that obtained with vertical relatives is given
by

= An(1+ m)]11n- mr,, (53)

However, if common environment is not negligible, distinctions are necessary between
collateral pairs in which they are descendants of only one or each of two sibs (e.g.,
great uncle vs. first cousin). In general, the correlation between an individual and the
descendants of his full sib is

r = {2,rn±+(l + rft)nt2 + ce2[r"-'mt2(l + rTT)n 2]} (52.1)

where n, the degree of genetic relationship, is 2 or greater so that C l denotes full sibs,
C2 denotes uncle and nephew, C3 denotes great uncle, etc. In contrast, the correlation
between descendants of each of a pair of full sibs is given as

rcn = {2r n+1(l + rTT)nt2 + ce2[r'n-m2t4(l + r )n-3]} (52.2)

where n, the degree of genetic relationship, is 3 or greater so that Cl and C2 are the
same as in (52.1), but C3 denotes first cousins, C4 first cousins once removed, CS
second cousins, etc.
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PROPERTIES OF THE UNITARY MODEL

The unitary model may be viewed as an approximation to the general model of
combined polygenic and cultural inheritance which is defined in the beginning of this
paper and developed fully elsewhere by Cloninger et al. [19]. We know that the two
models are equivalent in the three special cases treated above: the cultural model, the
polygenic model, and the pseudopolygenic model. The general model is parameterized
by [3, m, W = VB,/IV, h' = VA/V, and c, and VT is given by VT = b2 + h' + 2wbh,
where w is the correlation between A and B within the same individual.
A natural question to address is how [3 and VT, of the general model relate to T and VT

of the unitary model. We are investigating this question by generating observations
under the general model and then fitting the unitary model to the simulated data. The
results of one such simulation are shown in figures 10 and 11.
The parameters of the full model were chosen to be VI = .8, m = .3, c = .0,

together with the indicated values of [3. Sets of correlations (specifically, parent-
offspring, grandparent-grandchild, sibling, uncle, nephew, first and second cousin, and
first and second cousins once removed) were generated for b2 from 0 to .8 in
increments of . 1 and then fitted to the unitary model. As noted in figure 10, VT was
underestimated for all data sets (except for those where we know the answer is exact).
To date, the claim that VI, obtained from the unitary model is conservative has been
borne out by our simulations. It appears that VT is underestimated by approximately
2wvbh, and other simulations have shown that VT is very close to the true values when in
is small.

0.90

0.80
VT'

,0:0Q45
0.70 I X= 0. 4 5

/30.60

0 0.2 0.4 0.6 0.8
b2

FIG. 10. -Values of the total transmissible variance VT of the unitary model at the point of best fit to data
simulated under the full model. The true VT was .8 and data sets were generated with b2 = I to b2 = .8, with
h-= .8 - bl - 2bhw and with the indicated values of f3. w is defined in reference [19].
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FIG. I 1. -Values of the parameter T in the unitary model at the point of best fit for the same data sets as in
figure 10.

The relationship between T and /3 is more complicated, as indicated in figure 11.
When VB = .8, we know r = /3, and when VB = 0, we know T = .5. Depending upon
the relative proportions of V 1 and VB, T may be an overestimate or underestimate of /3.
However, when m is 0, a good approximation of T is given by T = .5 (V,4)/(V7) + /3
(VB)/(V7). (54)

Finally, the observation that T = .5 when VB = 0 allows the testing of the hypothesis
that there is no cultural transmission. If r 7 .5, then VB cannot be zero. However, as
indicated by the pseudopolygenic model, if T is 1/2, we cannot conclude the VA is
nonzero. The most important point to note is that the test of VB = 0 suggested here is
more powerful in detecting cultural factors than the usual chi-square goodness of fit test
against an unspecified alternative which is often used to test the fit of the polygenic
model to a data set.

APPLICATIONS

The unitary model contains four parameters (viz. T, m, t, and c), so that estimates of
at least four correlations are necessary for parameter estimation. A FORTRAN program
TAU, available upon request, is used to provide maximum likelihood estimates of the
parameters from reported correlations. This program applies the inverse hyperbolic
tangent transformation,f(x) = 1/2 In (1 + x)/( 1-x), to each product moment estimator
r, and ignoring the bias r/2(N-1), it assumes

f(r) - N (f(r), i3) (55)
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where N is the number of pairs used to estimate the correlation r.
Given observations r1, 72, .. r and parameter values 0, the log likelihood of the

data set is given by
k

L = 1/2 {f(F,)-f [r1 (O)]}2 (N, - 3), (56)

where ri(O) is the correlation predicted from the model. The general purpose likelihood
searching program MAXLIK [31 ] is then used to obtain maximum likelihood estimates of
the parameters 0 by maximizing L. At the point of best fit, note that 2L-X2,, where v is
k minus the number of estimated parameters.

Testing of hypotheses involving linear constraints on the parameters may then be
performed using a likelihood ratio test [32] by first obtaining the likelihood L1, without
any constraints, and then obtaining the likelihood Lo by imposing the constraints. The
asymptotic distribution of

-21n Lo -2(lnL,, -lnL1) (57)

is known to be a chi-square distribution with v degrees of freedom when v linear
constraints are used.

Unfortunately, a paucity of data is reported on remote relatives. This no doubt
reflects the fact that under the polygenic model only estimates of m, rp0, and roo are
necessary to estimate heritability and dominance deviation. Information on other
classes of relatives is not necessary and statistically less efficient. However, once
nonrandom environmental factors are considered, such data are not adequate.

Human Stature

Although the necessary correlations are not available to apply this method directly,
the two data sets displayed in table I reflect different degrees of assortative mating and
allow the estimation of T and t2 from the two parent-offspring correlations. The fir;tL
data set is that collected by Pearson and Lee [33] from the population of English
university students and was analyzed by Fisher [2], who estimated the random mating

TABLE I

REPORTED CORRELATIONS FOR HUMAN STATURE FROM Two DATA SETS ANALYZED

PREDICTED PREDICTED

PARAMETER OBSERVED No. 7 = .604, t02 = .484 r = .5, t02 = .7281

[m .2804 1,000 .2835 .2953
Pearson and Lee [33] ! * *

lrpo .5066 4,886 .5064 .5029

m .0931 200 .0848 .0070
Galton [34].

rpO .3355 937 .3379 .3671

NOTE.-Predicted correlations at the points of best fit for the unitary model and the unitary model with T = 0.5 are
displayed in the last two columns.
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heritability to be 75% and the dominance deviation to be 25% of the variance. The
second data set consists of 200 families collected from the upper middle class by
Galton [34], the correlations being those reported by Pearson [35] with the sexes
combined. The correlation m was found to be .2804 in the first data set and .0931 in the
second. Assuming that t02 and T would be the same for each population, the two
parent-offspring correlations allow estimation of the random mating parameters using
equation (41). This was done using a maximum likelihood search.
The values of the correlations at the point of best fit for both data sets are displayed

in table 1 when r and t02 are estimated simultaneously. When T was fixed at .5, t02 was
estimated to be .7281, a value consistent with Fisher's analysis of Pearson and Lee's
data. This value contrasts with the value of t02 = .484 from the unitary model. Thus,
the unitary model supports the hypothesis that familial factors are less important than
previously indicated.
The likelihood ratio test of r = .5 is not significant (X21 = 3.04), despite the

difference in the two parameter sets and the large sample sizes. This results from the two
population method used, since estimation is only possible because of the differential
effect on the change of variance in the two populations. (In a random mating population
rpo* = rto2, so that if two random mating populations were sampled, the two
parameters could not be estimated.) For this reason, we do not recommend this
method, but present it only to indicate that the existing data may be described
adequately with our model and that the conclusion that transmission of human stature is
in toto genetic should be investigated further.
The observed sibling correlations are .5433 and .4004 for the two data sets, and

using r = .604, t02 = .484, and c = 0, the predicted correlations are .i651 and .3929,
respectively, so that common environmental effects (or dominance) wouiU be negligi-
ble. For T = .5, the predicted correlations with c = 0 are .4773 and .3664,
respectively, so that common environment (or dominance) would be required to
explain the sibling correlations.

DISCUSSION

Until recently, human genetics has paid little attention to the importance of
nonrandom environment in the etiology or the transmission of quantitative phenotypes.
Current investigations support the observation that many behavioral traits are highly
familial and are suggestive of parent to offspring transmission. However, as the
pseudopolygenic model indicates, such observations cannot be construed as proof for
genetic transmission when observations are made only within intact families. It is
necessary to allow for both genetic and cultural transmission, as well as a systematic
effect due to a shared environment of rearing, before an observed pattern of familial
correlations may be used to determine the mode of transmission of a complex trait.
The cultural model we propose is patterned after the polygenic model. Transmission

from parent to offspring is determined by the additive effect of many cultural events,
with the degree of parental determination measured by 13. However, for /3 greater than
.5, this model differs in two qualitative aspects from the polygenic model. First, the
coefficient 2/32 in the sibling correlation is greater than the corresponding 13 in the
parent-offspring correlation, so that r,,,,* is greater than r,,,*, and even when assortative
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mating occurs, r00 can be greater than or equal to rag. For many traits, the observed
sibling correlations are "too large," so that, in contrast to the cultural model, the
polygenic model requires either a large dominance deviation or a large nontransmissi-
ble common environmental effect to explain the data.

Second, the cultural model predicts that second and third degree relatives are more
similar than would be expected under the polygenic model. The observation that distant
relatives are "too alike" is suggestive of cultural transmission, and neither dominance
nor nontransmissible common environment can offer a satisfactory explanation. On the
other hand, where /8 is less than .5, transmissible factors may play a major role in the
etiology of the trait even though reported correlations are low.
Our treatment of assortative mating is general in that the derivations are valid even

for cultural transmission. In the second paper of this series, these results will be used to
include assortative mating for the general multifactorial model in the case of direct
phenotypic assortment. The implementation of other types of assortative mating, such
as indirect phenotypic assortment or social homogamy, can easily be accomplished by
paralleling arguments used for the polygenic model together with our results which
allow for cultural transmission. When threshold characters are considered, another
possibility is that assortment is for the dichotomous phenotypes rather than for the
underlying liability values. We are currently investigating the differences in these two
different approaches.
One further question requires some comment. If the hypothesis that VB = 0 is

rejected, what is the minimum VB that can explain the data? One answer to this can be
obtained by fixing /8 in the general model [19] at its maximum value to provide a lower
bound for VB. The precision of such an estimate could itself then be tested with further
simulation.
The unitary model we propose provides a common model to parameterize the

cultural, the polygenic, and the pseudopolygenic models and provides an approxima-
tion to the general model. Further simulations are needed to evaluate the operating
characteristics of this model more fully, but our work to date strongly supports the
usefulness of this model when observations are available only for relatives reared
within intact nuclear families.
The unitary model provides a framework to investigate many important questions

concerning the transmission of a trait without requiring an estimate of heritability. In
particular, issues such as index construction, the detection of relevant environments,
the detection of heterogeneous subforms of a trait, and the detection of a single major
locus may be approached within the context of this model. Observations within intact
families are easily collected and studies may be replicated to test hypotheses generated
in an a posteriori manner. This is in contrast to separation data where observations
made on certain types of relatives, for example MZ twins reared apart, are rare and
essentially nonreplicable.

Furthermore, the fitting of a model to separation data requires the assumption of
common parameters in quite different rearing environments. If such assumptions are
not made, new parameters are introduced with each new type of observation and the
model is underdetermined. In contrast, the unitary model uses only one type of rearing
structure (viz., the intact family). For behavioral traits the event of being reared in a
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broken home or of being a twin may itself be an important factor in the development of
the trait. Accordingly, investigation of the transmission of the trait using the unitary
model provides a feasible and efficient resolution of the problem.

In the unitary model no assumption is made as to what proportion ofT is genetic, and
if h2 denotes the heritability of the trait, we know only that h2 S t2. Indeed, if the mode
of transmission of a trait is entirely cultural, we could have a large t2 with h2 = 0. Many
investigators make the a priori assumption that T = 1/2 and t2 = h2, or comment that
they are measuring t2, but still fix T at 1/2. Figures 3 and 4 have shown how erroneous
such assumptions may be. Our model provides an explicit test for the presence of
cultural inheritance (r / 1/2) and is a necessary first step in the analysis of any complex
developmental trait observed in intact nuclear families. Failure to allow for cultural
inheritance precludes its discovery and may lead to spurious results.

SUMMARY

A general linear model of familial resemblance is described which allows for cultural
transmission from parent to offspring, polygenic inheritance, phenotypic assortative
mating, common environment, maternal and paternal effects, and threshold effects.
Three special cases are described in detail which are particularly useful when data are
only available about a few classes of relatives reared in intact families. The cultural
model, the polygenic model, and the pseudopolygenic model share the common feature
that all factors which are transmitted from parent to offspring may be represented by
one parameter without any loss of information. We introduce a new model, termed the
unitary model, which includes these models and is appropriate when combined genetic
and cultural transmission is present and when data are available only for individuals
reared in intact nuclear families. The basic properties of these models are explored
using path analysis and computer simulation, including description of the relationship
between parameters under random and assortative mating, rate of approach to
equilibrium, and constraints on the magnitude of the parameters.

General formulae for familial resemblance in extended pedigrees are given for any
ancestor or descendant of either vertical or collateral relatives. Estimation procedures
are described and a FORTRAN program TAU, available upon request, is used to provide
maximum likelihood estimates of the parameters from reported correlations. A
powerful test for detecting the presence of cultural transmission is suggested and
applied to simulated data and to data sets reported by others for human stature, for
which cultural transmission is suggested. In addition, it is shown that there is no need
to postulate dominance to account for available data about height.
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