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A B S T R A C T

Human head hair shape, commonly classified as straight, wavy, curly or frizzy, is an attractive target for Forensic
DNA Phenotyping and other applications of human appearance prediction from DNA such as in paleogenetics.
The genetic knowledge underlying head hair shape variation was recently improved by the outcome of a series of
genome-wide association and replication studies in a total of 26,964 subjects, highlighting 12 loci of which 8
were novel and introducing a prediction model for Europeans based on 14 SNPs. In the present study, we
evaluated the capacity of DNA-based head hair shape prediction by investigating an extended set of candidate
SNP predictors and by using an independent set of samples for model validation. Prediction model building was

https://doi.org/10.1016/j.fsigen.2018.08.017
Received 26 February 2018; Received in revised form 18 July 2018; Accepted 27 August 2018

⁎ Corresponding author.
E-mail address: m.kayser@erasmusmc.nl (M. Kayser).

Forensic Science International: Genetics 37 (2018) 241–251

Available online 29 August 2018
1872-4973/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/18724973
https://www.elsevier.com/locate/fsigen
https://doi.org/10.1016/j.fsigen.2018.08.017
https://doi.org/10.1016/j.fsigen.2018.08.017
mailto:m.kayser@erasmusmc.nl
https://doi.org/10.1016/j.fsigen.2018.08.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsigen.2018.08.017&domain=pdf


carried out in 9674 subjects (6068 from Europe, 2899 from Asia and 707 of admixed European and Asian
ancestries), used previously, by considering a novel list of 90 candidate SNPs. For model validation, genotype
and phenotype data were newly collected in 2415 independent subjects (2138 Europeans and 277 non-
Europeans) by applying two targeted massively parallel sequencing platforms, Ion Torrent PGM and MiSeq, or
the MassARRAY platform. A binomial model was developed to predict straight vs. non-straight hair based on 32
SNPs from 26 genetic loci we identified as significantly contributing to the model. This model achieved pre-
diction accuracies, expressed as AUC, of 0.664 in Europeans and 0.789 in non-Europeans; the statistically sig-
nificant difference was explained mostly by the effect of one EDAR SNP in non-Europeans. Considering sex and
age, in addition to the SNPs, slightly and insignificantly increased the prediction accuracies (AUC of 0.680 and
0.800, respectively). Based on the sample size and candidate DNA markers investigated, this study provides the
most robust, validated, and accurate statistical prediction models and SNP predictor marker sets currently
available for predicting head hair shape from DNA, providing the next step towards broadening Forensic DNA
Phenotyping beyond pigmentation traits.

1. Introduction

Predictive DNA analysis of externally visible characteristics (EVCs),
also referred to as Forensic DNA Phenotyping (FDP), is a fast growing
area in forensic genetics. FDP uses DNA evidence to characterize un-
known donors of crime scene traces who cannot be identified with
standard DNA profiling, to allow focussed investigation aiming to find
them [1,2]. Outside the forensic field, DNA prediction is applied in
anthropology and paleogenetics to reconstruct the appearance of de-
ceased persons from (ancient) DNA analysis of (old) human remains
[3,4]. However, EVCs for which both, statistical models providing
reasonably high accuracies as well as validated genotyping methods
reliably generating data from challenging DNA samples have been es-
tablished, are currently restricted to the three pigmentation traits, eye,
hair and skin colour [5–23].

The recent years have witnessed improvement in the genetic
knowledge of human appearance for several other EVCs, most notably:
body height [24–26], head hair loss in men [27,28], head hair shape
[29,30], and facial shape [31–34]. For other EVCs, the first genes have
been recently identified; these include facial hair and hair greying [29],
and ear morphology [35,36]. Moreover, for two EVCs, DNA-based
prediction models with improved accuracy relative to earlier models
[37–39] were reported last year, i.e. for hair loss in men [28] and for
head hair shape [30].

For human head hair shape, a series of genome-wide association
studies (GWASs) and replication studies in a total of 26,964 subjects
from Europe and other regions recently highlighted 12 genetic loci of
which 8 were not previously known to be involved [30]. In this pre-
vious study, a prediction model based on 14 SNPs achieved prediction
accuracy expressed as the area under the receiver operating char-
acteristic curve (AUC), of 0.66 in 6068 Europeans, and 0.64 in 977
independent Europeans [30]. These results represented improved ac-
curacy relative to the first prediction model for hair shape that was
based on 3 SNPs in 528 Europeans (AUC 0.622) reported previously by
the EUROFORGEN-NoE Consortium [37].

In the present study of the EUROFORGEN-NoE Consortium and
partners, head hair shape prediction capacity was further evaluated
with data from 9674 European and non-European donors used
previously [30], and by considering 90 SNPs as candidate predictors
in the model building procedure. Moreover, an independent set of
2415 Europeans and non-Europeans, for which genotype and phe-
notype data were newly collected, was used for subsequent model
validation to derive prediction accuracy estimates. From this da-
taset and with suitable statistical methods, the best model for the
prediction of head hair shape, achieving maximal accuracy with a
minimal number of SNPs, was established and compared to

previously reported models.

2. Materials and methods

2.1. Collection of samples for genotyping used for model validation

A total of 2415 samples were collected by 10 participants of the
EUROFORGEN-NoE consortium and one additional partner from the
USA (Table 1) for genotyping of 90 hair shape candidate SNPs and for
subsequent prediction model validation. All samples were obtained
with informed consent. Samples were collected from random in-
dividuals by a medical doctor during clinical examination or by a re-
searcher.

Phenotyping was performed through direct inspection by a derma-
tology specialist combined with the interview, by interview combined
with the questionnaire or through evaluation of high quality photo-
graphs performed by independent researchers (Table 1). We made an
effort to collect detailed information on hair shape status by applying a
specific phenotypic regime, marking an advantage of the current re-
search over our previous study [30]. If possible, samples were pheno-
typed according to a 6-point scale proposed by Eriksson et al. (Sup-
plementary Text S5 Fig. 1 in [40]), where 0 refers to stick straight, 1 –
slightly wavy, 2 – wavy, 3 – big curls, 4 – small curls and 5 – very tight
curls. In other cases, samples were categorized to 3 categories only
including straight, wavy and curly hair. For the purpose of statistical
calculations, a simplified classification was used for all the samples,
where stick straight and straight accounted for ‘straight’ hair category,
slightly wavy and wavy were treated as the single category ‘wavy’
whereas big curls, small curls and very tight curls were incorporated
into the category ‘curly’. Wavy and curly categories were pooled for
some analyses.

The majority of the study participants were of European ancestry
(N = 2138), while the remaining individuals (N = 277) were of non-
European ancestry (Table 2). For a subset of samples with uncertain
bio-geographic ancestry, the program ADMIXTURE [41] was used to
infer the ancestry proportions of these individuals. Non-European
samples consisted of samples assigned to one of the six following bio-
geographic ancestries: European / non-European admixed (admixed-
EUR), Africans (AFR), admixed Americans (AMR), Middle East, South
Asians (SAS), and East Asians (EAS). This independent set of 2415
samples was used as a model validation set.

2.2. Selection of SNPs used for model building

The study involved analysis of 90 candidate SNPs for human head
hair shape, selected from various sources to minimize the chance of
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missing important markers for the final prediction model
(Supplementary Table 1). The core 35 SNPs from a large GWAS and
meta-analysis reported recently, were selected from the initial list of
706 SNPs with P values < 5 × 10−8 based on LD analysis where SNPs
with independent effects were retained in each region [30] (Supple-
mentary Fig. 1). An additional set of 55 SNPs was chosen by a thorough
literature search performed in parallel to the above-mentioned GWAS.
Criteria to select SNPs from literature were: i) genes previously asso-
ciated with hair shape (TCHH, EDAR, WNT10A, FRAS1, OFCC1, TRAF2,
PRSS53, PADI3, LOC105373470, S100A11, LCE3E, LOC391485)
[29,37,40,42–44]; ii) genes potentially involved in human hair mor-
phogenesis and growth (VDR) [45,46]; iii) genes with expression pat-
terns in the hair follicle (IGFBP5) [47]; iv) genes involved in protein-
protein interactions reported to have a role in the hair structure
moulding (RPTN) [48]; v) genes previously associated with hair loss in
men (WNT10A, TARDBP, SUCNR1, EBF1, HDAC9) [38,49], as a corre-
lation between the genetics of hair morphology and hair loss has been
recently suggested [49]; and vi) genes associated with pathological
conditions of human hair structure (KRT71, KRT74, LIPH, P2RY5)
[50–53]. In cases where no candidate SNPs within the selected genes
have been suggested in the literature, SNP selection was performed
using frequency information from The 1000 Genomes Project (http://
grch37.ensembl.org/Homo_sapiens/Info/Index) [54]. In such cases,
SNPs showing the highest allele frequency differences between EUR and
AFR and/or between EUR and EAS, i.e. population groups with large
differences in hair shape variation, were selected as the final candi-
dates. The complete list of the 90 SNPs used is provided in Supple-
mentary Table 1.

2.3. DNA extraction and multiplex SNP genotyping

Samples in the form of buccal swabs, saliva or whole blood were
collected, DNA-extracted and SNP-genotyped by the participating la-
boratories (Table 1). Different methods for DNA extraction were used
including: PrepFiler™ Forensic DNA Extraction Kit (ThermoFisher Sci-
entific), QIAamp DNA Mini Kit (Qiagen), QIAamp DNA Blood Mini Kit
(Qiagen), Chelex™ extraction, Gentra Puregene Buccal Cell Kit
(Qiagen), Qiagen EZ1 DNA Investigator kit (Qiagen) and in-house
salting-out method. Two targeted massively parallel sequencing plat-
forms, that is Ion Torrent Personal Genome Machine (Ion Torrent PGM)
(Thermo Fisher Scientific, Waltham, MA USA) and MiSeq (Illumina, San
Diego, CA USA), as well as MassARRAY platform (Agena Bioscience)
[55] were applied for multiplex genotyping of the 90 SNPs, depending
on the participating laboratory (Table 1). Missing SNP genotypes were
at the level of 3.8% and have been predicted using the mean substitu-
tion method implemented in R version 3.2.3.

2.3.1. Multiplex genotyping using Ion Torrent PGM
Samples were genotyped using Ion AmpliSeq™ Technology and the

Ion Torrent Personal Genome Machine (PGM) system (Thermo Fisher
Scientific). Primers for 96-SNP panel in one primer pool, including 90
candidate hair shape SNPs and 6 additional SNPs (IrisPlex SNPs:
rs12913832, rs1800407, rs12896399, rs16891982, rs1393350,
rs12203592 [5]) used for the purpose of technology validation, were
designed with support of Thermo Fisher Scientific. DNA (1–5 ng) was
amplified in 10 μL of PCR reaction and using one Ion AmpliSeq™ primer
pool (2x). DNA libraries were prepared using the Ion AmpliSeq™ Li-
brary Kit 2.0, quantified with the Agilent High Sensitivity DNA Kit
(Agilent Technologies) or Qubit dsDNA High-Sensitivity Assay Kit
(Thermo Fisher Scientific), and normalized to 100 pM. DNA libraries for
32–40 samples were combined in equal ratios and subjected to template
preparation with the Ion PGM HiQ OT2 Kit and the Ion OneTouch 2
System (Thermo Fisher Scientific). Alternatively, template preparation
was conducted with Ion PGM™ IC 200 Kit using the Ion Chef System
(Thermo Fisher Scientific). Templating was performed according to
manufacturer’s directions with the exception of the 100 pM DNA libraryTa
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volume that was increased from 2 to 5 μL. Sequencing was conducted
with the Ion PGM Hi-Q Sequencing Kit using Ion 318 Chips v2 or Ion
PGM™ IC 200 Kit (Thermo Fisher Scientific), 200 bp read chemistry and
520 flows per run. Raw data were analysed using Torrent Server v5.0.5
and DNA SNP alleles were called using variantCaller v5.0.4.0 (Thermo
Fisher Scientific). For quality assurance, genotypes of 12 out of the 96
SNPs analysed (rs17646946, rs11803731, rs4845418, rs12130862,
rs7349332, rs1268789, rs5919324, rs1998076, rs929626, rs12565727,
rs756853, and rs4679955) were compared with genotype data pre-
viously obtained with an alternative technology, that is primer exten-
sion minisequencing based on SNaPshot chemistry (Thermo Fisher
Scientific) in 491 overlapping samples [37]. All 12 × 491 genotypes
were consistent between these two technologies.

2.3.2. Multiplex genotyping using Illumina MiSeq
Samples were genotyped using Illumina MiSeq Reagent Kit v2

Technology and MiSeq FGx System in RUO mode (Illumina). Primers
(including adapter sequences) for 91 SNPs in 3 separate primer pools
(90 candidate hair shape SNPs and 1 additional SNP, that is rs12913832
used for control purposes) were designed in house. DNA (2–20 ng/
sample) was amplified in 10 or 20 μL PCR reactions using three separate
reactions and the Kapa Multiplex PCR Mix (Kapa Biosystems). PCR
products from the three reactions were cleaned (using an in house bead
protocol). The cleaned products were then quantified using Agilent
High Sensitivity DNA Kit (Agilent Technologies) or Qubit dsDNA High-
Sensitivity Assay Kit (Thermo Fisher Scientific), normalized and pooled
into a new plate where they were indexed. Additional separate steps
were performed by KCL, these include library preparation performed
using the KAPA Hyper Prep kit for Illumina platforms (Roche) at half
volume with 9 library amplification cycles, Illumina® TruSeq™ adapters
were added during the library preparation stage and libraries were
quantified with the Kapa Library Quantification kit for Illumina plat-
forms (Roche). Finally, a DNA library of all individuals was pooled,
normalized to 2 nM (IUPUI) / 4 nM (KCL) and sequenced using the
MiSeq 300-cycle v2 reagent kit (Illumina). Raw data was aligned to a
custom-made fasta file containing the reference sequences for all am-
plicons using the mem algorithm within BWA (http://bio-bwa.
sourceforge.net/) specifying a minimum seed length of 40bp [56].
The sequence alignment/map (SAM) file was converted using SAMtools
into a BAM file [57]. Variant calling was made with GATK's Unified
Genotyper (v 2.8-1) using default parameters with no down-sampling
[58]. Alternatively, data were analyzed using FDSTools software
(https://pypi.python.org/pypi/fdstools/).

2.3.3. Multipex genotyping using MassARRAY® platform
Genotyping of 84 SNPs was conducted by the CEGEN-PRB2 USC

node using the iPlex® Gold chemistry and MassARRAY platform, ac-
cording to manufacturer’s instructions (Agena Bioscience, San Diego,
EEUU). Six SNPs were excluded due to technical problems (rs4480966,

rs78544048, rs72696940, rs11575161, rs11204925, rs6658216).
Genotyping assays were designed using the Agena Bioscience
MassARRAY Assay Designer 4.1 software. 84 SNPs were genotyped in 4
assays. PCR reactions were set up in a 5 μl volume and contained 20 ng
of template DNA, 1 × PCR buffer, 2 mM MgCl2, 500 μM dNTPs and 1
U/reaction of PCR enzyme. A pool of PCR primers was made at a final
concentration of each primer of 100 nM (IDT, Integrated DNA tech-
nologies, Newark, EEUU). The thermal cycling conditions for the re-
action consisted of an initial denaturation step at 95 °C for 2 min, fol-
lowed by 45 cycles of 95 °C for 30 s, 56 °C for 30 s and 72 °C for 1 min,
followed by a final extension step of 72 °C for 5 min. PCR products were
treated with 1.7 U shrimp alkaline phosphatase by incubation at 37 °C
for 40 min, followed by enzyme inactivation by heating at 85 °C for
5 min to neutralize unincorporated dNTPs. The iPLEX GOLD reactions
were set up in a final 9 μl volume and contained 0.222x iPLEX buffer
Plus, 0.222x iPLEX Termination mix and 1.35 U/reaction iPLEX en-
zyme. An extension primer mix was made to give a final concentration
of each primer between 0.52 μM and 1.57 μM (IDT, Integrated DNA
technologies, Newark, EEUU). The thermal cycling conditions for the
reaction included an initial denaturation step at 95 °C for 30 s, followed
by 40 cycles of 95 °C for 5 s, with an internal 5 cycles loop at 52 °C for
5 s and 80 °C for 5 s, followed by a final extension step of 72 °C for
3 min. The next step is to desalt the iPLEX Gold reaction products with
Clean Resin following the manufacturer’s protocol. The desalted pro-
ducts were dispensed onto a 384 Spectrochip II using an RS1000
Nanodispenser and spectra were acquired using the MA4 mass spec-
trometer, followed by manual inspection of spectra. Samples were
genotyped analysed with Typer 4.0.163 software using standard SNP
genotyping parameters. All assays were performed in 384-well plates,
including negative controls and a trio of Coriell samples (NA10860,
NA10861 and NA11984) for quality control. 10% random samples were
tested in duplicate and the reproducibility was 100%.

2.4. Multinomial and binomial logistic regression analyses

The multinomial logistic regression modelling specifications were as
following. Consider hair shape, y, to be three categories straight, wavy,
and curly, which are determined by the genotype, x, of k SNPs, where x
represents the number of minor alleles per k SNP. Let , ,1 2 and 3
denote the probability of categories straight, wavy, and curly respec-
tively. The multinomial logistic regression can be written as

= … = = +
=

logit y straightx x x(Pr( )) ln ( )k
i

k

i i1
1

3
1

1
1

= … = = +
=

logit y wavyx x x(Pr( )) ln ( )k
i

k

i i1
2

3
2

1
2

where α and β can be derived in the training set. Hair shape of each

Table 2
Characteristic of samples employed for genotyping and used as model validation set.

Study samples N [%] Age

Total Straight Wavy Curly Female Mean SD

European EUR 2138 870 [40.7] 996 [46.6] 272 [12.7] 1271 [59.4] 36.5 17.8
non-European Admixed-EUR 61 12 [19.7] 33 [54.1] 16 [26.2] 33 [54.1] 25.0 7.5

AFR 39 0 [0.0] 2 [5.1] 37 [94.9] 25 [64.1] 23.2 6.2
AMR 51 15 [29.4] 28 [54.9] 8 [15.7] 37 [72.5] 23.4 9.3
Middle East 34 6 [17.6] 22 [64.7] 6 [17.6] 18 [52.9] 34.1 10.5
SAS 50 11 [22.0] 29 [58.0] 10 [20.0] 30 [60.0] 20.6 2.7
EAS 42 32 [76.2] 9 [21.4] 1 [2.4] 31 [73.8] 22.9 7.1
Total 277 76 [27.4] 123 [44.4] 78 [28.2] 174 [62.8] 24.5 8.4

ALL 2415 946 [39.2] 1119 [46.3] 350 [14.5] 1445 [59.8] 35.2 17.4

Admixed-EUR: European/non-European admixed, AFR: Africans, AMR: Admixed Americans, SAS: South Asians, EAS: East Asians.
SD, Standard Deviation.
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individual in the testing set can be probabilistically predicted based on
his or her genotypes and the derived α and β,
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Categorically, the shape category with the max ( , , )1 2 3 was con-
sidered as the predicted shape type.

The binomial logistic regression modelling specifications were as
following. Consider hair shape, y, to be two categories straight and non-
straight, which are determined by the genotype, x, of k SNPs, where x
represents the number of minor alleles per k SNP. Let denote the
probability of straight, and 1 is the probability of non-straight. The
binomial logistic regression can be written as

= … = = +
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where α and β can be derived in the training set. Hair shape of each
individual in the testing set can be probabilistically predicted based on
his or her genotypes and the derived αand β,
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Categorically, the shape category with the max (p,1−p) was con-
sidered as the predicted shape type.

2.5. Prediction marker selection, prediction model building and validation

Fig. 1 shows the study design including the sample sets used.
Starting with candidate SNPs from the literature, we additionally con-
sidered the outcomes from a GWAS meta-analysis previously conducted

in three European cohorts including QIMR (Queensland Institute of
Medical Research study), RS (Rotterdam Study), and TwinsUK referred
to as META:Discovery in our previous publication [30], which con-
sidered a total of 16763 subjects. From the list of 90 candidate SNPs, 60
(66.7%) showed nominal-significant association (P value < 0.05) in
this dataset, of which 45 (75%) displayed genome-wide significant as-
sociation (P value < 5 × 10−8). From a set of 60 SNPs showing nom-
inal-significant association, a minimal set of SNP predictors for max-
imizing the prediction accuracy was chosen using step-wise regression
according to the Akaike information criterion (AIC) in a total of 9674
subjects. This included 6068 Europeans from QIMR, 2899 Chinese from
TZL (Chinese Taizhou Longitudinal) and 707 Xinjiang Uyghurs known
to be of 50% European and 50% East Asian admixed ancestry [59,60]
from our previous study [30], where further details on these cohorts
can be found. Selection of SNP predictors was performed on hair shape
that was classified into 2 categories: straight vs. non-straight, using
binomial logistic regression (BLR). Additionally, 3-category classifica-
tion as straight vs. wavy vs. curly has been applied for marker selection
using multinomial logistic regression (MLR). Final prediction models
were built using data from QIMR, TZL and UYG studies (model building
set).

The developed prediction models were verified for their accuracy
using a dataset of 2415 independent samples described in Section 2.1;
this dataset was used as a model validation set. Prediction accuracy was
evaluated by estimating several parameters including AUC, sensitivity,
specificity, negative prediction value (NPV) and positive prediction
value (PPV). Sensitivities and specificities, PPVs and NPVs were cal-
culated using confusion matrices considering the predicted prob-
ability > 0.5 as the predicted hair shape type. Prediction accuracy
parameters were estimated for all samples included in the model vali-
dation set, considering all samples together as well as for the European
and non-European samples separately. Statistical analyses and result
visualization were conducted in R version 3.2.3.

2.6. Significance testing

To test if different logistic models consisting of different marker sets

Fig. 1. Overview of the applied study design assuring independent datasets being used for model building and model validation, to avoid overestimation of model
outcomes.
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may provide statistically different prediction results, we used the stu-
dent’s t-test to compare the absolute values of the residuals of the
predicted probabilities of having straight hair. The Model 1 consisted of
3 SNPs [37], the Model 2 consisted of 14 SNPs [30], and the Model 3
consisted of 32 SNPs from the current study. We trained Model 1 and
Model 3 in 6068 European subjects from QIMR together with 3606
Asian subjects from UYG and TZL, whereas Model 2 was trained in 6068
European subjects from QIMR. We then applied these models to 2415
EUROFORGEN-NoE subjects and obtained the predicted probabilities of
having straight hair for all the tested subjects.

To test if there is a statistical difference in the percentage of var-
iation in head hair shape explained by EDAR and by TCHH, we derived
the Nagelkerke’s pseudo R2 from logistic models (straight vs. non-
straight) separately from EDAR and TCHH, in the combined samples of
TZL, UYG, and QIMR. The ANOVA was used to test if the R2 values from
different models are statistically different. All statistical analyses were
conducted in R version 3.3.1 unless otherwise specified.

3. Results and discussion

3.1. Selection of SNP predictors and prediction model building

3.1.1. BLR model building for predicting straight vs. non-straight hair
The BLR analysis identified 32 significantly contributing SNPs from

26 genetic loci given a 2-category classification (straight vs. non-
straight hair). In our previous study [30], 14 SNPs from 14 genes (13
SNPs showing genome-wide significant association in the META:-
Discovery) were used for prediction modelling. Eleven of them were
included in the current BLR model. The remaining 3 SNPs were re-
placed with substitute LD SNPs due to technical difficulties (Table 3).
The final BLR model further included additional 9 SNPs selected from
our previous GWA study [30] and 9 SNPs selected from the literature
(see Table 3). Five of those have been directly associated with hair
morphology in several previous studies, including rs3827760 in EDAR,
rs11803731 in TCHH, rs4672907 in LOC391485, rs3007671 in
NBPF18 P/S100A11 and rs436034 in FRAS1 [29,37,40,42,43,59,61].

Table 3
SNPs with their prediction rank from the BLR model to predict straight vs. non-straight hair and the MLR model to predict straight vs. wavy vs. curly hair,
respectively in the model building set (N = 9674).

No SNP ID Gene Chromosomal position
GRCh37

GWAS-SNP
lista

Literature Source Association in META:Discoveryc AIC-based prediction rankd

P value BLR MLR

1 rs3827760e EDARe 2:109513601 [29,59,61] – 1 1
2 rs11803731 TCHH 1:152083325 [37,40,42] 2.30 × 10−82 2 2
3 rs1268789 FRAS1 4:79280693 Yesb [30,37,42] 4.85 × 10−15 3 4
4 rs80293268 ERRFI1/SLC45A1 1:8207579 Yesb [30] 3.66 × 10−9 4 5
5 rs310642 PTK6 20:62161998 Yesb [30] 3.74 × 10−10 5 6
6 rs1556547 OFCC1 6:10270377 Yesb [30,40] 6.82 × 10−7 6 8
7 rs143290289 KRTAP2-3 17:39216977 Yesb [30] 3.71 × 10−8 7 9
8 rs11170678 HOXC13 12:54154174 Yesb [30] 1.62 × 10−11 8 10
9 rs74333950 WNT10A 2:219746292 Yesb [30,42] 3.98 × 10−15 9 7
10 rs10783518 KRT71 12:52938497 [52,53] 2.67 × 10−4 10 13
11 rs11203346 PADI3 1:17600822 Yesb [30] 4.58 × 10−8 11 12
12 rs1999874 LINC00708/GATA3 10:8353101 Yesb [29,30] 3.72 × 10−9 12 11
13 rs6658216 PEX14 1:10561604 Yesb [30] 3.02 × 10−9 13 14
14 rs551936 LIPH 3:185263467 [51] 3.81 × 10−3 14 17
15 rs12997742 TGFA 2:70786598 Yesb [30] 9.28 × 10−9 15 15
16 rs585583 KRT71 12:52929370 [52,53,63] 2.65 × 10−3 16 18
17 rs74868796 HRNR 1:152191051 Yes [30] 3.58 × 10−25 17 20
18 rs4845779 1q21.3 1:152479176 Yes [30] 4.56 × 10−19 18 19
19 rs10788826 1q21.3 1:152161735 Yes [30] 2.14 × 10−8 19 16
20 rs2219783 LGR4 11:27411298 Yesb [30] 3.84 × 10−8 20 21
21 rs9989836 2p14 2:70342727 Yes [30] 4.27 × 10−8 21 27
22 rs4672907 LOC391485 2:219821169 [40,42] 5.38 × 10−10 22 22
23 rs140371183 1q21.3 1:152098428 Yes [30] 1.60 × 10−10 23 29
24 rs2489250 10p14 10:8274867 Yes [30] 6.99 × 10−9 24 23
25 rs17646946 TCHHL1 1:152062767 Yesb [30,40,42] 1.78 × 1−84 25 31
26 rs3001978 RPTN 1:152126467 [40,48,63] 1.00 × 10−8 26 –
27 rs3007671 NBPF18 P/S100A11 1:151999347 [40,42] 4.94 × 10−38 27 –
28 rs436034 FRAS1 4:79256036 [42] 3.74 × 10−10 28 –
29 rs77157375 LINC01494 2:219779911 Yes [30] 4.11 × 10−15 29 28
30 rs12123907 1q21.3 1:152467751 Yes [30] 1.24 × 10−8 30 –
31 rs151069963 1q21.3 1:152004241 Yes [30] 1.09 × 10−9 31 –
32 rs499697 LCE3E 1:152493154 Yesb [30,40,42] 2.57 × 10−17 32 33
33 rs11150606 PRSS53 16:31099011 [29] 3.67 × 10−3 – 3
34 rs72696935 TCHH 1:152085951 Yes [30] 2.25 × 10−11 – 24
35 rs61816764 FLG-AS1 1:152308971 Yes [30] 1.27 × 10−10 – 25
36 rs2784081 TRAF2 9:139791891 [44] 4.67 × 10−2 – 26
37 rs114410520 LOC105371441 1:151972609 Yes [30] 4.17 × 10−10 – 30
38 rs11582331 RPTN 1:152134136 [40,48,63] 3.10 × 10−5 – 32

BLR, binomial logistic regression; MLR, multinomial logistic regression.
a SNPs selected from our recently published large GWAS and meta-analysis [30].
b SNPs included in a 14-SNP prediction model reported in [30]; for 3 SNPs (rs506863 in FRAS1, rs11078976 in KRTAP, and rs2847344 in PEX14) substitute LD

SNPs (rs1268789 in FRAS1, rs143290289 in KRTAP2-3 and rs6658216 in PEX14) were used due to technical difficulties.
c From GWAS-meta-analysis of 16763 Europeans described in [30].
d Using 9674 Europeans and East Asians (6068 QIMR, 2899 TZL, 707 UYG) from the model building set.
e rs3827760 was not covered by the META:Discovery because of European subjects used in this GWAS.
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SNP rs3827760 in EDAR was not tested for association in the previous
META:Discovery as this SNP is almost monomorphic in Europeans and
therefore did not pass the quality control for Europeans in the GWAS
analysis [30]. However, due to its known impact on hair morphology
determination in East Asians [43,59,61], and its recently reported as-
sociation in admixed Latin Americans [29], this SNP was also included
in the prediction modelling. As evident from Table 3, this SNP ranks at
the first position in the BLR analysis due to the use of East Asians (TZL,
UYG) in addition to Europeans (QIMR), in the marker selection dataset.
While EDAR is considered to be the most important genetic determinant
of straight hair in East Asians [43,59,61], TCHH is believed to be a
major straight hair gene in Europeans [37,40,42]. The SNP rs11803731
TCHH is suggested to be the most likely functional variant [42] and
ranks at 2nd place in the current BLR analysis (Table 3).

Notably, the step-wise regression analysis leading to the final BLR
model also highlighted 4 SNPs from 3 new candidate genes, RPTN,
KRT71 and LIPH [40,51,53]. RPTN, similar to TCHH, is a member of the
‘fused’ gene family that is localized in the epidermal differentiation
complex (EDC) on chromosome 1. Proteins encoded by the RPTN and
TCHH genes are implicated in strong interaction at the biological level
during formation of cornified cell envelope (CE) known to play a crucial
role in mechanical protection of the hair follicle [40,48,62]. Recently,
interaction between RPTN and TCHH has been confirmed at the sta-
tistical level and shown to facilitate straight hair formation in Eur-
opeans [63]. The SNP rs3001978 in RPTN achieved significance at the
level of P value = 1.00 × 10−8 in the previous META:Discovery GWAS
[30] and is ranked 26th in the current BLR model. Genes KRT71 and
LIPH were previously associated with pathological hair structure like
woolly hair (WH, characterized by abnormally tightly curled hair)
[51,53]. Possible involvement of genes responsible for abnormal hair
structure in the determination of natural variation of hair morphology
has been suggested previously [52,63]. Two SNPs from the KRT71 gene,
rs10783518 (10th) and rs585583 (16th) showed significant association
at P value = 2.67 × 10-4 and P value = 2.65 × 10-3 in the previous
META:Discovery GWAS analysis [30].

SNPs in the novel genes selected from the literature have been
chosen using frequency information from The 1000 Genomes Project.
Therefore, it should be pointed out that the selected polymorphisms
may not have functional relevance. Future studies, including fine
mapping of the novel genes and some functional analyses may reveal
whether particular DNA variants are causal or are just in LD with
functional SNPs. However, regardless to the functional meaning of the
variants, they can still provide information on the phenotype through
LD phenomenon and be useful in prediction modelling, as demonstrated
here.

3.1.2. MLR model building for predicting straight vs. wavy vs. curly hair
Previous studies have evaluated head hair shape predictability at

the level of straight vs. non-straight hair only [30,37]. In the present
study, we additionally took a step forward and assessed hair shape
predictability considering a 3-category classification (straight vs. wavy
vs. curly hair) using MLR. The 3-category classification MLR approach
highlighted 33 SNPs from 29 genetic loci, of which 27 overlapped with
the 32 SNPs identified in the BLR model (Table 3). Similar to the BLR
analysis, the first two positions in the MLR-based ranking approach
were rs3827760 in EDAR and rs11803731 in TCHH, as may be ex-
pected. The rank 3 SNP, however, was rs11150606 in PRSS53, which
was not selected in the BLR analysis. PRSS53 encodes Protease Serine
S1 family member 53. This SNP was identified by a GWAS in admixed
Latin Americans [29], and replicated in our recent GWA study at a
nominal significance level [30]. In addition to rs11150606, there were
5 more SNPs in the MLR model that were not included in the BLR model
(Table 3).

3.2. Validating the prediction models and estimating prediction accuracy for
head hair shape

The BLR and MLR models built in the 9674 Europeans, Asians, and
admixed European-Asians were subjected to model validation using an
independent set of 2415 European and non-European samples that were
not previously used for model building and also not for prior marker
discovery. It is generally recommended in genetic prediction studies to
use different datasets for marker discovery, model building, and model
validation, respectively, which we achieved with the current study
[64,65].

3.2.1. BLR model validation for predicting straight vs. non-straight hair
The binomial model based on 32 SNPs was found to predict straight

vs. non-straight hair with AUC = 0.679 in the entire model validation
set (N = 2415). The achieved sensitivity was 0.840, which means that
out of 946 individuals of straight hair 795 were predicted correctly as
being straight haired. Considerably lower level of prediction specificity
compared to sensitivity was achieved at 0.364 which shows a reduced
ability of the model to detect curly/wavy hair; out of 1469 individuals
of wavy/curly hair 935 of them were incorrectly classified as straight
haired. The positive predictive (PPV) and the negative predictive (NPV)
values were 0.460 and 0.780, respectively. PPV value of 0.460 means
that in all cases in which hair shape was classified as straight, for 46%
of individuals prediction result was correct. NPV value at the level of
0.780 means that out of all non-straight hair classifications in 78% of
them prediction was correct and individuals indeed had non-straight
hair.

When performing prediction model validation by considering bio-
geographic ancestry of the samples used, we obtained an AUC value for
the European sub-sample set (N = 2138) at 0.664, and a statistically
significantly (P value = 0.02) higher AUC value for non-Europeans
(N = 277) at 0.789 (Table 4). Sensitivity was rather similar for the
European and non-European sample sets. Out of 870 Europeans with
straight hair, 732 (sensitivity of 0.841) were correctly predicted as
straight haired, and 63 out of the 76 straight-haired non-Europeans
(0.829) were correctly predicted as such. In contrast, specificity was
considerably higher in the non-Europeans relative to the Europeans
(Table 4). Out of the 1268 wavy or curly haired Europeans and the 201
non-Europeans, 434 (specificity of 0.342) and 100 (0.498) were cor-
rectly predicted as non-straight haired (Table 4).

The increase of prediction accuracy estimates in the non-Europeans,
which is driven by an increased specificity of straight hair prediction, is
likely caused by the effect of the EDAR SNP in the BLR model. Aiming to
get more insights, we conducted prediction analyses in non-Europeans
at the level of continental groups. Although these results should be
taken with considerable caution because of the low number of samples
per ancestry group, they suggest that the improved prediction accuracy
obtained in the non-Europeans originates mostly from the East Asians
(EAS) (AUC = 0.694), Admixed Americans (AMR) (AUC = 0.750) and
the Middle Easterners (AUC = 0.833) for which AUCs were increased.
In contrast, the AUC values were considerably lower for all other an-
cestry groups (Supplementary Table 2). Notably, AUC values for EAS,
AMR and Middle East decreased substantially when the EDAR SNP
rs3827760 was excluded from the model (0.581, 0.687 and 0.589, re-
spectively) (Supplementary Table 2), demonstrating the EDAR SNP ef-
fect on hair shape prediction in these ancestry groups. The EDAR gene
encodes a member of the tumour necrosis factor receptor family and
was associated with several phenotypes of epidermal appendages in-
cluding ectodermal dysplasia, dental morphology and sweat gland
density [66,67]. EDAR rs3827760, used in the prediction model, is a
coding SNP showing one of the strongest signals of natural selection in
human genomes. This SNP has been previously associated with thick
and straight hair in East Asians [43,59,61]. The derived G allele, which
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drives the noted association, is observed with a high frequency in East
Asians and Native Americans, while in Europeans and Africans
rs3827760 is almost monomorphic for the ancestral A allele [43].

These as well as previous findings [42,43,59,61] suggest different
mechanisms of straight hair in Europeans and Asians, at least with re-
gard to the EDAR effect. The odds ratio for EDAR rs3827760 in East
Asians was previously reported at the level of about 2–2.5 in two in-
dependent studies, explaining 2–4% of the total variation in hair
structure in these datasets [43,59]. Therefore, the size of the EDAR gene
effect in East Asians seems to correspond with the effect of TCHH in
Europeans, although a stronger effect of EDAR compared to TCHH was
recently suggested by analysis of Uyghur samples, a population sug-
gested be of 50% European and 50% East Asian admixed ancestry [59].
When looking at the samples used for prediction model building in the
current study, rs3827760 in EDAR explains 16.2% (Nagelkerke R2) of
the variation in hair shape in TZL, UYG and QIMR, while significantly
lower (P value = 7.02 × 10−293) variation is explained by TCHH at
0.3%. Although the EDAR gene seems to be a major hair morphology
gene in East Asians, it does not explain the full heritability of hair shape
variation in this ethnic group, confirming that the biology of Asian hair
shape is more complex. Although improvement of hair shape prediction
after EDAR inclusion was expected in the AMR group (with 40% fre-
quency of the G allele), given their partial ancestry from East Asia based
on their initial migration history, we also observed an increased AUC
value in Middle East, where only 3% of individuals were found to carry
the G allele. However, in this ancestry group, wavy and curly hair exists
almost exclusively, which may be associated with the lack of the G
allele in EDAR rs3827760. Additional studies are needed to evaluate the
role of EDAR in different non-European ancestry groups.

When the distribution of the obtained non-straight hair probabilities
was analysed, the results were in general agreement with general
knowledge on the global distribution of hair shape variation i.e., de-
creasing prevalence of wavy and curly hair from Africans through
Europeans towards Asians (Supplementary Fig. 2). The highest prob-
ability values for non-straight hair were seen for Africans and the
lowest for East Asians with Europeans, South Asians and Native
Americans in between. Moreover, the degree of variation in probability
values was the highest in Europeans (Var = 0.024) and Africans
(Var = 0.019) and lowest in East Asians (Var = 0.014) (Supplementary
Fig. 2). This outcome is concordant with the results obtained in our
previous study, where 2504 worldwide subjects from the 1000-
Genomes Project panel were analysed using the previous 14-SNP model
[30].

As illustrated in Fig. 2 and Supplementary Table 3, the individual
contributions of the 32 SNPs used in the BLR model towards the overall
prediction accuracy substantially differed between the markers. A
strong effect of the EDAR gene in non-Europeans, but weak on Eur-
opeans, was noted. In particular, the single EDAR variant (rs3827760)
provides a high degree of accuracy for straight vs. non-straight hair
prediction with AUC = 0.742 in non-Europeans, but only 0.505 in
Europeans. The highest contribution to the accuracy of hair structure
prediction in Europeans came from three SNPs that are rs11803731 in
TCHH (AUC change 0.089), rs1268789 in FRAS1 (AUC change 0.02)

and rs80293268 in ERRFI1/SLC45A1 (AUC change 0.016). Besides the
high contribution of the EDAR SNP, noticeable impact on the AUC value
(AUC increase > 0.005) was provided by rs11803731 in TCHH,
rs1268789 in FRAS1, rs310642 in PTK6 and rs2219783 in LGR4, re-
spectively, in non-Europeans. Among loci with the largest impact on
AUC, three of them ERRFI1/SLC45A1, PTK6 and LGR4 were newly
discovered in our recent GWAS [30]. The input of the remaining mar-
kers was found to be considerably lower (Fig. 2 and Supplementary
Table 3).

3.2.2. Impact of age and sex on straight vs. non-straight hair prediction
In a previous study conducted on > 1600 individuals of European

ancestry, males were found to be ∼5% more likely to have straight hair
than females, and additionally, curliness of hair in males was reported
to increase slightly with age [42]. In contrast, no significant effect from
age and sex on hair morphology was found in previous work performed
by the EUROFORGEN-NoE Consortium, but the number of samples
analysed was considerably smaller (N = 528) [37]. We therefore eval-
uated age and sex as additional factors in the BLR modelling. As illu-
strated in Table 4, sex and age had positive but slight effects on straight
vs. non-straight hair prediction accuracy. AUC increased, but statisti-
cally insignificantly, from 0.679 to 0.695 (P value = 0.29) in the total
model validation set, from 0.664 to 0.680 (P value = 0.36) in the
European and from 0.789 to 0.800 (P value = 0.58) in the non-Eur-
opean subsets when considering age and sex. When testing for the

Table 4
Accuracy estimates of the BLR model to predict head hair shape as straight vs. non-straight from 32 SNPs with and without considering sex and age, obtained from
the model validation set.

BLR model Sample set AUC Sensitivity Specificity PPV NPV

32 SNP predictors without sex and age ALL (N = 2415) 0.679 0.840 0.364 0.460 0.780
EUR (N = 2138) 0.664 0.841 0.342 0.467 0.759
non-EUR (N = 277) 0.789 0.829 0.498 0.384 0.885

32 SNP predictors with sex and age ALL (N = 2415) 0.695 0.844 0.364 0.461 0.783
EUR (N = 2138) 0.680 0.846 0.338 0.467 0.762
non-EUR (N = 277) 0.800 0.816 0.527 0.395 0.883

Fig. 2. Individual contributions of the 32 SNPs to the prediction accuracy ex-
pressed by AUC in the BLR model for straight vs. non-straight hair prediction
obtained from the model validation set of 2415 samples (ALL), with 2138
Europeans (EUR) and 277 non-Europeans (non-EUR). Sequence of SNPs from 1
to 32 is according to Table 3.
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impact of age and sex separately, both factors had similarly small ef-
fects (Supplementary Table 4). Notably, sex is typically available in
forensic analyses due to the inclusion of amelogenin in standard DNA
profiling, while age can be estimated via epigenetic profiling [68].

3.2.3. Comparison with previous models for straight vs. non-straight hair
prediction

The BLR model introduced here provided improved prediction ac-
curacy when comparing to all model previously proposed for head
shape. The first reported model involved just 3 SNP predictors,
rs11803731 in TCHH, rs1268789 in FRAS1, and rs7349332 in WNT10A
based on previous work by the EUROFORGEN-NoE Consortium [37]. In
that study, 528 samples from Poland were analysed and used for pre-
diction modelling, achieving a cross-validated AUC at the level of 0.622
for straight vs. non-straight hair when using a logistic regression
method. When these three SNP predictors were used for model building
with the current model building dataset (N = 9674), a slightly lower
AUC value for the European model validation subset (N = 2138) was
achieved at 0.605. In the current study, a much larger sample size for
model building and an independent sample sets for model validation
were used, in contrast to the previous study where the same dataset was
used for model building and cross-validation. Therefore, the noted
discrepancy either indicates a previous overestimation due to not using
an independent validation set, and/or a higher phenotyping accuracy in
the previously used samples. Most importantly, the accuracy of the 32-
SNP BLR model achieved here for the total model validation set
(AUC = 0.679) is statistically significantly higher compared to the AUC
we obtained when only 3 SNPs were analysed (AUC = 0.605) (P
value = 6.15 × 10−17). Moreover, it also is statistically significantly
higher compared to the recently proposed 14-SNP model (AUC = 0.66)
(P value = 1.12 × 10-5) [30]. For the European subset, the accuracy
increase provided by the new 32-SNP model relative to the previous 14-
SNP model is rather small and statistically insignificant (0.664 versus
0.66), and further increased slightly when considering age and sex
(0.68). However, a considerably stronger increase in prediction accu-
racy available with the new 32-SNP BLR model is seen for non-Eur-
opeans, for which an AUC of 0.789 (0.80 with sex and age) was
achieved. When using only 3 SNPs previously applied by Pośpiech
et al., (2015) [37] in the current model building set, to the current non-
European model validation subset (N = 277), a considerable and sta-
tistically significantly lower AUC (0.594 versus 0.789) was obtained (P
value = 2.46 × 10-10).

3.2.4. MLR model validation for predicting straight vs. wavy vs. curly hair
The multinomial regression model based on 33 SNPs (Table 3)

predicted hair morphology in Europeans with AUC = 0.666 for
straight, 0.596 for wavy and 0.600 for curly hair in the model valida-
tion subset (Table 5). Although high sensitivity was achieved for
straight hair (0.862), the reduced AUC for this category is caused by the
lower level of specificity (0.324), as also seen in the BLR model. In
particular, of the 1268 curly and wavy haired individuals, 1150

(90.7%) were misclassified as being straight-haired. Improved predic-
tion accuracy was noted for the non-European model validation subset
in all three categories: straight (AUC = 0.801), wavy (AUC = 0.609)
and curly hair (AUC = 0.736). While a similar level of straight hair
prediction sensitivity was reported for Europeans and non-Europeans
(0.842), increased specificity was seen for non-Europeans (0.438)
compared to Europeans (0.324). This result is correlated with in-
creased, but still low, sensitivity for wavy and curly hair prediction at
the level of 0.016 and 0.013, for EUR and non-EUR respectively. These
results suggest the need for further studies to identify additional pre-
dictors needed to achieve more accurate predictions with higher phe-
notyping resolution. Moreover, including more head hair shape cate-
gories at the level of statistical calculations requires larger number of
samples used, particularly for the testing purposes.

When testing the contribution of individual SNPs to the 3-category
prediction accuracy, high impact, as expected, was noted for EDAR
rs3827760 in non-Europeans and TCHH rs11803731 in Europeans
(Supplementary Table 5). EDAR rs3827760 when used alone in the
modelling, did not impact the prediction accuracy for Europeans with
AUC at the level of ∼0.5 for all three hair shape categories, which
literally means random prediction. In contrast, this EDAR SNP provided
high prediction accuracy for straight hair (AUC = 0.742) and some-
what lower for curly (AUC = 0.659) and wavy hair (AUC = 0.565) in
non-Europeans. TCHH rs11803731 provided more accurate prediction
of hair shape in Europeans (AUC = 0.593 for straight, 0.567 for wavy
and 0.554 for curly hair) and also improved prediction accuracy in non-
Europeans (AUC = 0.769 for straight, 0.567 for wavy and 0.683 for
curly hair), which is most probably explained by the effect of TCHH in
admixed-EUR and AMR. Similar to the BLR model, subsequent SNPs
with the highest impact on hair shape prediction in the MLR model in
Europeans were rs1268789 in FRAS1, rs80293268 in ERRFI1/SLC45A1,
and rs310642 in PTK6. These SNPs were also found to have a noticeable
impact on the 3-category hair shape prediction in non-Europeans along
with two additional polymorphisms, that are LGR4 rs2219783 and
PRSS53 rs11150606 affecting wavy and curly hair shape prediction in
non-Europeans only (Supplementary Table 5). Sex and age had a po-
sitive impact on MLR prediction accuracy of some hair shape categories
with AUC increase at ∼0.01-0.02 (Supplementary Table 6).

4. Conclusions

Recent progress in better understanding the complex genetic ar-
chitecture of some EVCs, head hair shape included, and the discovery of
strongly associated SNPs, provides suitable resources for broadening
Forensic DNA Phenotyping and other applications of DNA-based ap-
pearance prediction such as in anthropology and paleogenetics, beyond
the currently practised pigmentation traits. Here, we developed a BLR
model for straight vs. non-straight hair prediction based on 32 SNPs,
and – for the first time - a MLR model for straight vs. wavy vs. curly hair
prediction based on 33 SNPs, which largely overlap between the
models. The new 32-SNP BRL model significantly improves 2-category

Table 5
Accuracy estimates of the MLR model to predict head hair shape in 3 categories straight vs. wavy vs. curly from 33 SNPs as obtained from the model training set.

MLR model Sample set Hair shape AUC Sensitivity Specificity PPV NPV

33 SNP predictors without sex and agea ALL (N = 2415) Straight 0.680 0.860 0.340 0.456 0.791
Wavy 0.597 0.010 0.995 0.611 0.538
Curly 0.621 0.006 0.998 0.286 0.855

EUR (N = 2138) Straight 0.666 0.862 0.324 0.467 0.774
Wavy 0.596 0.009 0.996 0.643 0.535
Curly 0.600 0.004 0.997 0.167 0.873

non-EUR (N = 277) Straight 0.801 0.842 0.438 0.362 0.880
Wavy 0.609 0.016 0.987 0.500 0.557
Curly 0.736 0.013 1.000 1.000 0.721

a For the model with sex and age, see Supplementary Table 6.
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hair shape prediction compared to the previously reported 3-SNP and
14-SNP models. Although non-Europeans revealed more accurate pre-
diction outcomes than European, for both the BRL and the MRL models,
the limited non-European data available here require additional studies
involving larger numbers of samples from various human populations
to further evaluate the model accuracy. However, the 32 SNPs used in
the new BLR model only explain 12.1% of hair shape variation in the
current model building set of 6068 samples and, as evident from PPV
and NPV values, the prediction outcome was correct in 46% of all
straight hair classifications and 78% of all non-straight hair classifica-
tions. Thus, despite our ability to provide an improved model and DNA
marker set for hair shape prediction, providing the next step towards
broadening Forensic DNA Phenotyping beyond pigmentation traits, this
study also demonstrates that the search for more hair shape associated
DNA variants and the investigation of their predictive value in in-
dependent samples needs to continue.
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